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Abstract
Objective: To assess both the feasibility and potential impact of predicting prevent-
able hospital readmissions using causal machine learning applied to data from the 
implementation of a readmissions prevention intervention (the Transitions Program).
Data Sources: Electronic health records maintained by Kaiser Permanente Northern 
California (KPNC).
Study Design: Retrospective causal forest analysis of postdischarge outcomes 
among KPNC inpatients. Using data from both before and after implementation, we 
apply causal forests to estimate individual-level treatment effects of the Transitions 
Program intervention on 30-day readmission. These estimates are used to character-
ize treatment effect heterogeneity and to assess the notional impacts of alternative 
targeting strategies in terms of the number of readmissions prevented.
Data Collection: 1 539 285 index hospitalizations meeting the inclusion criteria and 
occurring between June 2010 and December 2018 at 21 KPNC hospitals.
Principal Findings: There appears to be substantial heterogeneity in patients’ re-
sponses to the intervention (omnibus test for heterogeneity p = 2.23 × 10−7), par-
ticularly across levels of predicted risk. Notably, predicted treatment effects become 
more positive as predicted risk increases; patients at somewhat lower risk appear 
to have the largest predicted effects. Moreover, these estimates appear to be well 
calibrated, yielding the same estimate of annual readmissions prevented in the actual 
treatment subgroup (1246, 95% confidence interval [CI] 1110-1381) as did a formal 
evaluation of the Transitions Program (1210, 95% CI 990-1430). Estimates of the 
impacts of alternative targeting strategies suggest that as many as 4458 (95% CI 
3925-4990) readmissions could be prevented annually, while decreasing the number 
needed to treat from 33 to 23, by targeting patients with the largest predicted ef-
fects rather than those at highest risk.
Conclusions: Causal machine learning can be used to identify preventable hospital 
readmissions, if the requisite interventional data are available. Moreover, our results 
suggest a mismatch between risk and treatment effects.
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1  | INTRODUC TION

Unplanned hospital readmissions represent an undesirable outcome 
following a hospitalization, but are common, costly, and associated 
with substantial morbidity and mortality, occurring within 30 days 
following nearly 20% of hospitalizations by Medicare beneficiaries.1 
In 2011, 3.3 million patients in the United States were readmitted 
to the hospital within 30 days, incurring costs of $41 billion.2 In 
2012, responding the growing awareness of the toll of readmissions, 
the Centers for Medicare and Medicaid Services introduced the 
Hospital Readmissions Reduction Program (HRRP), which penalizes 
hospitals with risk-adjusted 30-day readmission rates higher than 
the average. As a consequence of the HRRP and other value-based 
care initiatives, many hospitals and health care systems in the United 
States have since implemented quality improvement (QI) initiatives 
and population health management programs relying on risk assess-
ment tools to identify hospitalized patients at high risk of readmis-
sion. Tailored interventions can be then targeted to these patients 
immediately following discharge, with the goal of preventing their 
readmission. The effectiveness of these interventions in preventing 
readmissions has been mixed, and the precise mechanisms through 
which they do so remain unclear.3-9

Many risk assessment tools used in these efforts apply statis-
tical modeling or supervised machine learning to estimate read-
mission risk among hospitalized patients based on data prior to 
discharge.8-13 Stakeholders select a risk threshold with respect to 
resource constraints, so that an intervention is to be delivered to 
all patients above this threshold, while those below it receive usual 
care. Underlying many population health management and QI ef-
forts aimed at reducing readmissions is the implicit assumption that 
the patients most at risk are also those most likely to benefit from 
the intervention.8,14-16 Ostensibly, this assumption has intuitive ap-
peal, given that higher-risk patients appear to have “more room to 
move the needle,” but it is not guaranteed to hold in practice17,18, es-
pecially in the context of readmissions7,19 and other settings where 
treatment effect heterogeneity may exist.18

