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Abstract

Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that 

affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer 

therapy, this article summarizes the effects of five categories of CHMs and their active ingredients 

on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable 

physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, 

toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) 

restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface 

modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and 

intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. 

Current challenges of liposomal targeting of these phytoconstituents and future perspective of 

CHM applications are discussed to provide an informative reference for interested readers.
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1. Introduction

Cancer is a leading cause of death worldwide. It is an uncontrolled and excessive growth of 

cells that can metastasize to a number of organs [1]. Cancer therapy has remained 

challenging for centuries, although therapeutic strategies such as surgery, chemotherapy and 

radiotherapy, have been developed. Until now, the main clinical treatment has been 

chemotherapy in addition to surgery. However, most chemotherapy drugs have high toxicity, 

low specificity, and are accompanied by painful side effects [2]. In addition, multidrug 

resistance could be induced by chemotherapeutics, causing treatment failure upon disease 

recurrence [3].

Phytoconstituents have emerged as a prospective approach for cancer treatment and are also 

widely used, especially in Asia [4,5]. These bioactive molecules are of great interest due to 

their high range of biological activity, minimal side effects, and low cost [6].

The current reviews on the developments of phytochemical delivery systems for cancer 

treatment mainly focus on specific types of delivery systems or compounds, e.g. polyphenols 

[5,7,8]. Bahrami’s group have provided a summary of the anticancer effect of natural agents, 

either alone or in combination with natural drugs, by modulation of regulatory T cells 

(Tregs) [9]. However, to the best of our knowledge, there is no comprehensive review using 

the syndrome differentiation, and treatment of traditional Chinese medicine (TCM) as the 

guiding principle which classifies plants according their functions and indications in 

Pharmacopoeia of the People’s Republic of China (ChP) 2015 edition, and covers preclinical 

stage liposomal targeting compound delivery strategies. Moreover, this review is both 

limited to the anti-tumoral efficacy of plant-derived medicines, and also includes their 

effects on the tumor microenvironment (TME), which is subdivided into tumor immune and 

non-immune microenvironments [10].

The aims of this review were to summarize the history of treating cancer in Chinese 

medicine and to critically analyze the potential anti-tumoral effects of Chinese medical 

plants recorded in ChP 2015 edition and their active components, which function in 

counteracting toxin with toxin, heat-clearing and detoxifying, promoting blood circulation 

and removing blood stasis, resolving phlegm and eliminating dampness, strengthening 

healthy energy and consolidating body resistance, and suppressing tumor aerobic glycolysis, 

by comparing the treatment theory of TCM with modern medicine. Because modulating the 

stromal TME (tumor associated macrophages (TAMs), TAFs, and endothelial cells) or 

immune microenvironment by either small molecules or nanodrugs can facilitate the 

remodeling of blood vessels or extracellular matrix (ECM) at tumor sites [11], we also 

summarize recent developments and strategies for liposomal delivery systems of promising 

anticancer phytoconstituents and discuss the opportunities of further improvement.

It is worth mentioning that our review summarizes the anti-tumor effects of natural products 

and their impact on the TME, together with the targeted liposomal drug delivery system. In 

fact, the specific pharmacological effects of each monomer compound on tumor cells and 

TME, and liposomal targeting formulations in this review are all based on the Western 

medicine theory and summarized by searching for literatures with systematic data sets. The 
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research on the action mechanism of monoconstituents and their delivery system is the same 

as that of Western medicine, except that we use the traditional Chinese medicine 

classification standard for the classification of Chinese medicines. This classification is 

secondary, not the focus of our review. In fact, traditional Chinese medicine and Western 

medicine have their own characteristics in diagnosis and treatment. Not every concept of 

traditional Chinese medicine treatment can be explained in terms of Western medicine 

theory. In this review, the classification we use is an attempt to combine the research of 

traditional Chinese medicine monomers with the theory of traditional Chinese medicine.

2. The connotation of TCM in tumor treatment

“Tumor” was recorded in the oracle bone inscriptions of the Yin and Zhou era more than 

3,500 years ago. Miraculous Pivot in the Han Dynasty mentioned the pathogenesis and 

symptoms of “carbuncle”. Until the Ming Dynasty, the occurrence and development of 

breast tumors were discussed in detail [12]. Physician Zhang Xichun explained the treatment 

and prescription of phrenic disease syndromes (mainly including esophageal cancer or 

gastric cardia cancer) in detail in his book “Records of Tradition Chinese and Western 

Medicine in Combination” at the end of the Qing Dynasty. As it was stated in Yellow 

Emperor’s Inner Cannon (written from the Warring States period to the Qin and Han 

Dynasties), deficient vital qi and excess pathogenic qi is the most important basic 

pathogenesis of cancer. Qi refers to the nutritive and refined substances circulating in the 

body and the functional state of organs and tissues [13]. Qi correlates with longevity and qi 
depletion is linked to death [14]. Qi is divided into vital qi and pathogenic qi. The so-called 

“vital qi” is the body’s resistance to pathogenic microorganisms and its ability to adjust and 

adapt. Deficiency of vital energy is deficiency of vital qi [15]. Pathogenic qi refers to various 

pathogenic factors, including wind, cold, summer-heat, dampness, dryness, and heat. 

Disease results from the struggle between the vital qi and the pathogenic qi in the body [16]. 

Therefore, treatment is divided into two aspects: removing pathogenic factors and 

strengthening the vital qi. Using the syndrome differentiation and treatment of TCM as the 

guiding principle, treatment to eliminate pathogens refers to counteracting toxin with toxin, 

heat-clearing and detoxifying, promoting blood circulation and removing blood stasis, 

resolving phlegm and eliminating dampness; treatment to reinforce healthy qi refers to 

strengthening healthy energy and consolidating body resistance [17–20]. Here, the TCM 

classification is not independent or irrelevant. On the contrary, the use and function of TCM 

are often intersected and need to be used as a whole.

Among the natural products eliminating pathogenic factors, counteracting toxin with toxin, 

and heat-clearing and detoxifying herbal medicines are most extensively used. According to 

the pathogenesis theory of cancerous toxins [21], it is suitable to use heat-clearing and 

detoxification therapy to eliminate cancer toxins at the early stages of cancer. If the cancer 

toxin has the potential to spread, then the method of attacking poison with poison should be 

used to attack and stop the development of cancer toxins; in the middle stages of cancer, it is 

better to use the synergistic therapy of heat-clearing and detoxification, and attacking toxin 

with toxin; for patients with advanced cancer, heat-clearing and detoxification is the only 

appropriate method to remove cancer toxins continuously.
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3. Anti-tumor mechanism of different classification of Chinese herbal 

medicines (CHMs) and their active components

In the treatment of tumors, CHMs can play multi-channel and multi-target roles, and have 

the advantages of less adverse reactions and good tolerance. We summarized the anti-tumor 

efficacies of the following five categories CHMs and their active components in the aspects 

of inducing apoptosis, inhibiting cell proliferation, regulating autophagy, reversing 

multidrug resistance, inhibiting angiogenesis, targeting cancer stem cells (CSCs), blocking 

tumor invasion and metastasis, and regulating immune state (Figure 1). Some natural 

products target glycolysis pathway in cancer cells, which could control cancer growth, 

multidrug resistance, and metastasis. The regulatory effect of CHMs on TME including 

inhibiting tumor-associated fibroblasts (TAFs) and their released cytokines, decreasing 

angiogenic cells and their pro-angiogenic factors, degrading ECM and regulating on immune 

cells and their cytokines. The involving immune cells include T lymphocytes (T cells), B 

lymphocytes, natural killer cells (NK cells), tumor-associated macrophages (TAMs), 

dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs). Some 

monoconstituents could induce immunogenic cell death (ICD) on cancer cells, which 

mediated by damage-associated molecular patterns (DAMPs) and thus increased the levels 

of costimulatory signals on DCs to promote the antitumor T-cell response.

