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Abstract

Background and Objective—Type 1 diabetes is a disease characterized by lifelong insulin 

administration to compensate for the autoimmune destruction of insulin-producing pancreatic 

beta-cells. Optimal insulin dosing presents a challenge for individuals with type 1 diabetes, as the 

amount of insulin needed for optimal blood glucose control depends on each subject’s varying 

needs. In this context, physical activity represents one of the main factors altering insulin 

requirements and complicating treatment decisions. This work aims to develop and test in 

simulation a datadriven method to automatically incorporate physical activity into daily treatment 

decisions to optimize mealtime glycemic control in individuals with type 1 diabetes.

Methods—We leveraged glucose, insulin, meal and physical activity data collected from twenty-

three individuals to develop a method that (i) tracks and quantifies the accumulated glycemic 

impact from daily physical activity in real-time,(ii) extracts an individualized routine physical 

activity profile, and (iii) adjusts insulin doses according to the prolonged changes in insulin needs 

due to deviations in daily physical activity in a personalized manner. We used the data replay 

simulation framework developed at the University of Virginia to “re-simulate” the clinical data and 

estimate the performances of the new decision support system for physical activity informed 

insulin dosing against standard insulin dosing. The paired t-test is used to compare the 

performances of dosing methods with p <0.05 as the significance threshold.

Results—Simulation results show that, compared with standard dosing, the proposed physical-

activity informed insulin dosing could result in significantly less time spent in hypoglycemia 

(15.3±8% vs. 11.1±4%, p=0.007) and higher time spent in the target glycemic range (66.1±11.7% 

vs. 69.6±12.2%, p < 0.01) and no significant difference in the time spent above the target 

range(26.6±1.4 vs. 27.4±0.1, p=0.5).
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Conclusions—Integrating daily physical activity, as measured by the step count, into insulin 

dose calculations has the potential to improve blood glucose control in daily life with type 1 

diabetes.
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1. Introduction

In health, the human body’s blood glucose (BG) regulation is accomplished via various 

feedback mechanisms that govern the secretion and action of insulin – the main BG 

lowering hormone. The destruction of insulin-secreting beta cells in type 1 diabetes (T1D) 

results in the break-down of the endogenous BG regulation1. Consequently, exogenous 

insulin injections and careful BG monitoring are required to maintain glycemic levels within 

a target range (generally 70-180 mg/dL) and avoid potentially severe complications2. 

Carbohydrate intake increases glucose levels and is required to be matched by insulin 

injection for proper BG control. In standard therapy, the amount of insulin required at 

mealtime is broken down into two components: the amount required to compensate for the 

carbohydrates ingested during the meal, and the amount required to correct for any current 

elevated BG level. Additionally, people with T1D also need to consider the previously 

injected insulin still in circulation when calculating the total dose to be administered. The 

prevalent method used to calculate the required dosage of insulin can be explicitly 

formalized as follows3:

B = CHO
CR + G − Gtarget

CF − IOB, (1)

where CHO is the amount of meal carbohydrates (g), CR is a person’s carbohydrate-to-

insulin ratio (g/U) used to determine the appropriate dose of insulin that compensates for the 

estimated increase in BG from the ingested CHO, Gtarget is the target BG value (mg/dL), CF 

is the BG correction factor (mg/dL/U) to account for BG excursions away from this target, 

and G is the BG value at the time of the meal bolus (mg/dL). Since insulin affects BG 

concentrations for several hours following its injection4, the active insulin in circulation 

from the previous insulin injections is tracked by a concept called insulin on board (IOB). 

IOB is computed as the convolution of insulin injections within the past four-hours and 

insulin action curve obtained from a previous study by Swan et al.4.

Insulin needs vary among people with T1D, and hence the therapy is tailored to the 

individual through patient-specific treatment parameters (e.g., CR and CF). The treatment 

parameters can also be adjusted to account for systematic diurnal variations in BG dynamics. 