The need for analytical approaches that estimate patient-level 
benefit—referred to in some contexts as impactibility20-23 and falling 
under the umbrella of precision medicine more generally—is begin-
ning to be recognized, particularly for readmission reduction pro-
grams.22 However, the distinction between benefit and risk may 
currently be overlooked in the development and application of risk 
assessment tools. Individual benefit is often expressed in terms of 
treatment effects, which cannot be estimated by modeling outcome 
risk. Predicting, for example, a readmission risk of 60% for a patient 
provides no information on their counterfactual risk if they were to 
receive a certain readmissions reduction intervention. The actual 
counterfactual risk for this hypothetical patient could be unchanged, 
on average, corresponding to no effect for the intervention. On the 

other hand, the effect of this intervention may be heterogeneous 
across levels of predicted risk, so that, for example, this patient ex-
periences an absolute risk reduction (ARR) of 10% as a result of the 
intervention, while another patient at a predicted risk of 30% expe-
riences an ARR of 20%. Given limited resources, a decision maker 
may wish to give the intervention to the latter patient. Indeed, when 
it comes to preventing readmissions, there is growing evidence that 
higher-risk patients—referred to in some contexts as “super-utiliz-
ers”7—may be less sensitive to a class of care coordination interven-
tions relative to those at lower risk.19,22,24

Moreover, efforts targeting a preventative intervention based 
on predicted risk also fail to take into account that low-risk patients 
comprise the majority of readmissions.25 That the majority of poor 
outcomes are experienced by patients at low risk, but who would not 
have been selected to receive an intervention, has previously been 
observed in a range of predictive modeling problems in population 
health management.8 Thus, targeting a preventative intervention so 
as to include lower-risk patients among whom they may be effective, 
rather than targeting them only to high-risk patients, may potentially 
prevent more readmissions than the latter strategy.26-28

Few, if any, analytical approaches to identify “care-sensitive” pa-
tients, or those whose outcomes may be most “impactible,” currently 
exist, despite a clear need for such methods.20,23 Existing approaches 
based on off-the-shelf supervised machine learning methods, de-
spite their flexibility and potential predictive power, cannot meet 
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What is known on this topic

• Readmission risk assessments are widely used by hospi-
tals and health systems to target readmission prevention 
interventions to inpatients immediately postdischarge, 
with a focus on those at highest risk.

What this study adds

• Using data from 1.5 million hospital discharges in an 
integrated health system from before and after the im-
plementation of a readmission prevention intervention, 
we find evidence for risk treatment effect mismatch in 
this setting: patients at high predicted risk of 30-day re-
admission appeared to derive less benefit compared to 
low-risk patients.

• Our results may have implications for the design of re-
admission prevention programs and related initiatives: 
targeting preventative and quality improvement inter-
ventions based on estimated benefit, and not estimated 
risk, may maximize aggregate benefit.
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this need.18 In this study, we demonstrate the feasibility of applying 
causal machine learning to identify preventable hospital readmissions 
with respect to a readmission prevention intervention via modeling 
its heterogeneous treatment effects. In our setting, the “preventabil-
ity” of a readmission is not based on predefined, qualitative criteria, 
as in prior work.29,30 Rather, it is expressed in quantitative terms: the 
greater the treatment effect on readmission estimated for a patient, 
the more preventable their potential readmission may be. To accom-
plish this, we leverage a rich set of data drawn from before and after 
the implementation of a comprehensive readmissions prevention in-
tervention in an integrated health system1).

2  | METHODS

2.1 | Data and context

The data consist of 1 584 902 hospitalizations taking place at the 
21 hospitals within Kaiser Permanente’s Northern California re-
gion (hereafter KPNC) between June 2010 and December 2018. 
In particular, these data include patient demographics, diagnosis 

codes, laboratory-based severity of illness scores at admission 
and at discharge, and a comorbidity burden score that is up-
dated monthly (Table 1). A subset of these data, which span from 
June 2010 to December 2017, have previously been described in 
greater detail.31

These data encompass a period where a comprehensive read-
missions prevention intervention, known as the Transitions Program, 
began and completed implementation at all 21 KPNC hospitals from 
January 2016 to May 2017. The Transitions Program had two goals: 
(1) to standardize postdischarge care by consolidating a range of pre-
existing care coordination programs for patients with complex care 
needs and (2) to improve the efficiency of this standardized interven-
tion by targeting it to the patients at highest risk of the composite 
outcome of postdischarge readmission and/or death. The Transitions 
Program intervention is principally a care coordination intervention 
centered around early primary care physician follow-up, shortly 
after discharge, and ongoing nursing assessment delivered by tele-
phone in this 30-day period. A full description of the intervention is 
available in the Appendix S1.