3.1 CHMs that counteract toxin with toxin and their active components

There are 70 kinds of toxic herbs and decoction pieces are recorded in ChP (2015 edition, 

volume I). Of these, eight had great toxicity, 33 had general toxicity, and 29 had small 

toxicity. Among them, 52 are reported to exhibit anti-cancer effects, 30 are used as 

extraction, and 22 as both extraction and active components.

The “cancer toxin” is thought to be an important reason for the formation of cancer. TCM 

uses the theory of the cancer toxin to describe viruses, bacteria, chemical pollution, and 

invisible carcinogens. Cancer toxins can directly lead to dysfunction of viscera, induce 

phlegm, blood stasis, heat toxin and other pathological factors similar to inflammation. Heat 

toxin refers to external toxin characterized by redness, heat pain, hemorrhage, dizziness, 

abnormal movement of limbs, and sudden illness [22]. Due to the slow process of tumor 

formation, and the deep accumulation of toxins, conventional Chinese medicine is 

challenging. As such, some toxic products, by virtue of their fierce nature, are needed attack 

the cancer poison in the so-called “fight fire with fire” approach. TCM that uses poison to 

attack poison can activate blood stagnation, soften hardness, and dissolve lumps [23]. The 

active components of the crude drugs CHMs for counteracting toxin with toxin and their 

effects on tumor cells are summarized in Table 1.

From Table 1, most of the CHMs that counteract toxin with toxin function by directly 

damaging tumor cell DNA, inhibiting tumor cell division and gene expression to induce 

tumor cell apoptosis. Apoptosis mainly includes the cell death receptor-mediated extrinsic 

and mitochondrion-mediated intrinsic pathways [24,25], which are affected by the B-cell 

lymphama-2 (Bcl-2) protein family.
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The cell cycle can be divided into G1 (preceding initiation of DNA synthesis), S (DNA 

synthesis), G2 (preceding mitosis), and M (mitosis) stages. G1/S and G2 /M are the most 

important steps of cell cycle regulation, while cyclin dependent kinases (CDKs) are key cell 

cycle regulators [26]. CHM active components could decrease expression of proliferative 

genes, such as cyclin, protein 53 (p53), and k167, proliferating cell nuclear antigen (PCNA), 

telomerase, and CDKs [27].

The signaling pathways for inducing apoptosis and inhibiting proliferation include the Wnt 

pathway (such as resveratrol, berberine, and curcumin), transforming growth factor-β (TGF-

β) pathway (such as resveratrol and baicalein), signal transducer and activator of 

transcription 3 (STAT3) pathway (such as nitidine chloride, scutellarin, isoliquiritigenin and 

cryptotanshinone), p53 pathway (such as magnolol, ligustrazine, emodin, and evodiamine), 

nuclear transcription factor-κB (NF-κB) pathway (such as evodiamine), p38 mitogen 

activated protein kinase (MAPK) pathway (such as matrine and baicalein), extra cellular 

signal regulated kinase (ERK) pathway (such as scutellarin, luteolin, curcumin and pistil 

isoflavone), c-Jun N-terminal kinase (c-Jun) pathway (such as tanshinone ⅡA and celastrol), 

and phosphatidylinositol-3-kinases/protein kinase B/mammalian target of rapamycin 

(PI3K/Akt/mTOR) pathway (such as resveratrol glycoside) [28,29].

3.2 CHMs that clear heat and detoxify and their active components

There are 115 kinds of heat-clearing and detoxifying CHMs and slices recorded in ChP 

(2015 edition, volume I). Of these, 88 are reported to exhibit antitumor effects in vitro or in 
vivo. Eight are used as crude drugs, 37 as extraction, and 43 as active components.

Zhongying Zhou, a master of Chinese medicine, reported that heat is an important 

pathogenic factor for tumor development, as cancer patients often have fever, pain, thirst, 

local burning, constipation, red tongue with yellowish fur, and so on. Clinical manifestations 

of heat syndrome in microenvironments include increased oxygen consumption, higher 

leukocyte and neutrophil count, and higher consumption of cortical alcohols and 

catecholamines [56,57]. As recorded in Yellow Emperor’s Inner Cannon, body’s organs, 

limbs, skin, muscles and bones are connected into an organic whole through meridians and 

keep it relatively coordinated and unified to complete various functions, where meridians 

refer to channels that provide energy for human metabolism, treat diseases, and transmit 

diseases. “Heat toxin” will block the meridians of the viscera and heat-clearing and 

detoxification must continue through the whole process of cancer treatment. It is clearly put 

forward in the Yellow Emperor’s Inner Cannon that “treating heat syndrome with drugs of 

cold nature and treating warm syndrome with drugs of cool nature” is the proper approach 

[23]. Experimental results show that the most effective way to clear away heat and detoxify 

is to use cold and cool natured drugs to eliminate or degrade the heat toxin in the body and 

control inflammation.

Chronic “non-resolving inflammation” contributes significantly to the pathogenesis of 

malignancies. This relationship between inflammation and cancer was first put forward by 

Rudolph Virchow. The process consists of two parts, initiation and promotion. First, 

precancerous inflammation can cause irreversible DNA alteration in proliferating cells. 

Second, in the persistent presence of aberrant activation of inflammatory oncogenes in 
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chronically inflamed tissues, the abnormal cell replication and proliferation continues, and 

achieve the full malignant phenotype, such as ECM remodeling, angiogenesis, metastasis, 

and suppressed innate immune responses [58–62].

Inflammation is recognized to play a major role in the development and progression of 

malignancies and is closely related to the heat toxin of TCM in disease occurrence and 

development [63–65]. Modern studies have shown that heat-clearing and detoxifying drugs 

exhibit as anti-inflammatory properties to clear heat, detoxify, resist bacteria, and improve 

immunity. They can control and eliminate inflammation of the tumor and its surroundings, 

proving that heat-clearing and detoxifying drugs used in tumor treatment are key to 

inhibiting tumor development [66]. The active components of crude drugs of heat-clearing 

and detoxifying CHMs and their effects on tumor cells and the TME are summarized in 

Table 2.

