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Abstract

CTP (Computed Tomography Perfusion) is widely used in clinical practice for the evaluation of 

cerebrovascular disorders. However, CTP involves high radiation dose (≥ ~200mGy) as the X-ray 

source remains continuously on during the passage of contrast media. The purpose of this study is 

to present a low dose CTP technique termed K-space Weighted Image Average (KWIA) using a 

novel projection view-shared averaging algorithm with reduced tube current. KWIA takes 

advantage of k-space signal property that the image contrast is primarily determined by the k-

space center with low spatial frequencies and over-sampled projections. KWIA divides each 2D 

Fourier transform (FT) or k-space CTP data into multiple rings. The outer rings are averaged with 

neighboring time frames to achieve adequate signal-to-noiseratio (SNR), while the center region of 
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k-space remains unchanged to preserve high temporal resolution. Reduced dose sinogram data 

were simulated by adding Poisson distributed noise with zero mean on digital phantom and 

clinical CTP scans. A physical CTP phantom study was also performed with different X-ray tube 

currents. The sinogram data with simulated and real low doses were then reconstructed with 

KWIA, and compared with those reconstructed by standard filtered back projection (FBP) and 

simultaneous algebraic reconstruction with regularization of total variation (SART-TV). 

Evaluation of image quality and perfusion metrics using parameters including SNR, CNR 

(contrast-to-noise ratio), AUC (area-under-the-curve), and CBF (cerebral blood flow) 

demonstrated that KWIA is able to preserve the image quality, spatial and temporal resolution, as 

well as the accuracy of perfusion quantification of CTP scans with considerable (50–75%) dose-

savings.

Index Terms—

Perfusion imaging; X-ray imaging and computed tomography; brain; image reconstruction - 
analytical methods; image enhancement

I. Introduction

COMPUTED Tomography Perfusion (CTP) of the brain is a widely used imaging technique 

that provides assessments of regional blood supply, and hemodynamic information to 

distinguish the ischemic core from penumbral tissue, helping with decision making for 

recanalization therapy in cerebral ischemia [1]–[4]. In a typical CTP scan, a dataset of time-

resolved CT images is acquired over the scan duration (223C 1 min) to track the passage of 

the contrast bolus through the intracranial vasculature. The contrast enhancement of the 

tissue over time is depicted by the time density curve (TDC), and multiple perfusion 

parameters such as cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit 

time (MTT), can be derived from the TDC information [5]. The repeated CT scans that are 

performed on the same brain region during the passage of a contrast bolus resulting in a high 

radiation dose to patients. For example, with a typical clinical setting of CTP scan 

acquisition parameters using a tube voltage of 80 keV, tube current of 150 mAs, and 

temporal sampling rate of 1 image/2s according to the ALARA (As Low As Reasonably 

Achievable) principle, the resultant dose can be about 200 mGy which is approximately 3 

times higher than that of a standard head CT [6].

Recently, several techniques have been applied for radiation dose reduction in CTP scans, 

including reduction of tube current and/or tube voltage, as well as the use of noise reduction 

techniques such as iterative reconstruction (IR) [7], [8]. Typical IR methods include the 

adaptive statistical iterative reconstruction (ASIR) [9], and model-based iterative 

reconstruction (MBIR) [10]. However, IR methods often yield blotchy image appearance 

and longer computational time [11]. Although the application of IR in standard CT scans has 

been improving due to enhanced computational power, its application in CTP is very limited 

due to the high complexity and significant computational overhead for processing dynamic 

CTP image series. It is also possible to lower the radiation dose by reducing the temporal 
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sampling frequency of CTP, however, this approach yields insufficient temporal information 

for accurate quantification of hemodynamic parameters [12].

During the past 3 years, deep learning (DL) techniques have been explored for CT imaging 

to reduce radiation dose z, such as residual neural network [14] and generative adversarial 

network (GAN) [16], [18], [19] based denoising. The deep networks have been expanded to 

incorporate iterative steps [20], [21] to improve the performance and robustness for 

denoising low-dose CT images. More recently, DL methods have been applied for low-dose 

CTP using Iterative Residual-artifact Learning net (IRLNet) [22] and Spatial-Temporal 

Image Restoration Net (STIR-Net) [12]. The advantages of DL techniques, as compared to 

existing IR methods for low-dose CT, include short computation time (nearly instantaneous 

once trained) and better retainment of the texture and resolution of CT images. However, DL 

methods are highly dependent on the training datasets which may be specific to the CT 

scanners and protocols used for data collection.