As currently implemented, the Transitions Program relies on a 
validated predictive model for the risk of this composite outcome,12 

Covariate Description Mean (median; IQR)

AGE Patient age in years, recorded at admission 65.0 (67; 54-78)

MALE Male gender indicator 47.5% (–)

DCO 4 Code status at discharge (4 categories) 84.3% (–)

HOSP PRIOR7 CT Count of hospitalizations in the last 7 d prior 
to the current admission

0.05 (0; 0-0)

HOSP PRIOR8 30 CT Count of hospitalizations in the last 8 to 30 d 
prior to the current admission

0.11 (0; 0-0)

LOS 30 Length of stay, in days (with stays above 
30 d truncated at 30 d)

4.6 (3; 2-5)

MEDICARE Indicator for Medicare Advantage status 58.8% (–)

DISCHDISP Discharge disposition (home, skilled nursing, 
home health)

72.7% (–)

LAPS2 Laboratory-based acuity of illness score, 
recorded at admission

55.7 (49; 16-84)

LAPS2DC Laboratory-based acuity of illness score, 
recorded at discharge

44.5 (40; 24-60)

COPS2 Comorbidity and chronic condition score, 
updated monthly

44.7 (24; 10-66)

HCUPSGDC Diagnosis supergroup classification –

W (or Wi) Treatment: Transitions Program intervention 5.2% (–)

Y (or Yi) Outcome: Nonelective readmission within 
30 d postdischarge

12.4% (–)

Note: A more comprehensive listing of characteristics, stratified respective to the implementation 
of the Transitions Program, as well as definitions of the HCUPSGDC variables, can be found in 
the Appendix S1. For binary variables, only means are presented; for DCO_4 and DISCHDISP, the 
quantities presented correspond to the proportion of discharges who were full code, and those 
disharged to home, respectively.
Abbreviations: COPS2, COmorbidity Point Score, version 2; HCUPSGDC, Health Care and 
Utilization Project Super Group at discharge; IQR, interquartile range; LAPS2, Laboratory-based 
Acute Physiology Score, version 2.

TA B L E  1   The covariates used in this 
study and their d
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which was developed using historical data from between June 
2010 and December 2013. Following development and validation 
of this model by teams at KPNC’s Division of Research, it was sub-
sequently integrated into KP HealthConnect, KPNC’s electronic 
health record (EHR) system to produce continuous risk scores, 
ranging from 0 to 100%, at 6:00 AM on the planned discharge day.

These risk scores are used to automatically assign inpatients 
awaiting discharge to be followed by the Transitions Program over 
the 30 days postdischarge. Inpatients with a predicted risk of ≥25% 
(medium or high) are assigned to be followed by the Transitions 
Program, and are considered to have received the Transitions 
Program intervention in this analysis. Inpatients with a predicted risk 
below 25% instead received usual postdischarge care, at the discre-
tion of the discharging physician.

We used a subset of 1 539 285 hospitalizations taking place at 
21 KPNC hospitals that meet a set of eligibility criteria. These crite-
ria include: the patient was discharged alive from the hospital; age 
≥18 years at admission; and their admission was not for childbirth 
(although postdelivery complications were included) nor for same-
day surgery. Moreover, a readmission was considered nonelective if 
it began in the emergency department; if the principal diagnosis was 
an ambulatory care-sensitive condition32; or if the episode of care 
began in an outpatient clinic, and the patient had elevated severity 
of illness, based on a mortality risk of ≥7.2% as predicted by their 
laboratory-based acuity score (LAPS2) alone.

This project was approved by the KPNC Institutional Review 
Board for the Protection of Human Subjects, which has jurisdiction 
over all the study hospitals and waived the requirement for individ-
ual informed consent.

2.2 | From observational data to predicted 
treatment effects: causal forests

To identify potentially preventable readmissions, we undertake a 
causal machine learning approach using data taken from before and 
after the implementation of the Transitions Program at KPNC. Our 
causal machine learning approach is distinct from supervised ma-
chine learning as it is commonly applied in that it seeks to estimate 
individual treatment effects (or lift), and not outcome risk. Compared 
to other methods for studying treatment effect heterogeneity (eg, 
subgroup analyses), causal machine learning methods afford a major 
advantage in that they avoid potentially restrictive parametric as-
sumptions, allowing a data-driven approach, while guarding against 
overfitting via regularization.