Heat-clearing and detoxifying plant-derived drugs can directly inhibit tumor cell 

proliferation, induce cell apoptosis, regulate and enhance immune levels, induce 

differentiation and reversion, regulate cell signaling pathways and transduction, resist 

mutation, inhibit angiogenesis, and reverse multidrug resistance. The possible mechanisms 

for their antitumor effects mainly derived from their anti-inflammatory properties. Anti-

inflammatory drugs might suppress the release of inflammatory cytokines, inhibit protein 

kinases and growth factors, then retard tumor cell proliferation and transformation. 

Flavonoids have the abilities to inhibit proinflammatory enzymes, including inducible nitric 

oxide synthase and cyclooxygenase-2 (COX-2), and suppress COX-2-induced prostaglandin 

E2 (PGE2) expression. The combination of baicalin and baicalein can promote apoptosis of 

human breast cancer cells through the ERK/p38 MAPK pathway. Most phenylpropanoids 

are reported to suppress proinflammatory cytokines (tumor necrosis factor-alpha (TNF-α), 

interleukin-1 (IL-1), IL-6, IL-12 and IL-2). Saponins might induce cleavage of poly-ADP 

ribose polymerase and activate of caspases by downregulating inflammatory factors. They 

would also inhibit tumor growth, invasion and metastasis through matrix metalloproteinases 

(MMP-2, −9 and −14), STAT3, and NF-κB. Quinones suppress cell proliferation by 

inhibiting of protein kinase C and epidermal growth factor-receptor tyrosine kinase, 

associating cyclin D1 with cyclin-dependent kinases, downregulating protein activated 

kinase 1, and phosphorylating CDK-mediated retinoblastoma protein. Alkaloids inhibit 

angiogenesis by modulating the expression of vascular endothelial growth factor. The broad 

range of molecular targets provides a molecular basis for the therapeutic action of these anti-

inflammatory plant medicines.

3.3 CHMs that promote blood circulation and remove blood stasis and their active 
components

There are 54 blood circulation and removing blood stasis herbs and decoction pieces 

recorded in ChP (2015 edition, volume I). Of these, 42 are reported to exhibit anticancer 

effects, 16 are used as extraction, and 26 as both extraction and active components.

According to the theory of TCM, tumor occurrence caused by the deficiency of vital energy, 

phlegm coagulation, blood stasis, toxins, etc. Among them, blood stasis is one of the main 

pathological mechanisms of tumor formation and development, and can be seen in all stages 
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of tumor course. Modern research confirmed that the hemorheology of tumor patients shows 

high coagulation, high viscosity, and peripheral microcirculation disorders [208,209]. Most 

TCM for promoting blood circulation and removing stasis function by regulating vascular 

growth factor, improving microcirculation, and improving hemorheology and coagulation 

[210]. The active components of the crude drugs promoting blood circulation and removing 

blood stasis and their effects on tumors are summarized in Table 3.

The possible mechanisms of their antitumor effects are mainly through the following 

aspects. First is the direct cytotoxic and antimutagenic effects, which can inhibit tumor cell 

proliferation and induce differentiation. Second is the down regulation of vascular 

endothelial growth factor and its receptor, leading to inhibition, promotion, and 

normalization of angiogenesis. Angiogenesis is a tightly regulated process integral to tumor 

growth, involving endothelial cell growth, differentiation, and migration [211]. The 

mechanisms of CHMs exhibiting anti-angiogenesis effects include the following models: (1) 

direct inhibition of vascular endothelial cell proliferation and migration; (2) inhibiting MMP 

activity; (3) inhibiting signal transduction of tumor angiogenic factors; (4) promoting tumor 

angiogenesis inhibitor expression [212–214]. Third is to weaken platelet aggregation; 

decreased platelet activation and platelet aggregation inhibits tumor progression [215]. 

Attenuated platelet aggregation and blood stasis prevent cancer cells from staying, adhering, 

aggregating, and planting in the blood. By avoiding of the shear forces or attack of the 

immune system in the blood stream, less than 0.01% of tumor cells are needed to cause 

successful hematogenous metastasis by increasing tumor cell emboli arrest in 

microcirculation. Platelet aggregation is also proposed to protect tumor cells from 

immunological assault in circulation [216]. Therefore, phytochemicals that promote blood 

circulation and remove blood stasis were used to reduce metastasis and affect 

microcirculation.

However, there are several shortcomings in tumor treatment by targeting the blood 

microenvironment alone: (1) if only a single target is inhibited, the rest of the signaling 

pathway will compensate and reduce the curative effect; (2) tumor cells may be dormant, 

preventing eradication [217]. Therefore, the promoting blood circulation and removing 

blood stasis treatment needs to be combined with other drugs to cure cancer.

3.4 CHMs that resolve phlegm and eliminate dampness and their active components

There are 21 kinds of resolving phlegm and eliminating dampness herbs and decoction 

pieces recorded in ChP (2015 edition, volume I). Of these, 15 are reported to exhibit anti-

cancer effect, 6 are used as extraction, and 9 as both extraction and active components.

Phlegm coagulation is a main pathological factor of tumors. While dampness evil invades 

the body, phlegm and dampness gather together, leading to stagnation of qi and blood stasis, 

followed by accumulation in tumors which improves their invasive and metastasis abilities 

[259]. The relative lack of oxygen, high glucose absorption rate, glycolysis rate, and 

accumulation of acid metabolites or other abnormal intercellular components in tumors are 

manifestations of phlegm caused by the abnormal metabolism of body fluids and 

accumulation of dampness. The active components of the crude drugs resolving phlegm and 

eliminating dampness and their effects on tumors are summarized in Table 4.
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The underlying mechanism includes regulating immunity, inhibiting tumor growth and 

angiogenesis, and inducing tumor cell apoptosis. Furthermore, resolving phlegm and 

eliminating dampness CHMs can effectively inhibit tumor metastasis by: (1) regulating 

expression of cell adhesion molecules (such as E-cadherin and vimentin) [260]; (2) 

inhibiting expression of MMP-2 and −9 proteases to delay extracellular matrix degradation 

[261]; (3) regulating abnormal neovascularization; (4) reversing the epithelial mesenchymal 

transition of tumor cells through the Wnt/β-catenin signaling pathway [262], ERK pathway, 

and TGF-β pathway to inhibit tumor metastasis.

3.5 CHMs that strengthen vital energy and consolidate body resistance and their active 
components

There are 53 kinds of strengthening vital energy and consolidating body resistance herbs and 

decoction pieces recorded in ChP (2015 edition, volume I). Of these, 47 are reported to 

exhibit anti-cancer effect, 2 are used as crude materials, 20 as extraction, and 25 as both 

extraction and active components.

According to TCM, after radiotherapy, chemotherapy or surgery, the human body is in a 

state of qi and blood deficiency. If we continue to use the “attack” method, the burden on the 

immune system will increase. Therefore, the treatment should change to maximize the 

recovery of bone marrow and immune function, that is, reconstruction of positive qi [61]. 