Deviation from these patterns, however, require additional care. Existing literature on 

physical activity (PA) related BG control in T1D can be classified into two categories based 

on their methodologies: (a) studies based on dose-response experiments, that explore the BG 

responses to various insulin and carbohydrate doses surrounding an exercise bout5-7, and (b) 

studies based on algorithms that use biosensors to take/suggest actions for an ongoing 

exercise bout8-10. Conversely, non-exercise PA has seen little attention, and its effects on BG 
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metabolism have been presumed to be minor. However, recent studies show that even short 

bouts of walking in the course of otherwise sedentary days significantly affect glucose 

metabolism11-13, and thus require treatment adjustments to improve overall BG control14-16. 

In the present work, we propose a method that extends the mealtime insulin bolus 

calculation to account for the accumulated prolonged glycemic impact of the daily PA

2. Materials and Methods

In the development of the PA informed insulin dosing method, we utilize retrospective data 

collected from individuals with T1D under their free-living conditions. We quantify PA 

through “step count” recorded via an off-the-shelf PA tracker and inform the insulin dosing 

by (i) a quantified accumulated glycemic impact of prior PA in real-time (ii) a PA profile 

extracted from retrospective data, that is representative of systematic glycemic disturbances 

resulting from the individual’s routine PA, and (iii) a PA correction parameter that accounts 

for the altered insulin needs due to deviations from the routine PA profile.

2.1. Tracking and quantifying the prolonged glycemic impact of prior PA in real-time

The quantification of the glycemic impact of PA performed prior to the point of assessmentis 

inspired by the “insulin on board” concept17 and is conceived analogously as “activity on 

board” (AOB). The AOB is designed as a quantitative representation of the previously 

performed PA that is still affecting the BG levels and is calculated as follows:

AOB(k) = ∑
n = 0

162
AOBcurve(n)s(k − n), k ≥ 162, (2)

where the “s” components maintain a historical record of step-count assessed as sums over 

non-overlapping 5-minute time-intervals (aligning with common CGM sampling intervals), 

and the AOBcurve is a one-dimensional vector of weights corresponding to the theorized 

time-decay dynamics of the previously performed PA’s glycemic impact, assuming that the 

effect of PA over time is additive. The values and length of the AOBcurve are chosen based 

on the findings from a previous study that investigated changes in the glucose uptake 

following a structured bout of PA18. These changes were shown to persist for up to 13.5 

hours, and the AOB encompasses all the PA within this time frame via the s vector. The 

weighting components of the AOBcurve are obtained by:

AOBcurve(ΔkPA) = 1 −
∑η = kPA

kPA + ΔkPAΔGU(η)

∑η = kPA
kPA + 162ΔGU(η)

, 0 ≤ ΔkPA ≤ 162, (3)

where kPA is the time index of the performed PA, ΔkPA is the discrete-time difference passed 

after the PA is performed, and ΔGU(η) is the PA-induced increase in glucose uptake at stage 

η (adapted from 18), demonstrated in Figure 1A.

2.2. Extracting a patient-specific mealtime AOB profile

We define a patient-specific mealtime AOB profile that captures the systematic glycemic 

impact from routinely performed PA. The AOB profile is obtained for meals that are often 
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consumed approximately around the same time every day (e.g., breakfast, lunch, dinner). 

The fundamental insight behind the formation of the “AOB profile” is that the systematic 

glycemic impact from routine daily PA is already accounted for in the standard daily 

treatment design in T1D. Because an individual’s routine PA is likely to be within an 

interval rather than a set value, the AOB profile consists of an upper and a lower bound. 

These bounds form an interval of systematically accumulated glycemic impact from the 

daily PA at the time of the selected meal. We compute these bounds using meal and PA data 

collected for three to four weeks from individuals with T1D under free-living conditions as 

follows:

τℎigℎ, m = median
d ∈ {1, 2, …, nd}

(AOB(km, d))
(4)

τlow, m = median
d ∈ {1, 2, …, nd}

(AOB(km, d)) − MAD
d ∈ {1, 2, …, nd}

(AOB(km, d))
(5)

where τhigh,m and τlow,m are the upper and lower bounds of the AOB profile for the chosen 

meal m with km,d being the time index that the meal m is eaten on day d, nd is the total 

number of days in the dataset. As a result, AOB(km,d) is the AOB observed at the time of 

meal m on day d. Finally, MAD is the median absolute deviation.