We express these individual treatment effects of the Transitions 
Program intervention in terms of the predicted conditional average 
treatment effects (CATEs), �̂ i, which estimate

where Yi(1) and Yi(0) represent potential outcomes33 of a 30-day re-
admission or no readmission within 30 days, respectively; E is the 

expectation operator; and Xi denotes the covariates x associated with 
patient i. Importantly, this quantity can be interpreted as the absolute 
risk reduction (ARR). It is through the sign and magnitude of these 
estimated CATEs that we consider a readmission potentially prevent-
able: a �𝜏 i<0 denotes that the intervention would be expected to lower 
30-day readmission risk for that patient, while a �𝜏 i>0 suggests that 
the intervention would be more likely to result in readmission within 
30 days. A larger (more negative) CATE suggests a greater extent of 
preventability: that is, �𝜏 j<�𝜏 i<0 implies that patient j’s readmission is 
more “preventable”—their risk is more modifiable by the intervention—
compared to patienti ’s.

To estimate these CATEs, we apply causal forests to the KPNC 
data described in the previous subsection. Causal forests34 repre-
sent a special case of generalized random forests35; causal forests 
use a different loss function for placing splits and allow treatment ef-
fect estimates to be computed individually by each tree (see Section 
6.2 of this work35). Our overall approach resembles that in prior 
work36, which used them to study treatment effect heterogeneity in 
an observational setting. Causal forests can be viewed as a form of 
adaptive, data-driven subgroup analysis, and can be applied in either 
observational or randomized settings. As such, they do not make 
parametric assumptions regarding the relationships between the co-
variates and the treatment effect, which may give them more power 
to detect heterogeneity, if it exists, and to allow individual effects 
to be more accurately estimated.37 In the Appendix S1, we describe 
some necessary assumptions that are required in order to identify 
the CATEs in our setting, and an omnibus test for heterogeneity38 
which we apply to establish quantitative evidence for treatment ef-
fect heterogeneity.

All analyses were performed in R (version 3.6.2); causal forests 
and the omnibus test for heterogeneity were implemented using 
the grf package (version 0.10.4). Causal forests were fit using de-
fault settings (except for the minimum node size, which was set to 
10) with n = 8000 trees and per-hospital clustering. Propensity and 
marginal outcome models were estimated prior to fitting the causal 
forests and used to “orthogonalize” the forests.39

2.3 | Translating predictions into 
targeting strategies

A relevant question, once predictions have been made—be they of 
risk or of treatment effects—is how to translate them into treat-
ment decisions. With predicted risk, these decisions are made with 
respect to some risk threshold, or to a decision-theoretic threshold 
(eg, as in prior work11). However, both approaches are potentially 
suboptimal in the presence of treatment effect heterogeneity, 
requiring strong assumptions to be made regarding the nature of 
the treatment effect, for example, assuming a constant effect.11 
Instead of prioritizing the patients most at risk, we prioritize those 
with the treatment effects �̂ i < 0 that are largest in magnitude, that 
is, the most negative. We also describe in the Technical Appendix 
(S1) how estimates of “payoffs,” or the gains associated with 

(1)� i(x)=E
[
Yi(1)−Yi(0)|Xi=x

]
,
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successfully preventing a readmission, could be incorporated into 
this analysis.

To estimate the impacts of several notional targeting strategies 
that focus on treating those with the largest effects, we undertake 
the following approach. We begin by stratifying the patients in the 
dataset into 20 ventiles V1,⋯,V20, of predicted risk, where V1 de-
notes the lowest (0 to 5%) risk ventile, and V20 the highest (95% to 
100%). Then, the causal forest is trained on data through the end of 
2017 and used to predict CATEs for all patients discharged in 2018.

First, for all patients above a predicted risk of 25%, we compute 
the impact of the current risk- based targeting strategy by summing 
these predicted CATEs from 2018. This yields an estimate of the 
number of readmissions prevented, which we compare to another 
estimate using the average treatment effect of this intervention, 
from prior work.40 This comparison serves as one check of the cal-
ibration of the predicted CATEs; the numbers of readmissions pre-
vented should be similar. Second, we then use these same predicted 
CATEs from 2018 to assess three CATE-based targeting strategies, 
which treat the top 10%, 20%, and 50% of patients in each risk 
ventile Vj based on their predicted CATE. Similarly, we compute the 
NNT for a targeting strategy by taking the reciprocal of the average 
CATE of the patients notionally treated under that strategy, 1∕

−

�̂ i.  
[Correction added on 6 November 2020, after first online publica-
tion: the mathematical expression has been amended to 1∕

−

�̂ i.]