Chinese medical plants can regulate the immune response of hosts by elevating the 

proportion of effector T cells (T lymphocytes) to Tregs, inducing interferon gamma (IFN-γ) 

production in effector T cell, the phagocytic function of macrophages, the activity of natural 

killer cells (NK cells), promoting spleen dendritic cell (DC) differentiation, reducing 

myeloid-derived suppressor cells (MDSCs), decreasing TGF-β and Interleukin (IL)-10 

levels, prevention of both IL-2 consumption and IL-2 expansion, regulating the balance of 

immune cell differentiation, and enhancing immune ability [291,292]. The active 

components of the crude drugs strengthening vital energy and consolidating body resistance 

and their effects on tumors are summarized in Table 5.

3.6 Active components that suppress aerobic glycolysis in tumor cells

Metabolic reprogramming, especially switching to aerobic glycolysis, is a hallmark property 

of the cancer cells [348,349]. Aerobic glycolysis, also refers to the Warburg effect, could (1) 

provide tumor cells with the energy they need for survival. Although less adenosine 

triphosphate (ATP) is produced for per mole glucose through aerobic glycolysis (18~19-fold 

less than that of glucose metabolism under sufficient oxygen in normal cells), the speed of 

ATP generation is faster for per unit time, compared to oxidative metabolism of glucose 

[350]; (2) convert glucose in tumor cells to pyruvate and lactate even in the presence of 

oxygen. The lactate accumulation in the extracellular space results in an acidic TME 

(pH<6.8). The acidification of TME enhances chemotherapy resistance, induces epithelial-

to-mesenchymal transition and promotes tumor migration and metastasis [351]; and (3) 

provides a large amount of glycolytic intermediates for the synthesis and metabolism of the 

tumor cells, including nucleotides, lipids and nonessential amino acids [352].
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Acceleration of the glycolysis is triggered by transcription factor hypoxia-inducible 

factor-1α (HIF-1α) through PI3K/Akt/mTOR pathway, which associates with increased 

glucose transport through glucose transporters (GLUT-1 and GLUT-3) and upregulated 

glycolytic enzymes, such as hexokinase (HK), pyruvate dehydrogenase kinase 1 (PDK-1), 

lactate dehydrogenase A (LDH-A) and phosphofructokinase (PFK). Although the internal 

mechanism of aerobic glycolysis is still elusive, glycolysis suppression has been considered 

as a potential strategy for metastasis inhibition and anti-tumor treatment. The clinical 

application of current glycolysis inhibitors (such as 2-deoxyglucose and 3-bromopyruvic 

acid) are limited due to the serious systemic adverse effects [353]. Therefore, discovering 

natural products with high safety targeting glycolysis pathway is highly appreciated. The 

active components from CHMs for cancer cells aerobic glycolysis inhibition and their 

mechanism are summarized in Table 6.

4. Surface functionalization strategies of liposomes for monoconstituents 

of CHMs to treat cancer

A wide spectrum of bioactivities has been found in CHM-derived monoconstituents, and 

most have also shown anti-tumor efficacy through multiple mechanisms, including inhibition 

of angiogenesis, tumor progression, invasion and metastasis. Although they have important 

roles in different anti-tumor processes as previously discussed, there have been limited 

anticancer applications of these plant-derived medicines (alkaloids, saponins, flavonoids, 

organic acids, and so on) [4,365]. This is primarily due to the following. First, their low 

hydrophilicity (terpenoids such as oridonin, oleanolic acid and andrographolide; 

polyphenols such as curcumin, resveratrol, quercetin, silymarin, and puerarin; alkaloids such 

as tetrahydropalmatine and tetrandrine) results in low cellular uptake and low chemical 

stability. Second, some active components (saponins, such as saikosaponin, ginsenoside 

Rg1) undergo a series of reactions in animals to be transformed into water-soluble 

metabolites, which are then excreted in urine and bile, and some drugs are also excreted in 

their original form. They generally show low protein binding in blood and clearance by the 

reticuloendothelial system (RES) due to their hydrophilicity, related to the number and 

location of glycosides [366,367]. Therefore, they are rapidly eliminated, and these poor 

pharmacokinetic behaviors limit their effectiveness. In addition to the negative properties, 

side effects also play a vital role in impeding their clinical use. For example, ophiopogon, 

saponin, and ginsenosides cause hemolysis phenomena [368,369]. Some alkaloids produce 

neurotoxicity and hepatorenal toxicity [365]. Furthermore, high-frequency administration of 

some bioactive drugs is necessary to maintain their efficacies (such as triptolide and 

podophyllotoxin), which leads to low compliance and even cumulative toxicity in patients 

[370]. To overcome these limitations, the use of drug delivery systems has been used. In 

TCM, these approaches are used to guide the clinical application to expand from supporting 

the healthy energy and combating poison with poison to “supporting the vital qi in the 

disease area, and targeted combating poison with poison” during treatment development 

[371,372]. Nowadays, various types of drug carriers have been developed for TCM which 

target delivery to cancer cells or animal xenografts, including polymeric nanoparticles, iron 

oxide nanoparticles, liposomes, micelles, and dendrimers [373].
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Liposomes have a vesicular structure composed of lipid bilayers and were discovered by 

Bangham et al. in 1965 [374]. Liposomal delivery is an ideal dosage form for formulations 

available in the market for clinical use of antitumor therapeutic compounds, such as Doxil® 

(PEGylated liposomal doxorubicin; Centocor Ortho Biotech Inc., USA), DaunoXome® 

(non-PEGylated liposomal daunorubicin; Diatos, France), and Myocet® (non-PEGylated 

liposomal doxorubicin; Sopherion Therapeutics, USA) [375]. Liposomes can encapsulate 

both hydrophobic and hydrophilic agents within the lipid bilayer and inner water phase, 

respectively. They are characterized by high biocompatibility, elevated encapsulation 

efficiency, and easy modified for optimization of their properties, such as increased blood 

circulation time and receptor-mediated site-specific distribution [4,376,377]. Furthermore, 

liposomes can reduce the incidence of adverse reactions, by reducing local drug amount 

distributed in normal tissues [378]. Although growing numbers of investigations of TCM-

loaded liposomes have proven to produce a strong anticancer response, there is still much 

room for improvement of anti-tumor liposomal TCM treatment via injection, and significant 

advances are continuously achieved.

Here we focus on targeting delivery of monoconstituents of CHMs to cancer cells and 

overcoming the barriers of the TME, including current strategies for achieving these goals 

by functionalized liposomal surfaces, taking advantages of physiological and biochemical 

differences between cancerous tissue and normal tissue (Figure 2). External stimuli-driven 

tumor targeting and drug release, such as magnetism, heating, and laser, fall outside the 

scope of this review.

4.1 Long-circulating liposomes

Conventional liposomes are often composed of cholesterol and soy phosphatidylcholine in 

specific proportions and are not modified with other moieties [365]. These vesicles always 

show as significant interaction with the RES, mainly residing in the liver and the spleen, due 

to the opsonization as foreign particles, and are rapidly cleared from the blood circulation 

before accumulating in tumors [379]. A widely used strategy to achieve RES-avoidance is to 

graft the vesicle surface with polyethylene glycol (PEG), taking advantage of steric 

repulsion to create a long circulating “stealth” effect. PEG creates a hydrated outer shell, 

which also shields the nanoparticles from recognition and clearance by the RES. PEG 

grafting results in an extended drug half-life and improved tissue distribution [148,380,381]. 