2.3. PA informed mealtime insulin dose calculations

Significant deviations from the routine PA likely alter the insulin needs of an individual with 

T1D due to PA’s effect on BG dynamics. To compensate for the altered insulin needs, we 

augment the standard bolus formula with a PA related correction as follows:

BPA(km, d) =

B(km, d) − AOB(km, d) − τhigh, m
AF1

, if AOB(km, d) > τhigh, m,

B(km, d) − AOB(km, d) − τlow, m
AF2

, if AOB(km, d) < τlow, m,

B(km, d), otherwise,

(6)

where the standard bolus B is corrected based on the deviation between AOB at the time of 

the meal bolus, AOB(km,d), and the corresponding bound of the AOB profile. When the 

AOB (km,d) exceeds the upper bound, τhigh,m , we decrease the insulin dose to compensate 

for the glucose-lowering effects of the excess PA relative to the routine amount. Likewise, in 

the case that the AOB(km,d) is below the lower bound, τlow,m, we increase insulin dose to 

compensate for the reduced glucose uptake due to the subject’s lower than usual 

accumulated PA. Any AOB(km,d) within the bounds of the AOB profile is considered within 

the routine daily PA range and no PA related correction is applied. The magnitude of any 

PA-related correction depends on the magnitude of the deviation from routine PA and the 

patient-specific parameters AF1 and AF2 are called activity factors. These activity factors 
translate the anticipated glycemic impact of deviations from the routine PA into insulin unit 

equivalents in terms of the expected impact on the BG. Due to the lack of concise biological 

information on the relationship between the rates of change in the insulin needs in response 
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to either an increase or a decrease in the performed PA, we search for an optimal pair of 

activity factors without any assumed connection between these parameters.

2.3. Optimization of Activity Factors

We determine the values of AF1 and AF2 for each individual by assessing the BG excursions 

following dinners across days in their dataset in order to capture the impact from a wide 

range of PA accumulated throughout the day. To accomplish this, we label dinners, denoted 

by ρ, in our dataset through a time and meal-size based dinner detection algorithm. Then, the 

glycemic risk associated with the post-dinner BG behavior is assessed according to the well-

recognized glucose control metrics19, known as low blood glucose index (LBGI) and high 

blood glucose index (HBGI) and described below:

LBGI(ρ, d) = 1
klast,d − kρ, d + 1 ∑k = kρ, d

klast, d rl(G(k)) (8)

HBGI(ρ, d) = 1
klast,d − kρ, d + 1 ∑k = kρ, d

klast, d rh(G(k))
d ∈ {1, 2, …, nd}

(9)

where d represents the day, G(k) is the BG reading at time k, kρ,d is the time of the dinner 

that is also the start time of the analysis, klast,d is the time of the last BG reading in the 

postmeal analysis window, both on day d, and rl and rh are the mapping functions that 

translate the G(k) into the risk space with the details provided in a previous work by 

Kovatchev et al.20.

The AF1 and AF2 are obtained as a pair that minimizes the total glycemic risk as evaluated 

on the BG traces simulated with “replayed” insulin boluses with PA correction, using the 

following cost function:

min
AF1, AF2

RiskAF1, AF2 = ∑
d = 1

nd
LBGI(ρ, d) + HBGI(ρ, d) (10)

2.4. In silico testing

We test, in silico, PA informed insulin dosing method’s ability to improve BG control on 

postmeal BG excursions on a retrospective dataset. To capture the prolonged glycemic 

impact from all the PA performed throughout the day, dinner meals are selected for the 

testing.

2.4.1. Data: We use retrospective data collected from 29 individuals with T1D in two 

clinical studies conducted at the University of Virginia (clinicaltrials.gov: NCT02558491, 

NCT03394352). Participants with T1D on insulin pump therapy with the age range 15-65 

years, HbA1c range 6-10% were enrolled. Both studies had the same free-living data 

collection period lasting approximately one month during which the participants followed 

their regular therapy for a month while wearing a CGM G4 Platinum (Dexcom Inc., San 
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Diego, CA) and a wristband PA tracker (Fitbit Charge HR and HR2, Fitbit Inc., San 