3  | RESULTS

3.1 | Overall characteristics of the cohort

From June 2010 to December 2018, 1 584 902 hospitalizations took 
place at the 21 KPNC hospitals represented in this sample. Further 
details regarding the overall cohort are presented in Table S1. Of 
these hospitalizations, 1 539 285 met the inclusion criteria, of which 
1 127 778 (73.3%) occurred during the preimplementation period 
for the Transitions Program, and 411 507 (26.7%) during the post-
implementation period. Among these 411 507 hospitalizations tak-
ing place postimplementation, 80 424 (19.5%) were predicted to be 
at risk of 30-day postdischarge mortality or readmission and were 
considered to have received the Transitions Program intervention 
postdischarge.

Of the patients whose index stays were included, their mean 
age was 65.0 years, and 52.5% were women. The overall 30-day 
nonelective rehospitalization rate among these index stays was 
12.4%, and 30-day postdischarge mortality was 4.0%. Notably, 
patients at low risk (risk score < 25%) represented 63.3% of all 
readmissions throughout the study period, while making up 82.9% 
of index stays, compared to 36.7% of all readmissions among 
those at risk (≥25%), which represented 17.1% of index stays. The 
observed-to-expected ratios of the outcome in both groups fol-
lowed similar trends prior to implementation, but diverged post-
implementation; these rates are presented in Figure TA1 in the 
Appendix S1.

3.2 | Characterizing the treatment effect 
heterogeneity of the Transitions Program intervention

The estimated out-of-bag conditional average treatment effects 
(CATEs) yielded by the causal forest are presented in Figure 1. 
Qualitatively, these distributions exhibit widespread and sug-
gest some extent of heterogeneity in the treatment effect of the 
Transitions Program intervention. In particular, treatment effects 
appear to be largest for patients discharged with a predicted risk 
of around 15% to 35% and appeared to attenuate as risk increased. 
Notably, particularly among patients at higher risk, some estimated 
effects were greater than zero, indicating that the intervention was 
more likely to lead to readmission within 30 days. Finally, the CATE 
estimates themselves also appeared well calibrated, in the sense 
that we identified no cases where an individual’s CATE estimate was 
greater than their predicted risk.

Figure 2 is similar to the previous, but stratifies the display by 
Clinical Classification Software (CCS) supergroups. The overall pat-
tern is similar to that in the unstratified plot, in that treatment effects 
appear to be greatest for patients at low to moderate risk, All su-
pergroups appear to exhibit heterogeneity in treatment effect both 
within and across ventiles, which is more pronounced for some con-
ditions, including hip fracture, trauma, and highly malignant cancers. 
Qualitatively, some supergroups exhibit bimodal or even trimodal 
distributions in the treatment effect of the Transitions Program in-
tervention, suggesting identification of distinct subgroups based on 
these effects.

Quantitatively, fitting the best linear predictor using these CATE 
estimates (described in the Appendix S1) yields estimates of �̂ = 
1.16 and �̂ = 1.06, with p = 5.3 × 10−8 and 2.23 × 10−7, respectively. 
Interpreting the estimate of � as an omnibus test for the presence 
of heterogeneity, we can then reject the null hypothesis of no treat-
ment effect heterogeneity.

These effects can also be evaluated on a grid of two covariates 
to assess how the estimated CATE function changes as these covari-
ates vary. This yields insight into the qualitative aspects of the sur-
face of the CATE function and may help identify subgroups among 
which the Transitions Program intervention may have been more 
or less effective. Figure 2 shows the resulting CATE functions for 
two choices of patient age: 50 and 80 years, where the estimated 
CATE ranged from −0.060 to 0.025 (−6.0 to 2.5%). The estimated 
CATE was generally more negative—suggesting that the Transitions 
Program intervention became more effective with increasing age —
at age 80 compared to 50.