K-space Weighted Image Contrast (KWIC) is a technique originally used in 4D dynamic 

MRI with radial trajectories to shorten the scan time using sparse sampling [23]. Based on 

the central slice theorem, CT sinogram data can be converted to 2D Fourier space 

(equivalent to k-space in MRI), making it feasible for the adaptation of KWIC to CT 

perfusion with reduced dose through the sparse sampling of projections followed by view-

sharing. In our proof-of-concept study, a specific sparse sampling scheme was employed to 

achieve up to 75% dose reduction while maintaining both high image quality and 

quantification accuracy of CTP scans [24]. However, the implementation of the KWIC 

algorithm requires rapid-switching pulsed X-ray at pre-specified rotation angles–a hardware 

capability yet to be implemented by commercial CT vendors.

The purpose of this study is to introduce a variant of the KWIC algorithm termed k-space 

weighted image average (KWIA) that preserves high spatial and temporal resolutions as well 

as image quality of low-dose CTP data (50–75% dose reduction), yielding images 

comparable to those of standard CTP scans. There are three major advantages and 

contributions of KWIA compared to existing denoising methods for low-dose CTP: 1) 

KWIA does not require modification of existing CT hardware, and can use standard low-

dose techniques such as tube current reduction; 2) KWIA is computationally simple and fast 

(non-iterative), therefore doesn’t affect clinical workflow; 3) KWIA preserves the texture as 

well as spatial and temporal resolution of CTP images. In this paper, we first present the 

theoretical framework of KWIA, and demonstrate its feasibility using a digital phantom, a 

physical phantom, and clinical data.

II. Theory

In a typical CT scan, the X-ray tube and detectors continuously rotate around a center point. 

At each specific constant angular interval, the X-ray tube emits a fan beam X-ray which will 

be received by an array of detectors and processed to form a fan beam projection signal. 

Based on the central slice theorem, 1D Fourier transform (FT) can be performed along each 

parallel beam projection, which can be obtained from fan beam projections after rebinning, 

to form a ‘k-space’ like CT data. To meet the Nyquist theory of radial sampling, the 
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sampling rate on the periphery of this k-space should be no less than the sampling rate on 

each projection to avoid streaking. Thus, the number of projections in a CT scan Nproj , in 

theory, should satisfy

Nproj ≥ π
2 Ndetector (1)

In practice, the number of projections used in a CT scan can be slightly lower than the 

theoretical number, since the field-of-view (FOV) of CT images is generally smaller than the 

width of the detector array. Assuming R is the radius of the radial k-space region that 

satisfies the Nyquist theory, it is determined by

R = Nproj
π (2)

The most common practice for low dose CT includes reduction of tube current and/or tube 

voltage. Without loss of generality, we will focus on low dose CT with reduced tube current 

in this paper (tube voltage reduction will be discussed later). There is a direct proportional 

relationship between the applied tube current and the square root of the SNR in 

reconstructed CT images [25]. For example, reducing the tube current by 1
2  will result in the 

SNR of CT images to be 2
2  of the original SNR. However, the effect of SNR reduction is 

not evenly distributed across the 2D FT or k-space. As shown in Fig. 1, the center of the k-

space (Ring 1) has effectively higher SNR due to the averaging effect of higher sampling 

density of projections. For the outer k-space, however, the progressively sparser projections 

will lead to deficient SNR.

For CTP imaging, such k-space property and the time-resolved image acquisition can be 

exploited for reducing radiation dose. Here we introduce a new algorithm termed k-space 

weighted image average (KWIA) to preserve high spatial and temporal resolutions as well as 

the image quality of low-dose CTP data (50–75% dose reduction). The proposed KWIA 

method divides each 2D FT or k-space CTP data into multiple rings. The central part of k-

space (Ring 1) will directly use the data from a single time frame (e.g. t1 in Fig. 1), while 

outer k-space regions will be progressively averaged between neighboring time frames to 

increase SNR (e.g. Ring 2 will be averaged by 2 time frames t1 and t2, and Ring 3 averaged 

by 4 time frames t0 to t3). Since the image contrast is primarily determined by the central k-

space region, KWIA can preserve the high effective temporal resolution of low dose CTP 

while maintaining high SNR and spatial resolution by view-sharing in the outer k-space 

regions.

The KWIA reconstructed k-space data, S, can be expressed by the following equation

Si, k = ∑
d = ⌈− M − 1

2 ⌉

⌈M − 1
2 ⌉

W d, kSi + d, k (3)
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where i is the image time frame, k is the distance from the k-space center, M is the averaging 

window size, and Wd,k is the weighting function. Note the averaging window shifts at the 

beginning and end of CTP time series to keep all averaged images within range. The k-space 

is divided into discrete rings and moving average is applied to each ring accordingly. As a 

proof-of-concept study, we used a short averaging window size of 1, 2, 4 for ring 1, 2, 3 

respectively (based on the original KWIC algorithm) to minimize potential temporal 

blurring. Alternative window sizes and weighting functions will be discussed below.