Francisco CA). Participants recorded consumed carbohydrates grams (meals, snacks, and 

hypoglycemia treatment) via the pump bolus wizard. Data from all devices were 

downloaded at regular intervals during the study period. The free-living data from these 

trials were employed in the analyses of this manuscript after the following pre-processing 

procedure:

i. Data relevant to a meal was rejected from analysis if more than 24 CGM values 

were missing between 4:30 pm and 10 pm or if no insulinized meal was present 

in this interval. When there was a CGM gap that did not violate this criterion, we 

replaced the missing values by linear interpolation of the closest available CGM 

data.

ii. PA data (i.e., heart rate and step count) had to be available the morning (6 am to 

noon), afternoon (noon to 5 pm), and evening (5 pm to 10 pm), as defined by no 

more than 2-hour missing data in any of these three intervals.

iii. Participants with less than 15 days of valid data were rejected from the analysis.

2.4.2. Simulations: The treatment parameters used in daily life are often sub-optimal 

due to the absence of formal optimization tools in current clinical practices. Therefore, as a 

simulation setup, we first rebalance the main meal bolus parameter (i.e., CR) to study the 

effect of PA isolated from carbohydrates. In principle, the CR in the standard therapy is 

designed to provide a CHO /insulin ratio that compensates for the expected BG increase 

from the carbohydrates in a meal. By using a PA informed cost function in the optimization 

of CR, we separate the compensation for the PA from the one for the carbohydrates. For this 

purpose, we use the extracted AOB profile for each individual such that:

• When the AOB(kρ,d) is higher than the τhigh,ρ, we expect lower than usual BG 

excursion due to the increased glucose uptake associated with elevated PA. Thus, 

we down-weight the LBGI proportional to the deviation from routine PA.

• When the AOB(kρ,d) is lower than the τlow,ρ, we expect higher than usual BG 

excursion due to the decreased glucose uptake associated with lower than usual 

PA. Thus, we down-weight the HBGI proportional to the deviation from routine 

PA.

• When AOB (kρ,d is within [τlow,ρ, τhigh,ρ], the performed PA is within the limits 
of the individual’s routine PA and the CR is expected to provide optimum BG 

control without needing a PA correction. Thus, we assign the same weights to 

both LBGI and HBGI in the cost function.

These insights yield the following cost function:

min
CR∗

RiskCR∗ = ∑
d = 1

nd
Risk(ρ, d) (11)
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Risk(ρ, d) =
α τlow, ρ

AOB(kρ, d)LBGI(ρ, d) + (1 − α)AOB(kρ, d)
τhigh, ρ

HBGI(ρ, d), if AOB(kρ, d) < τlow, ρ

(1 − α) τlow
AOB(kρ, d) ∗ LBGI(ρ, d) + αAOB(kρ, d)

τhigh, ρ
HBGI(ρ, d), if AOB(kρ, d) > τhigh, ρ,

1
2LBGI(ρ, d) + 1

2HBGI(ρ, d), otherwise (12)

where α ∈ [0,1] is an empirically chosen regularization term, RiskCR* is calculated as a 

weighted sum of the glycemic risk indices associated with meal m, LBGI and HBGI, across 

available days in the dataset obtained from an individual. The weights are calculated relative 

to the corresponding bound of the individual’s AOB profile and the AOB value at the time of 

the meal for each day.

We utilize the net effect simulation procedure to “replay” the post-dinner BG traces yielded 

by different CR* values, hence, mealtime insulin doses21. Through numerical optimization, 

CR* is obtained as the value that minimizes the RiskCR*.

Using the extracted AOB profiles, we obtained CR*, AF1 and AF2 for each patient by 

analyzing the BG excursions associated with the dinner meals. Using these parameters, we 

re-simulated the post-dinner BG traces with insulin doses calculated according to PA 

informed bolus at dinnertimes (and for any subsequent meal until 1 am). For comparison, we 

also re-simulated these BG traces with insulin doses calculated according to the standard 

dosing. Optimum parameters were obtained using Isqnonlin in Matlab with the search range 

of [1000, 25000] for activity factors and [70%*CR,130%*CR] for CR*. As a safety 

saturation, we limit the PA related dose adjustment to the ±50% of the meal component of 

the bolus (i.e., CHO/CR*). The target BG was set to 110 mg/dl in all simulations. We 

compared the BG control performances of the PA informed vs. standard dosing methods 

based on the percentage time spent in hypoglycemia (< 70 mg/dl), target glycemic range 

(70-180 mg/dl), time above 180 mg/dL, time above 250 mg/dL, and the mean BG in the 

analysis window. The paired t-test was used for comparison with the p-value threshold of 

p<0.05.