The increased blood circulation time of small-sized liposomes (40–200 nm) achieved by 

PEG-lipid incorporation in bilayers enhances drug accumulation in tumors, where leaky 

vascular structure is found. This strategy maximizes the enhanced permeability and retention 

(EPR) effect. This strategy is called passive targeting, which improves the therapeutic effect 

of entrapped agents. Various other polymers have been reported to improve blood circulation 

time of liposome, but PEG remains the primary choice thus far [382–385].

PEG2000 (molecular weight of 2000) is the most frequently used PEG polymer to avoid 

RES uptake [386,387]. PEG is usually covalently attached to a lipid (PEG-lipid), such as 

distearoylphosphatidylethanolamine (DSPE), which can be incorporated into the lipid 

bilayers through hydrophobic interaction. Due to the amphiphilicity of the PEG-lipid, the 

surface area available for PEGylation is quite limited, with a maximum of 7±2 mol% to 
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maintain membrane integrity [388]. Huang’s group formulated a membrane-core structured 

Lipid-Calcium-Phosphate (LCP) nanoparticle with a surface that can be modified with 

various amounts of PEGylation, up to 20 %. It was found that a high density of PEG is 

required to achieve the steric stabilization and thus create the “stealth” property for particles, 

according to the concentration and type of PEG-lipids [386]. The long-circulating liposomes 

with active components of CHMs overcome their disadvantages in physicochemical 

properties and their applications are shown in Table 7.

4.2 Active-targeting liposomes

Active-targeting liposomes exert their targeting capabilities through a series of affinity-based 

interactions (such as that between ligands and receptors) on the diseased cells and release 

drugs specifically into the target sites, with minimum deposition at healthy tissues or with 

less off-target effects [365,408,409]. Active- and passive-targeting liposomes are transported 

to tumor sites in the same manner. Only after arriving in the tumor tissue are ligands able to 

work, and it was found that some PEGylated liposomes were unable to release drugs at the 

tumor site. Moreover, with an increasing number of injections administered, PEGylated 

materials are prone to be cleared from the blood, which is called the accelerated blood 

clearance (ABC) phenomenon [410–412]. This means that long blood circulation times and 

efficient tumor target binding are both required for appreciable tumor accumulation of 

ligand-targeted liposomes [385]. Active targeting ligands could be attached directly to the 

liposomal surface, together with PEG-lipids, or conjugated to the distal end of PEG chains 

and incorporated into liposome membrane as ligand-PEG-lipids [413–416].

There are two issue to consider when taking advantage of a specific ligand to functionalize 

liposomes. First, it is important to optimize the ligand density on the liposome surface by 

relevant surface engineering techniques to properly form a targeted liposome system. High 

ligand density in a feasible range could promote target binding; however, issues such as 

aggregation may be caused by increasing ligand density over the optimal density [417]. 

Second, as the binding affinity for a tumor-related ligand rises, liposomes would bind tightly 

to the cancer cells they first encounter near blood vessels. This might block the tumor 

penetration of vesicles into cancer regions far away. Then subsequent vesicles are unable to 

reach free receptors and are thus forced back out of the tumor. It thus diminishes effective 

targeting [418,419]. In other words, exceedingly strong affinity ligands may impair tumor 

penetration and fail to increase tumor drug accumulation. Even if with increased tumor 

accumulation, anti-tumor efficacy is not necessarily improved if drug accumulation only 

takes places near blood vessels [385]. Various liposomal active-targeting ligands for active 

components of CHMs for solid tumor therapy are shown in Table 8.

4.2.1 Targeting specific receptors over-expressed on the surface of cancer 
cells

4.2.1.1 Glycolipids: Liposomes with different glycosyl combining on their surfaces can be 

differentially distributed in vivo. Liposomes carrying mannose residues are enriched in 

sinusoids, involving Kupffer cells, endothelial cells, and stellate cells in liver. Galactosylated 

liposome-entrapped materials were largely distributed to hepatocytes [376,452]. To exhibit 

significant therapeutic efficacies, various glycolipids with low molecular weight were used 
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to modify the liposomal surface by conjugating the sugar moieties to lipids. Galactosylated 

liposomes are bound specifically to asialoglycoprotein receptors (ASGPRs) to achieve 

hepatocyte-specific drug delivery after entering systemic circulation because (1) ASGPRs 

are specifically over-expressed in hepatocytes; (2) because of the rich blood flow and 

discontinuous endothelium of the liver, particles can easily access hepatocytes [452,453]. 

However, interactions between glycolipids and plasma lipoproteins or tissue lipids after 

intravenous injection may interfere with the integrity of liposomes by removing glycolipids 

from bilayers, and thus lead to reduced tumor cell selectivity [454]. Thus, cholesterol was 

used to introduce the galactosyl moiety to liposome surface as the hydrophobic anchor. 

Cholesten-5-yloxy-N-(4-((1-imino-2-L-D-thiogalactosylethyl)amino)butyl)formamide (Gal-

C4-Chol), cholesten-5-yloxy-N-(4-((1-imino-2-L-D-thiomannosylethyl) amino)butyl) 

formamide (Man-C4-Chol), and cholesten-5-yloxy-N-(4-((1-imino-2-L-L-

thiofucosylethyl)amino)-butyl)formamide (Fuc-C4-Chol) are synthesized as different 

efficient glycosylating agents with cell-specific hepatic targeting potential [455]. 

Furthermore, when coating the galactosylated liposomes with PEG to obtain the long-

circulating effect, the molecular weight of PEG is important because longer PEG chains 

might retard asialoglycoprotein receptor-mediated uptake of galactosylated liposomes by 

steric hindrance [456].

4.2.1.2 Transferrin family: The blood-brain barrier (BBB) protects the brain as a highly 

selective barrier. Nearly all large-molecules and 98% of small-molecule drugs are unable to 

be transported across the barrier in the active transport manner [423,457]. Transferrin (Tf), 

an iron transporter, regulates free iron levels in biological fluids. Transferrin receptors (TfR1 

and TfR2 or CD77) are lowly expressed in most normal cells, and overexpressed in tumor 

cells (~100 fold) due to increased iron demand of cancer cells, such as liver cancer cells, 

brain glioma cells, or endothelial cells of the BBB, thus Tf could target the transferrin 

receptor and exhibit tumor-specific cell binding [458]. In addition to Tf, lactoferrin (Lf) also 

belongs to the transferrin family. Drug carriers with Lf modifications cross the BBB via 
receptor-mediated endocytosis [424]. In fact, Lf is also reported to inhibit the cell cycle in 

G0/G1 and G2 phases of U87MG cells through downregulation of cyclin D1 and D4 [459].