Moreover, the estimated CATE tended to increase with increas-
ing LAPS2DC. This finding suggests that for patients who were more 
ill at discharge (the average value of LAPS2DC in 2018 was 45.5), 
enrolling them in the Transitions Program may have actually encour-
aged them to return to the hospital. While this finding may appear 
surprising, it is unclear if it actually represents “harm” in the sense 
such a positive effect is usually interpreted; we discuss this finding 
in more depth in the Discussion. Additional dimensions of heteroge-
neity are presented in Figure S1 in the Appendix S1.
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3.3 | Notional estimates of overall impact under 
different targeting strategies

Based on these individual CATE estimates, we compute the po-
tential impacts of several notional targeting strategies using these 

estimated effects, and not predicted risk, to target the Transitions 
Program intervention. These are given in Table 2. We first confirm 
the calibration of the effect estimates by taking the same group of 
patients who were intervened upon under the current risk-based 
strategy and use this group to estimate the number of readmissions 

F I G U R E  1   Treatment effect heterogeneity across risk score ventiles. The densities represent the distribution of estimated conditional 
average treatment effects within each ventile. They are drawn on a common scale, and hence do not reflect the variation in sample size 
across ventiles. The values in the bracket denote the risk range for that ventile; for example, (0.25, 0.3] represents all patients with predicted 
risk of 25 to 30%
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F I G U R E  2   Treatment effect heterogeneity, stratified by discharge diagnosis supergroup. Treatment effect heterogeneity across risk 
score ventiles, stratified by Clinical Classification Software (CCS) supergroups based on the principal diagnosis code at discharge. A full 
listing of the definitions of these supergroups is given in Table S2 in the Appendix S1. Some ventiles are blank for some supergroups, 
because there were no patients belonging to those supergroups with predicted risks falling within those ranges. Abbreviations: AMI, 
acute myocardial infarction; CAP, community-acquired pneumonia; CHF, congestive heart failure; CVD, cerebrovascular disease; GI, 
gastrointestinal; UTI, urinary tract infection

Renal failure (all) Residual codes Sepsis Trauma UTI
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prevented, with the aim of comparing this number to a previous es-
timate of the impact of this policy using the average treatment ef-
fect.40 This results in an estimate of 1246 (95% confidence interval 
[CI] 1110-1381) readmissions prevented annually, which compares 
favorably to the previous estimate of 1210 (95% CI 990-1430), rep-
resenting further evidence that these estimates are well calibrated.

Next, computing the impacts of the CATE-based strategies, we 
find that all three strategies are estimated to result in greater po-
tential reductions in the absolute number of readmissions prevented 
(Table 2). The strategy that treats the top 10% CATEs of each ventile 
may prevent 1461 (95% CI 1294-1628) readmissions annually, and 
does so more efficiently, as implied by its NNT of 13. Moreover, the 
top-20% strategy requires the same total number of interventions as 
the existing risk-based strategy (39 648 vs 39 985), yet is estimated 
to double the number of annual readmissions prevented, at 2478 
(95% CI 2262-2694), with an NNT of 16.

Even under the most expansive strategy, which treats the top 
50% of each risk ventile and requires 250% of the total interven-
tions compared to the risk-based strategy, also represents an im-
provement in the NNT (23 vs 33). This strategy is estimated prevent 
4458 (95% CI 3925-4990) readmissions annually, nearly four times 
as many as the existing risk-based strategy. Finally, we also note that 
while there appears to exist a tradeoff in terms of absolute impact 
and efficiency, all CATE-based strategies substantially improved 
upon the risk-based targeting strategy in terms of the NNT.

4  | DISCUSSION

Here, we have shown the feasibility of estimating individual treat-
ment effects for a comprehensive readmissions prevention interven-
tion using data on over 1.5 million hospitalizations, representing an 
example of an “impactibility” model.20 Even though our analysis used 
observational data, we found that these individual estimates were 

well calibrated, in that none of the individual estimates were greater 
than the predicted risk. Moreover, these estimates, when used to 
compute the impact of the risk-based targeting policy, substantially 
agreed with a separate estimate computed via a difference-in-differ-
ences analysis.40 Notably, our results suggest that strategies target-
ing similar population health management and quality improvement 
(QI) interventions based on these individual effects may lead to far 
greater aggregate benefit compared to targeting based on risk. Here, 
the difference translated to nearly as many as four times the num-
ber of readmissions prevented annually over the current risk-based 
approach.