3. Results

Representative case

To provide a comparable example while evaluating the performances of standard vs. PA-

informed boluses, we select two days that belong to the same participant and satisfy the 

following criteria:

i. similar BG traces that do not exceed the target BG at the dinnertime
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ii. same amounts of carbohydrate intake at the dinnertime,

iii. no residual insulin from previous boluses at the dinner time (i.e., at least four 

hours have passed since the last bolus insulin),

iv. same amounts of insulin injection at the dinnertime,

v. different PA behavior prior to the dinnertime.

Figure 2 presents the selected days for comparison. The AOB profile bounds at the 

dinnertime for this subject were calculated as τlow,ρ = 1922 and τhigh,ρ = 3078. Following 

the standard therapy boluses on these days, the subject experienced hypoglycemia (i.e., 

BG<70 mg/dL) on day #13 (AOB(kρ,13 =7734) while being exposed to hyperglycemia (i.e., 

BG>180 mg/dL) in response to the same treatment under similar conditions on day #15 

(AOB(kρ,15)=3743).

On day #13, the PA informed insulin dosing method adjusted the dinner bolus for the impact 

of the excess AOB. The time spent in hypoglycemia decreased from 77.9 % to 0%, 

eliminating 4.3 hours of hypoglycemia exposure, and increasing the total time spent in the 

target range from 22.1% to 100%.

On day #15, the AOB (kρ,15) ρ was slightly higher than the τhigh,ρ. Time spent in 

hypoglycemia remained unchanged as 0% for both methods. A decrease of 1.4% was 

observed in the time spent in the target range (from 48.5% to 47.1%) due to a 25-minute 

increase in exposure to hyperglycemia resulting from the PA correction in the bolus.

Neither of the presented days had insulin on board at the time of dinner, indicating that the 

hypoglycemia on day #13 was not due to higher insulin in the circulation compared to day 

#15. While the AOB(kρ,d) was higher than τhigh,ρ on both days, it was more than twice of 

τhigh,ρ on day #13.

Population results

Out of 29 subjects, six subjects were excluded from the analysis for having less than 15 valid 

days in their dataset. Each participant had a unique PA behavior, and personalized PA 

informed treatment parameters were obtained for each of them. There was no statistically 

significant difference between CR and CR* (CR=10.6±3.3 and CR* =11.3±4.5, p=0.1). In 

the remaining dataset of 23 subjects, no optimum AF pair was found within the search range 

for four subjects. Other two subjects did not have an optimum AF1 while another subject did 

not have an optimum AF2 value. These subjects were still included in the analyses using 
their CR* for PA informed boluses, but no additional PA correction was performed when 

AOBρ was outside of their corresponding AOB profiles.

Overall, dinner boluses on 651 days from 23 subjects were replayed with standard vs. PA 

informed boluses. Resulting post-dinner BG traces until 1am were compared and reported as 

mean ± std hereafter. As Table 1 presents, the observed average time spent in hypoglycemia 

reduced significantly with PA informed boluses (p=0.007) with no significant increase in 

time above the target range (p=0.5 for >180 mg/dL, p=0.87 for >250 mg/dL) and mean BG 

(p=0.1). No significant increase was observed in the mean BG (140.8±20.3 vs. 145.4±13.3 
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mg/dL, p=0.1). Finally, there was no significant difference between the average insulin bolus 

administered per subject (p=0.45).

4. Discussion

Our results indicate a significantly improved glycemic control using the PA-informed bolus 

when compared to the standard bolus method. This improvement was achieved by reducing 

exposure to hypoglycemia and increasing the time spent in the target BG range. Note that in 

our simulations, no additional carbohydrate intake or basal insulin dose reduction was 

applied to treat hypoglycemia events as opposed to the real-life practice. This potentially 

resulted in higher than clinically expected hypoglycemia outcomes in the results for both 

bolusing methods. The PA-related increases (informed by low PA) and decreases (informed 

by high PA) in insulin boluses approximately cancel each other when evaluated across 

simulation days per each subject. Hence, the average insulin use per subject in our method 