4.2.1.3 Folic acid: Folic acid (FA, folate or vitamin B9) is a crucial vitamin for nucleotide 

synthesis in all living cells [385]. Living cells take in FA through folate receptors (FRs)-

mediated endocytosis by stimulating the clathrin-independent pathway, which is a 

characteristic used for macromolecular drug delivery. FRs are highly expressed on lung, 

ovarian, kidney, breast, brain, endometrial, and colon cancer cells. Limited expression of 

FRs on most normal tissues, but overexpression on cancer cells are observed. Further, FR 

density increases with the deterioration of tumor grade or stage [460]. As such, it is 

suggested that FA can be used as a potential targeting molecule for active drug delivery to 

tumor cells [425,461]. FA was also reported to be conjugated with chitosan by an acylation 

reaction to obtain folic acid-chitosan, which could form a coating liposomal system by 

electrostatic interactions on the surface of the negatively charged nano-liposomes with better 

stability and sustained release of curcumin [462].
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4.2.1.4 Glycyrrhetinic acid (GA): GA, a pentacyclic triterpeneglycoside, is the hydrolysis 

product of glycyrrhizin. In addition to its effective anticancer effects against hepatocellular 

carcinoma, GA was also reported to specifically target hepatocytes where the GA receptors 

(GA-R) are abundantly expressed on hepatocyte membranes [463,464]. Both GA-R and 

glycyrrhizin receptor (GL-R) could achieve active hepatic targeting of drug delivery. 

However, GA-R is more effective because GA binding sites outnumber GL binding sites 

[465]. Recently, growing interest has developed on carriers modified with GA as hepatocyte-

targeted delivery systems [428–431].

4.2.1.5 Epigallocatechin 3-gallate (EGCG): EGCG, a polyphenol from green tea, has 

been reported to reduce the expression of MMP-2 and MMP-9, involving in tumor growth, 

angiogenesis, and metastasis. Moreover, it selectively binds the 67-kDa laminin receptor 

(67LR) [466], which is more highly expressed on tumor cells, such as breast, bile duct, 

colorectal cancers, and melanoma cells, than on normal cells [467]. Therefore, EGCG-PEG-

modified liposomes loaded with doxorubicin took advantage of not only the apoptosis 

inducing effect of EGCG, but also the tumor-targeting of EGCG together with the PEG 

shielding to synergistically combine with the topisomerase II inhibition induced by 

doxorubicin. The dual-effect liposomes showed outstanding antitumor efficacy on melanoma 

[432].

4.2.1.6 Anisamide derivatives: Anisamide and its derivatives modified liposomes were 

proven to be highly selectively targeting to sigma receptors, leading to stronger tumor 

growth retardation, compared to non-targeted liposomes [468]. Sigma receptors, subdivided 

into sigma-1 and sigma-2 receptors, are over-expressed membrane proteins on TAFs and 

tumor cells, such as melanoma, breast tumors, non-small cell lung carcinoma, hepatocellular 

carcinoma and prostate cancer, and their expression is much higher compared to normal 

cells [469,470]. Aminoethyl anisamide (AEAA) is a targeting ligand for sigma receptor with 

high affinity (Kd=9 nM) employed for phytochemicals delivery in other lipidic formulations 

(emulsions and micelles). Puerarin in DSPE-PEG-AEAA modified nanoemulsions were 

shown to significantly facilitate chemotherapeutic effect of paclitaxel and activate immune 

microenvironment, compared to the control group [330]. AEAA targeting nanocarriers 

loaded with celastrol and mitoxantrone were also demonstrated the increased drug 

accumulation in tumors, compared to free drugs [471]. Icaritin was co-delivered with 

doxorubicin in micelles with the composition of poly lactic-co-glycolic acid (PLGA)-PEG-

AEAA (PLGA-PEG-AEAA). The AEAA modified fluorescence micelles accumulated 4-

fold higher than non-targeted micelles in tumor sites, with much less amount in normal 

livers [472].

4.2.2 Targeting specific receptors on desired organelles—Mitochondria are 

membrane-enclosed organelles described as “cellular power plants”. They are an ideal 

antitumor target due to their involvement in at least six cancer hallmarks, including 

deregulated cellular energetics, cell apoptosis resistance, expanded invasion and metastasis, 

immortal replication, genomic instability, and tumor-promoting inflammation [473]. 

Moreover, tumor cell mitochondria are distinct from their normal counterparts in structures 

and functions, showing increased reactive oxygen species production, higher mitochondrial 
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membrane potential, and decreased oxidative phosphorylation [474–476]. Given these 

features, tumor cells require high energy levels for proliferation and are more susceptible to 

mitochondrial perturbation than healthy cells [433,477]. Consequently, mitochondria-

targeting therapies emerge as an attractive means to selectively eliminate cancers [478]. TPP, 

rhodamine B, DQA, and mitochondrial targeting signal peptides (MTSs) were used to pack 

or modify onto lipid carriers (mitochondriotropic molecules) to target mitochondria 

[477,479,480]. Among these molecules, delocalized cationic 4-carboxybutyl 

triphenylphosphonium bromide facilitates mitochondrial uptake by interacting with the 

highly negatively charged mitochondrial membrane in cancer cells, leading to its improved 

accumulation or access to the mitochondria [481]. DQA, a cationic amphiphile, promotes 

specific mitochondrial accumulation driven by the transmembrane electrical potential 

[434,482].

4.2.3 Targeting specific receptors on cells in the TME—Tumors consist not only 

of neoplastic cells, but also of stromal cells (such as tumor-associated fibroblasts, 

mesenchymal cells, pericytes, occasionally adipocytes, blood and lymphatic vasculature) 

and immune cells that maintain the TME. The ECM and secreted extracellular molecules 

also bear tumor development [483–485].

Among ECM components, hyaluronic acid (HA) is the main one characterizing fibrotic 

process. HA is a natural acidic polysaccharide synthesized by three transmembrane HA 

synthases (HAS1, HAS2, and HAS3) that is non-toxic, biodegradable, and possesses a 

strong affinity for CD44 and the receptor for hyaluronan-mediated motility (RHAMM) 

[486,487]. CD44 is a non-kinase transmembrane cell-surface glycoprotein with endogenous 

limited expression in healthy cells and highly expressed as one of the most common cancer 

stem cell surface markers in various cancer types, including breast, prostate, pancreas, colon, 

and hepatocellular cancer. Therefore, CD44 is a potential receptor for targeting drug delivery 

systems, which is involved in tumor invasion and metastasis [488–491]. HA can be 

covalently linked to the polar headgroup of the lipid, or coats cationic liposomes via 
electrostatic interaction, in order to achieve CD44-receptor targeting drug delivery. A 

negatively charged HA-based prodrug can also be formed to insert into the lipid bilayers 

[492].

4.3 Others

4.3.1 Liposomal surface modifications with antibodies—Monoclonal or 

polyclonal antibodies conjugated on the surface of liposomes that recognize and bind to 

specific antigens on the surface of targeted tumor cells are called immunoliposomes. They 

are able to distinguish the target cell and enhance the selective targeting effects of liposomes 

[376].