To the best of our knowledge, this work is the first to apply 
causal machine learning together to estimate the treatment effect 
heterogeneity of a population health management intervention, and 
as such, may represent the first example of an end-to-end “impact-
ibility” model.20 Our analysis also found both qualitative and quan-
titative evidence for treatment effect heterogeneity, particularly 
across levels of predicted risk: the Transitions Program intervention 
appeared to be less effective as predicted risk increased. The ex-
tent of this mismatch between treatment effect and predicted risk 
appeared substantial and may have implications for the design of 
readmission reduction initiatives and related population health man-
agement programs. Notably, our finding of a risk-treatment effect 
mismatch is in line with some prior work in the readmissions pre-
vention literature.7,19,22 Further afield, a study of treatment effect 
heterogeneity among patients undergoing antihypertensive therapy, 
using a similar causal machine learning approach (the X-learner41), 
also found a risk-treatment effect mismatch in that setting.42

A notable finding is that some patients had a predicted CATE 
greater than zero, indicating that the Transitions Program interven-
tion may have encouraged them to return to the hospital. In other 
settings, a positive treatment effect would often be interpreted 
as harm, suggesting that the intervention should be withheld from 
these patients. However, we argue that our finding does not readily 

Treatment strategy
Annual readmissions 
prevented, n Total interventions, n NNT

Risk-based targeting

Target to ≥25% (DiD 
estimate)

1210 (990-1430) 39 985 33

Target to ≥25% (CF 
estimate)

1246 (1110-1381) 39 985 33

CATE-based targeting

Targeting top 10% 1461 (1294-1628) 18 993 13

Targeting top 20% 2478 (2262-2694) 39 648 16

Targeting top 50% 4458 (3925-4990) 102 534 23

Note: These impacts are expressed in terms of the annual numbers of readmissions prevented as 
well as the numbers needed to treat (NNTs) under each targeting strategy, based on the estimates 
for index admissions in 2018. The first quantity—the difference-in-differences (DiD) estimate—
is based on the results of a prior study.40 All quantities are rounded to the nearest integer. 
Parentheses represent 95% confidence intervals.
Abbreviations: CATE, conditional average treatment effect; CF, causal forest; DiD, 
difference-in-differences.

TA B L E  2   Estimates of overall impacts 
of risk-based and CATE-based targeting 
strategies
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admit such an interpretation. To see why, we note that this subgroup 
of patients with a positive CATE appeared to be those who were 
more acutely ill at discharge, as evidenced by their higher LAPS2DC 
scores (Figure 3). Hence, an alternative interpretation of these posi-
tive CATEs is that they represent readmissions which may have been 
necessary, and which perhaps may have been facilitated by aspects 
of the Transitions Program intervention, including instructions to pa-
tients outlining the circumstances (eg, new or worsening symptoms) 
under which they should seek further care. This finding holds partic-
ular relevance given increasing concern that readmission prevention 
programs, in responding to regulatory incentives, may be reducing 
30-day hospitalization rates at the expense of increased short- and 
long-run mortality.5,43,44

In particular, this finding also suggests that the CATE estimates 
may be insufficient to capture the full impact of the Transitions 
Program intervention on patient outcomes, meaning that the esti-
mated effect of the intervention on readmission alone may not rep-
resent a sufficient basis for future targeting strategies. It is plausible 
that intervening in a patient with a positive estimated effect may be 
warranted if the readmission would have a positive effect on other 
outcomes, despite the current emphasis of value-based purchasing 
programs on penalizing excess 30-day readmissions. For example, 
in fiscal year 2016, the maximum penalty for excess 30-day mor-
tality was 0.2% of a hospital’s diagnosis-related group (DRG) pay-
ments under the Hospital Value-Based Purchasing program, while 
the maximum penalty for excess 30-day readmission was 3.0% of 

DRG payments under the HRRP.45 Hence, a more holistic targeting 
strategy would incorporate estimates of the intervention’s effect on 
short- and long-run mortality and other outcomes. Selecting patients 
for treatment could then be formulated as an optimization problem 
that attempts to balance regulatory incentives, organizational prior-
ities, patient welfare, and resource constraints.