does not significantly differ from the standard method, while the glycemic control 

performance is substantially improved.Using representative case day #15 (figure 2 lower 

panel) we can observe a key challenge of PA-related insulin bolus adjustments: potential for 

increased postprandial hyperglycemia. We hypothesize that this increase could be partly due 

the different pharmacodynamics of insulin and PA. More specifically, in this study, PA 

informed boluses were adjusted for the entire glycemic impact of PA (~13.5 hours), while 

the influence of insulin on BG levels lasts four to six hours4. Such temporal difference could 

result in overcompensation of physical activity.. Similarly, previously reported potential 

changes in the circulating insulin levels during and after PA in individuals with T1D may 

affect the outcomes in real-life applications of the developed method 22,23. Additionally, PA 

adjustments for the meals earlier in the day as well as for prospective PA were not assessed 

in this work. Furthermore, profile and optimal treatment parameters were estimated from a 

rich but rather short (approximately 3 −4 weeks per participants) database, which could lead 

to sub-optimal estimates considering the innate variability in T1D glycemic control. On a 

similar note, due to the limited amount of data per participant, we used all available data for 

both optimization and performance evaluation.

Another limitation of the presented method is the lack of specificity to the type and intensity 

of PA. Unfortunately currently available information is limited about the prolonged glycemic 

impact of PA performed at different times, intensities, durations, and metabolic states. 

Therefore, we assumed a similar time-decay in the glycemic impact of daily PA, ranging 

from slow walks to running and for all durations. As different intensity of PA may lead to 

different glucose uptake profiles (e.g., immediate increase in the BG followed by a 

precipitous decrease for anaerobic PA) which may differ both in timing and amplitude of the 

effect, adding PA intensity as a part of the method can widen its domain of use. Future work 

may explore the use of different AOB curves, nonlinear forms of convolution, and other PA 

indicators (e.g., heart rate), including their combinations that can also take the intensity of 

the PA into account.

Nonetheless, PA-related treatment adjustments in T1D have long been proven necessary, and 

there exist algorithms for optimum dose corrections surrounding an exercise bout8-10. In a 

previous proof-of-concept in silico study, we have shown that our method can be used to 
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correct the insulin dose following an exercise bout24. In this work, we offer a more holistic 

perspective on the topic of PA-related adjustments in T1D treatment by automatically 

adjusting mealtime insulin doses for the overall daily PA, instead of practical guidelines 

focusing on a structured exercise bout only25. While the range of PA that affects the insulin 

requirements is broader11-13,16, to our knowledge, no other formal methods exist to adapt 

insulin doses to the daily PA-induced changes in the insulin needs of individuals with T1D. 

By leveraging readily available step count information from a wearable PA tracker, our 

method bridges this gap with the potential to improve daily BG control. For exercise-specific 

insulin adjustment version of our method that also integrates prospective exerciseestimations 

in a closed-loop control framework is presented in our previous work10. The novelties of our 

personalized PA informed insulin bolusing method lie in (1) the introduction of a technique 

that quantifies PA in a way that factors in its glycemic impact, (2) the inclusion of all PA 

(exercise and non-exercise) in insulin dose adjustments, and (3) the consideration of the 

prolonged impact of PA in these adjustments. Our results indicate that accounting for the 

glycemic impact of prior PA in insulin treatment can improve BG control in individuals with 

T1D. Although the presented in silico experiment was conducted in an open-loop BG 

control setting, the proposed method can also be implemented in a closed-loop BG control 

system.

Acknowledgements including declarations:

B.O has no conflict of interest to disclose. S.D.P is employed by Dexcom, Inc. whose sensors were used in 
NCT02558491, NCT03394352; SDP reports royalties from IP licenses in this field, managed by the University of 
Virginia. C.F reports consulting fees from Epsilon (Abbott). MDB reports research support from Dexcom, Sanofi, 
and Tandem Diabetes Care; MDB reports consulting fees and honoraria from Air Liquide, Dexcom, and Tandem 
Diabetes Care; MDB reports royalties from IP licenses in this field, managed by the University of Virginia. 
Funding: NIH NIDDK DP3DK106826.