Various tumor cell surface markers were reported as potential targets for selective targeting 

of therapeutic agents, such as CD147, CD133 and CD44 [438]. Antibody targeted therapies 

are effective for the following main reasons: (1) The over-expressed epitope is found on the 

cancer cell; (2) The antibody could get better access to the tumor sites than to healthy sites, 

due to the longer circulation time and EPR effect. Anti-CD44 antibodies modified liposomes 
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were characterized with enhanced cellular uptake through CD44 receptor-mediated 

endocytosis, and increased selective targeting effect [493,494].

Human epidermal growth factor receptor-2 (HER2) is a member of epidermal growth factor 

receptor family. It is a transmembrane receptor tyrosine kinase, generally over-expressed in 

25–30% of ovarian and breast cancer patients and normally expressed at low levels in adult 

cells. It is commonly targeted for breast cancer therapy. Trastuzumab (Herceptin®, 

Genentech, Inc., USA) was the first humanized monoclonal antibody that binds the 

extracellular domain of the HER2 receptor for clinical breast cancer therapy [495,496]. 

Trastuzumab coupled HER2-targeted immunoliposomes loaded with curcumin and 

resveratrol showed notably higher cytotoxicity in HER2 positive human breast cancer cells 

than that of non-targeting liposomes or free drugs [439].

4.3.2 Liposomal surface modifications with peptides—Peptides (a short amino 

acid chain) for surface functionalization are non-covalently or covalently bonded to 

liposome surface through the MAL linkage bond, sulfanyl bond, peptide bond, or disulfide 

bond [382]. They are divided into cell-targeting peptides and cell-penetrating peptides, 

having receptor-specific and non-specific binding and internalization, respectively.

4.3.2.1 Cell-targeting peptides (CTPs): T7 (HAIYPRH) peptide specifically targets a 

small cavity on the transferrin receptor surface without interfering transferrin binding to 

transferrin receptor and is then transported inside the cell through endocytosis [440,497].

RGD (Arg-Gly-Asp) or NGR (Asn-Gly-Arg) are ligands for targeting angiogenic blood 

vessels, which have several proteins that are absent or expressed at much lower levels in 

established blood vessels. Targeting the tumor vasculature has some advantages, as 

compared to targets on the cancer cell surface. First, liposomes do not have to penetrate the 

tumor tissue to find and reach antigens on tumor cell surface, while they have better access 

to antigens on the tumor vasculature. Second, abnormal rapid proliferation of cancer cells 

required sufficient nutrients and oxygen for further growth. Therefore, killing of a relatively 

small number of vascular endothelial cells can destroy a large number of cancer cells 

supported by these blood vessels. Third, as compared to cancer cells, vascular endothelial 

cells are more genetically stable and less susceptible to develop drug resistance [385].

RGD (Arg-Gly-Asp) selectively binds to cell surface integrin αvβ3/αvβ5. Integrins are 

transmembrane glycoprotein receptors that play an essential role in the attachment between 

a cell and its extracellular matrix [498]. They are overexpressed in cancers (glioma cells, 

melanoma cells, lung cancer cells, breast cancer cells, and so on) and can enhance disease 

progression partially through angiogenesis and metastasis, making them worthy molecules 

for targeted drug delivery into tumor tissues [499,500]. Liposomes modified with RGD have 

clear benefits as anticancer drug delivery systems over non-targeted liposomes [501]. The 

ability of NGR peptides to target the tumor vasculature and improve therapeutic outcomes 

has also been demonstrated. NGR can specifically bind to CD13, which is a transmembrane 

metalloproteinase, involving in cell migration and angiogenesis. CD13 is not activated in 

normal vascular endothelial cells but is highly expressed in tumor vasculature and some 

tumor cells [441,502]. Therefore, the NGR peptide is a potential ligand to target the tumor 
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vascular antigen CD13 with good selectivity and low immunogenicity [503]. The effect of 

phosphatidylcholine (PC) composition with different Tm used to prepare targeted liposomes 

has significant effects on the desirable properties of resulting liposomes. PCs with different 

Tms, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC, Tm=41 °C), hydrogenated 

soy phosphatidylcholine (HSPC, Tm=53 °C), and soy phosphatidylcholine (SPC, Tm blow 0 

°C) were investigated and found that the decrease of Tm of lipids facilitated drug release, 

and more fluidic liposomes exhibited improved cellular uptake [442].

4.3.2.2 Cell-penetrating peptides (CPPs): CPPs are positively charged short peptides (5–

30 amino acids) capable of penetrating cells across the cell membrane through endocytosis 

[373]. They allow a wide array of biomolecules, from peptides and proteins to nucleic acids, 

to rapidly and efficiently traverse cytoplasmic membranes.

For polyarginines, a popular cell penetration tool, the optimum chain length is eight arginine 

units (R8) [446]. The positively charged R8 peptide makes the coated particles positively 

charged for internalization and mediates efficient cellular uptake micropinocytosis, 

improving intracellular gene transportation and expression [504]. R8 with positive charges 

was also combined with RGD in modified emodin as a tandem peptide (R8GD) to treat 

breast cancer. The targeting mechanism of R8GD includes receptor-mediated drug targeting 

and electrostatic incorporation [505]. The R8GD-modified emodin liposomes with small 

particle size and high EE% exhibited a distinct antitumor effect together with R8GD 

modified daunorubicin-loaded liposomes [447].

HIV protein transactivator of transcription (TAT, YGRKKRRQRRR, residues 47–57 of 

HIV-1 Tat protein) readily passes through the plasma membrane of uninfected mammalian 

cells [448]. Full-length TAT could bind the extensively expressed cellular heparan sulfate 

proteoglycans (HSPGs), integrins and chemokine (C-X-C motif) receptor 4 (CXCR4). 

HSPG syndecan 4, a potential receptor, enhances the uptake of TAT through energy-

dependent micropinocytosis. Recently, TAT was reported to form transient pores and 

translocate across the membrane by diffusing on these pores, without observed cell death 

due to leakage [506,507]. After delivery to the cells, endosomal entrapment leads to most of 

CPP cargos eventually undergo degradation in lysosome or distribute back to cell membrane 

for recycling and then ejection from the cell, which is called “endosomal escape problem”. It 

could be solved to some extent by using endosomolytic agents, reversible covalent binding 

and high-affinity non-covalent binding [508].

The tumor-homing peptide tLyp-1 contains the sequence motif (R/K)XX(R/K). It mediates 

tissue penetration and tumor targeting through neuropilin-1 dependent C-end rule 

internalization and overcome the barriers caused by dysfunctional tumor vasculature and 

high interstitial pressure. The liposomes coated with tLyp-1 initially target the receptor 

specifically highly expressed on the tumor cell surface, internalize through micropinocytosis 

and then escape from lysosome in a time-dependent manner [449,509,510].