Our approach could be used to re-target other population health 
management and QI interventions currently based on risk assess-
ment tools. Patients expected to benefit could be prioritized to re-
ceive such an intervention, while patients unlikely to benefit could 
instead receive more targeted care that better meets their needs, 
including specific subspecialty care, and in some cases, palliative 
care. However, these individual estimates were derived from obser-
vational data, and not from data generated via a randomized experi-
ment—the latter which represents the ideal substrate for estimating 
treatment effects, insofar as randomization is able to mitigate the 
effects of confounding.46 Furthermore, our approach requires in-
terventional data, unlike those used to develop traditional risk as-
sessment tools, which use historical data. Hence, to implement our 
approach may require rethinking how predictive algorithm-driven 
interventions (or “prediction-action dyads”47) are deployed within 
health systems, particularly in relation to existing digital infrastruc-
ture and institutional oversight processes.

One starting point for doing so is to first deploy a new predic-
tive algorithm-driven intervention as part of a two-arm random-
ized trial which compares that intervention to usual care. This trial 

F I G U R E  3   Visualization of the estimated conditional average treatment effect function. This figure presents the estimated CATE 
function as it varies in the dimensions of Laboratory-based Acuity Score at discharge (LAPS2DC) and Comorbidity Point Score (COPS2), for 
a patient with chronic heart failure at ages 50 and 80. Here, we vary LAPS2DC and COPS2 while holding all other continuous covariates at 
their median values, except for age, which we set to 50 and 80. Categorical covariates were held at their mode, except for the supergroup, 
which we set to chronic heart failure (CHF). We plot the CATE function from the 10th to 90th percentiles of LAPS2DC and from the 0th to 
95th percentiles of COPS2. This is akin to evaluating the CATE function for a set of pseudo-patients with CHF having these values of COPS2 
and LAPS2DC. In this region, the estimated CATE ranged from −0.060 to 0.025 (−6.0% to 2.5%), meaning that the estimated absolute 
risk reduction of the Transitions Program intervention was as large as −6% for some patients, while for others, their readmission risk was 
increased by as much as 2.5% [Color figure can be viewed at wileyonlinelibrary.com]
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represents a pilot phase, generating data that are used to derive 
an impactibility model. Following this pilot phase, two options are 
possible: (1) based on this impactibility model, the intervention 
could be re-targeted to the patients most expected to benefit; 
or (2) alternatively, another two-arm randomized trial comparing 
risk-based to impactibility-based targeting could be carried out. 
In the latter option, patients would be randomized to either of the 
risk or impactibility arms, and based on their covariates would ei-
ther receive or not receive the intervention according to their risk 
or benefit estimate. Using the results of this second trial, which-
ever targeting approach proved more effective could then be 
operationalized.

This proposal represents a shift from how deployments of pre-
dictive algorithm-driven interventions are usually carried out in 
health systems. New overnight processes48 and digital infrastruc-
ture would be required in order to realize the full potential of these 
approaches. Many such interventions, if deemed to create only min-
imal risk, often fall under the umbrella of routine quality improve-
ment (QI) studies, which exempts them from ongoing independent 
oversight.49 However, incorporating randomization may shift these 
implementations from the category of routine QI to nonroutine QI 
or research. These latter two categories of studies often require in-
dependent oversight by, for example, an institutional review board 
(IRB), and may need to incorporate additional ethical considerations, 
for example, requiring informed consent.

This study has several limitations. First, as it is observational 
in nature, our analysis necessarily relies on certain assumptions, 
which, while we believe are plausible, are unverifiable. The uncon-
foundedness assumption that we make presumes no unmeasured 
confounding, and cannot be verified through inspection of the data 
nor via statistical tests. Second, these estimates of benefit must 
be computed with data that include the intervention, and not with 
historical data, as with risk assessment tools. Third, although we 
incorporated it into our analysis, the HCUPSGDC variable is not 
always available at discharge. For a retrospective study that prin-
cipally seeks to characterize heterogeneous treatment effects, this 
does not constitute a limitation. However, prospective applications 
of this model would have to take this into account. Finally, it is pos-
sible that patients deprioritized under an impactibility modeling ap-
proach, but who might still be at high risk for the outcome, may still 
require alternative interventions better tailored to their needs.20

5  | CONCLUSION

Causal machine learning can be used to identify preventable hos-
pital readmissions, if the requisite interventional data are available. 
Moreover, our results point to a mismatch between readmission risk 
and treatment effect, which is consistent with suggestions in prior 
work. Here, the extent of this mismatch was substantial, suggesting 
that many preventable readmissions may be being “left on the table” 
with current approaches based on risk assessment. Our proposed 
framework is also generalizable to the study of a range of population 

health management and quality improvement interventions cur-
rently driven by risk prediction models.
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