REFERENCES

1. Aronoff SL, Berkowitz K, Shreiner B & Want L Glucose Metabolism and Regulation: Beyond 
Insulin and Glucagon. Diabetes Spectr. 17, 183–190 (2004).

2. Nathan DM Long-Term Complications of Diabetes Mellitus. N. Engl. J. Med 328, 1676–1685 
(1993). [PubMed: 8487827] 

3. Walsh J, Roberts R & Bailey T Guidelines for Optimal Bolus Calculator Settings in Adults. J. 
Diabetes Sci. Technol 5, 129–135 (2011). [PubMed: 21303635] 

4. Swan KL et al. Effect of Age of Infusion Site and Type of Rapid-Acting Analog on 
Pharmacodynamic Parameters of Insulin Boluses in Youth With Type 1 Diabetes Receiving Insulin 
Pump Therapy. Diabetes Care 32, 240–244 (2009). [PubMed: 19017777] 

5. Reducing Basal Insulin 90 Minutes before Exercise Protects Against Hypoglycemia Better than 
Insulin Suspension at Exercise Onset in T1D—The OmniTIME Results ∣ Diabetes. http://
diabetes.diabetesjournals.org/content/67/Supplement_1/65-OR.abstract.

6. Grimm J, Ybarra J, Berne C, Muchnick S & Golay A A new table for prevention of hypoglycaemia 
during physical activity in type 1 diabetic patients. Diabetes Metab. 30, 465–470 (2004). [PubMed: 
15671916] 

7. McCarthy O, Bain SC & Deere R Basal insulin reductions in anticipation of multiple exercise 
sessions in people with type 1 diabetes—a clinical perspective. Ann. Transl. Med 6, (2018).

8. Adding Heart Rate Signal to a Control-to-Range Artificial Pancreas System Improves the Protection 
Against Hypoglycemia During Exercise in Type 1 Diabetes ∣ Diabetes Technology & Therapeutics. 
https://www.liebertpub.com/doi/full/10.1089/dia.2013.0333.

Ozaslan et al. Page 10

Comput Methods Programs Biomed. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT02558491
https://clinicaltrials.gov/ct2/show/NCT03394352
http://diabetes.diabetesjournals.org/content/67/Supplement_1/65-OR.abstract
http://diabetes.diabetesjournals.org/content/67/Supplement_1/65-OR.abstract
https://www.liebertpub.com/doi/full/10.1089/dia.2013.0333


9. Turksoy K et al. Classification of Physical Activity: Information to Artificial Pancreas Control 
Systems in Real Time. J. Diabetes Sci. Technol 9, 1200–1207 (2015). [PubMed: 26443291] 

10. Garcia-Tirado J, Colmegna P, Corbett J, Ozaslan B & Breton MD Ensemble Model Predictive 
Control Strategies Can Reduce Exercise Hypoglycemia in Type 1 Diabetes: In Silico Studies. in 
2019 American Control Conference (ACC) 4752–4758 (2019). doi:10.23919/ACC.2019.8814728.

11. Peddie MC et al. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-
weight adults: a randomized crossover trial. Am. J. Clin. Nutr 98, 358–366 (2013). [PubMed: 
23803893] 

12. Bailey DP & Locke CD Breaking up prolonged sitting with light-intensity walking improves 
postprandial glycemia, but breaking up sitting with standing does not. J. Sci. Med. Sport 18, 294–
298 (2015). [PubMed: 24704421] 

13. Manohar C et al. The Effect of Walking on Postprandial Glycemic Excursion in Patients With Type 
1 Diabetes and Healthy People. Diabetes Care 35, 2493–2499 (2012). [PubMed: 22875231] 

14. Robertson K, Adolfsson P, Riddell MC, Scheiner G & Hanas R Exercise in children and 
adolescents with diabetes. Pediatr. Diabetes 9, 65–77 (2008). [PubMed: 18211636] 

15. Colberg SR et al. Physical Activity/Exercise and Diabetes: A Position Statement of the American 
Diabetes Association. Diabetes Care 39, 2065–2079 (2016). [PubMed: 27926890] 

16. Ozaslan B, Patek SD & Breton MD Impact of Daily Physical Activity as Measured by Commonly 
Available Wearables on Meal Time Glucose Control in Type 1 Diabetes. Diabetes Technol. Ther 
(2020) doi:10.1089/dia.2019.0517.