4.3.3 Surface modifications with polymers—D-alpha tocopheryl polyethylene 

glycol 1000 succinate (TPGS) is an amphiphilic PEG derivative of vitamin E succinate, with 

hydrophilic-liphophilic balance value between 15 and 19. Therefore, it is an ideal emulsifier 
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and solubilizer for hydrophobic drugs (67 times higher than polyvinyl alcohol) and greatly 

enhanced cellular uptake, in vitro cancer cell cytotoxicity [450,511], and prolonged long-

circulation pharmacokinetic behaviors [148]. Moreover, TPGS also inhibited multidrug 

resistance by inhibiting the P-glycoprotein pump [451].

5. Conclusions

This article studied the antitumor effects of active ingredients of CHMs, counteracting toxin 

with toxin, heat-clearing and detoxifying, promoting blood circulation and removing blood 

stasis, resolving phlegm and eliminating dampness, and strengthening healthy energy and 

consolidating body resistance. We find that the active components function to inhibit 

proliferation, inhibit invasion and migration, induce apoptosis, reverse multidrug resistance, 

block angiogenesis, suppress aerobic glycolysis and improve immunity. Despite treatment 

potential, the undesirable physicochemical properties (poor permeability, instability, highly 

hydrophilicity or hydrophobicity, and toxicity) and unwanted pharmacokinetic profiles 

(short half-life in blood and low bioavailability) limit the clinical studies of CHMs. Various 

targeting liposomes have shown immense advantages in the delivery of active components of 

CHMs, involving improved physicochemical characteristics and pharmacokinetic profiles, 

enhanced therapeutic efficacies and reduced side effects. This review could be regarded as a 

useful and informative reference for these CHM components.

6. Limitations and future perspectives

TCMs are the oldest alternative and complementary medicines and there are rising interests 

on the investigation of CHMs. Using modern technology, the mechanism of some active 

components of CHMs were determined to some degree at the cellular, molecular, and 

pharmacological level. However, there are still some issues to consider.

First, there are only a few studies on the effect of single or combined use of 

monoconstituents on immunology regulation. The clinical application of CHMs are very 

complex as the act not only through a single factor, but also through multiple targets and 

based on a holistic approach, pointing to the entire human body. Current research is 

primarily focused on individual monoconstituent or the combination of active ingredients 

from CHMs with chemotherapeutic drugs and their bioactions on tumor cells and non-

immune tumor microenvironment. The anti-tumor characteristics of plant-derived medicines, 

including inducing apoptosis, reversing multidrug resistance, regulating angiogenesis, killing 

TAFs, and inhibiting cell metastasis and invasion, make the combination with 

chemotherapeutic drugs reasonable and effective. In fact, the improved tumor immune 

microenvironment caused by phytochemicals is attracting and proved to enhance 

therapeutically effect with combination of chemo drugs or checkpoint inhibitors. Huang’s 

group reported that celastrol, a pentacyclic triterpene from Tripterygium wilfordii 
functioning in counteracting toxin with toxin, induced ICD with mitoxantrone 

synergistically to remodel immune-suppressive TME with a robust immune memory 

response in melanoma [471]. In order to avoid using the highly toxicity of CHMs, icaritin 

from herbs warming kidney-yang, were studied and the combination of icaritin with 

doxorubicin caused synergistic ICD induction through mitophagy and apoptosis, leading to 
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improved hepatocellular carcinoma treatment [472]. Puerarin could not only downregulate 

intra-tumoral reactive oxygen species and deactivate TAFs, but also serves as an adjuvant 

therapy in nanoparticles for programmed cell death-ligand 1 (PD-L1) monoclonal antibody 

in triple-negative breast cancer model [330]. In fact, the combination of phytochemicals 

themselves (quercetin and alantolactone) was proved to induce synergistic ICD at low doses 

in CT26 and 4T1 cells. The micelles loaded with optimal ratio of quercetin and 

alantolactone stimulated the host immune response and inhibited murine orthotopic 

colorectal and breast tumor growth [148]. Besides using monoconstituents of CHMs, the 

components of TCMs could be studied at a relatively complex level, in order to make good 

use of the resources of TCMs, such as the classical CHM pairs (Pinellia-Aconitum, 

Scutellaria barbata-Oldenlandia diffusa, Rhizoma coptidis-Fructus evodiae). The effective 

extractions of Chinese medicine (such as essential oil) could also be potential agents for 

tumor treatment because their efficacy has already been clinically proven, and the herbs have 

relatively simple compositions.

Second, as for the targeting preparation of TCMs, the stability, metabolism, synthesis and 

quality evaluation need to be improved, especially for more complex combinations of 

ingredients of CHMs, to exhibit synergistic effects for tumor cells and for specific targeting 

to the TME. Liposomes can realize the co-delivery of medicinal ingredients with different 

pharmacological effects and physicochemical properties. In fact, by encapsulating all drug 

combinations in liposomes, the pharmacokinetic behavior of multiple drugs in vivo can be 

controlled while prolonging their circulation half-life. Multi drugs encapsulation in 

liposomes modified with targeting ligands makes liposomes versatile carriers, which is 

suitable for the application of herbal compound recipes in TCM [512,513]. There are several 

routes of administration for liposomes, and this review selects the route of systematic 

administration. Compared with the oral administration route, especially for lipophilic 

compounds from CHMs, the transportation of drugs from liposomal to biological 

membranes via intravenous injection are different from oral drug delivery [514]. The 

characteristics of intravenous injection of liposomes with functionalized surfaces different 

from other routes of administration are maintaining drugs combination at certain ratios, 

controlling drugs release, permitting selective delivery of drugs to targeting tissue [515–

517]. Although the review demonstrated that targeting liposomal nanocarriers are effective 

and favorable delivery systems for CHMs to treat cancers, it is still at the exploratory stage.

Further investigations are necessary for anti-tumor mechanisms of some potential 

monoconstituents, especially the identification of subcellular targets and regulation of 

immunity through modulating immune-suppressive tumor microenvironment and priming 

immune responses effects. Site-specific and selective liposomal delivery enhances the 

accumulated drug concentrations at the site of action and comes with superior efficacy and 

safety in cancer treatments by reducing the cost and duration of therapy.
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Figure 1: 
Overview of mechanisms for monoconstituents of CHMs on tumor cells and the TME 

(Abbreviation: MRP, multidrug resistance-associated protein; GS-conjugates, glutathione 

conjugates; P-gp, P-glycoprotein; BCRP, breast cancer resistance-relative protein; TGF-β, 

transforming growth factor-β; IL-10, interleukin-10; IFN-γ, interferon gamma; TNF-α, 

tumor necrosis factor-alpha).
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Figure 2. 
Overview of tumor-specific targeting strategies of liposomes for delivery of 

monoconstituents of CHMs (Abbreviation: EPR effect, enhanced permeability and retention 

effect; PEG, polyethylene glycol; TPGS, D-alpha tocopheryl polyethylene glycol 1000 

succinate; DQA, dequalinium; Tf/Lf, transferrin/lactoferrin; FA, folic acid; HA, hyaluronic 

acid; EGCG, epigallocatechin 3-gallate; GA, glycyrrhetinic acid).
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