17. Campbell R & Abramovich A Calculating insulin on board for extended bolus being delivered by 
an insulin delivery device. (2012).

18. McMahon SK et al. Glucose Requirements to Maintain Euglycemia after Moderate-Intensity 
Afternoon Exercise in Adolescents with Type 1 Diabetes Are Increased in a Biphasic Manner. J. 
Clin. Endocrinol. Metab 92, 963–968 (2007). [PubMed: 17118993] 

19. Metrics for glycaemic control — from HbA 1c to continuous glucose monitoring ∣ Nature Reviews 
Endocrinology. https://www.nature.com/articles/nrendo.20173.

20. Kovatchev BP, Straume M, Cox DJ & Farhy LS Risk Analysis of Blood Glucose Data: A 
Quantitative Approach to Optimizing the Control of Insulin Dependent Diabetes. Computational 
and Mathematical Methods in Medicine https://www.hindawi.com/journals/cmmm/
2000/208936/abs/ (2000) doi:10.1080/10273660008833060.

21. Patek SD et al. Empirical Representation of Blood Glucose Variability in a Compartmental Model 
in Prediction Methods for Blood Glucose Concentration: Design, Use and Evaluation (eds. 
Kirchsteiger H, Jørgensen JB, Renard E & del Re L) 133–157 (Springer International Publishing, 
2016). doi:10.1007/978-3-319-25913-0_8.

22. Mallad A et al. Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-
tracer approach. Am. J. Physiol.-Endocrinol. Metab 308, E1106–E1115 (2015). [PubMed: 
25898950] 

23. McAuley SA et al. Insulin pump basal adjustment for exercise in type 1 diabetes: a randomised 
crossover study. Diabetologia 59, 1636–1644 (2016). [PubMed: 27168135] 

24. Fabris C, Ozaslan B & Breton MD Continuous Glucose Monitors and Activity Trackers to Inform 
Insulin Dosing in Type 1 Diabetes: The University of Virginia Contribution. Sensors 19, 5386 
(2019).

25. Riddell MC et al. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes 
Endocrinol. 5, 377–390 (2017). [PubMed: 28126459] 

Ozaslan et al. Page 11

Comput Methods Programs Biomed. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nature.com/articles/nrendo
https://www.hindawi.com/journals/cmmm/2000/208936/abs/
https://www.hindawi.com/journals/cmmm/2000/208936/abs/


Highlights

• Step-count data from wearable physical activity trackers is leveraged to track 

and quantify daily physical activity.

• An approach to calculate the accumulated glycemic impact from prior 

physical activity is presented.

• A physical activity informed mealtime insulin bolus calculator is developed.

• Simulation results suggest that the proposed physical activity informed insulin 

dosing could result in significantly improved postprandial glucose control in 

individuals with type 1 diabetes, compared with the standard dosing.
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Figure 1—. 
(A) Observed average change in glucose uptake, as a result of a 45-minutes (nine five-

minute time intervals) bout of moderate-intensity PA extracted from18 and (B) AOBcurve 

representing the evolution of the percent of glycemic impact left from the performed PA -

obtained from (A) using Equation (4). The x-axis is time index in both panels (A) and (B), 

depicting 13.5 hours in 162 5-minute intervals.
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Figure 2—. 
Comparison of BG traces resulting from the standard vs. PA informed dinner boluses 

(standard bolus parameters: CR = 7g/unit; PA informed bolus parameters: CR* = 8.6 g/unit 

AF1 = 1171 and AF2 = 2657).
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Table 1

Paired t-test results for average CGM and bolus insulin outcomes by bolusing method

Standard
Bolus

PA-informed
Bolus

p-value

% time of CGM < 70 mg/dL 15.3±8 11.1±4 p=0.007

% time of CGM 70-180 mg/dL 66.1±11.7 69.6±12.2 p<0.01

% time of CGM > 180 mg/dL 26.6±1.4 27.4±0.1 p=0.5

% time of CGM > 250 mg/dL 7.2±0.3 7.3±0.3 p=0.87

Mean CGM (mg/dL) 140.8±20.3 145.4±13.3 p=0.1

Total bolus insulin administered 10.1±4.2 9.9±4.4 p=0.45
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