Since the number of received X-ray photons Nd, on a detector, can be estimated as the 

Poisson distribution of the number of incident photons (see section 3. B for detail), which is 

the number of emitted photons Ne after attenuation, SNR can be derived as follows.

SNR = Mean
SD = Nee−li

Nee−li
= Nee−li (4)

Thus, for a given Ne and amount of attenuation, the SNR is proportional to the square root of 

the size of a detector, namely resolution. Because of the inverse relation between resolution 

and k-space coverage, SNR is inversely proportional to the radius of a k-space region.

In order to compensate for the SNR loss using projection data from low-dose CT, we can 

utilize a smaller center k-space region to achieve adequate SNR, and the radius of Ring 1 

(R1) can be derived from Eq. 5:

R1 = Nproj
π rSNR (5)

where rSNR is the relative SNR of low dose CTP versus the full dose scan. The rest of k-

space can be subsequently divided into rings that will be progressively averaged between 

neighboring time frames to increase SNR. The radius of Ring n or Rn can be derived from 

Eq. 6:

Rn = R1 +
Ndetectors

2 − R1
Nrings − 1 n − 1 (6)

where Nrings is the total number of rings, Ndetectors is the number of detectors, and Rn is the 

derived radius for the nth ring. In practice, the optimal number of rings and their respective 

sizes can be determined empirically. The more rings that are used, higher the SNR. 

However, the resultant images could potentially be more susceptible to motion as well as 

temporal smoothing (of fine structures) between time frames. After applying KWIA, the k-

space data is regridded into Cartesian space followed by 2D inverse fast FT (FFT) to 

generate CT images.
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III. Material and Methods

A. KWIA Algorithm Implementation

The KWIA algorithm was implemented in Matlab (The Mathworks Inc., Natick, MA, USA) 

and included 5 steps: 1) performing 1D FFT of parallel beam projections along the detector 

row direction; 2) multiplication with a KWIA filter that separates and weighs projections 

into sub-apertures or rings; 3) stacking of KWIA filtered projections into a radial k-space; 4) 

compensating for the weighting of radial data using the VORONOI algorithm; 5) regridding 

of radial k-space into 2D Cartesian k-space; and finally 6) performing 2D inverse FFT of the 

regridded k-space data into 2D images. In step 1, the parallel beam CT projections were 

simulated from CTP images using the ASTRA toolbox [26], [27] for digital phantom and 

clinical data, while, for real scan of the phantom, fan beam projections were acquired and 

then rebinned into parallel beam projections. The VORONOI algorithm in step 4 was used 

as an efficient and accurate estimation of the density compensation for radial sampled k-

space data [28]. Even though the density weights along each radial projection in k-space is 

just a ramp function, the VORONOI algorithm provides more flexibility for potential 

implementation of KWIA in more complicated CT geometries, such as 3D cone beam CT 

(CBCT). For the regridding algorithm of step 5, we chose the Kaiser-Bessel kernel with β = 

16.25, window width = 7, and oversampling rate = 2 as the convolution kernel to achieve the 

optimal balance between side-lobe suppression and computation time [29]. Compiled 

Matlab programs and a sample CTP dataset can be downloaded (https://loft-lab.org/

index-5.html).

B. Digital Dynamic Phantom Simulation

A FORBILD digital phantom [30] with three time-varying vessels inserted (10, 5 and 2.5 

mm in diameter respectively) was created to simulate a dynamic CT scan. Scanning 

parameters of the simulation are shown in Table I, and ring sizes used for KWIA 

reconstruction are listed in Table II. A baseline Poisson noise with an emitting X-ray photon 

number of 4.8 × 106, which is the same value estimated for clinical CTP data in section 3. D, 

was added in the projection data to simulate full dose CTP scan. Accordingly, 50% and 25% 

dose CTP scans were generated using 2.4×106 and 1.2×106 as the emitting X-ray photon 

number, respectively. In addition, the temporal variation of vessel signals followed a pre-

defined gamma variate function [31] (Eq. 7), where C(t) is the vessel signal, C0 is a constant 

which was set to 1, t refers to time and α is a parameter determining the signal changing rate 

(α = 11). The digital phantom simulation used the same scan time (54 seconds) and number 

of frames (27 frames) as our clinical data. The peak vessel signal was set to appear at the 

10th time frame.

C t = C0tαeα 1 − t (7)

For the simulation of low dose CTP using digital phantom, we hypothesized that: (1) True 

compound Poisson process can be well-estimated as Poisson distribution; (2) Electronic 

noise, which is Gaussian distributed, can be ignored [32]–[34]. Thus, the noise model can be 

simplified as that, on a detector, the detected number of photons follows the Poisson 
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distribution of the number of received photons, which is attenuated from the number of 

emitting photons while penetrating the body. The reduction of tube current will 

proportionally reduce the emitted photons. As a result, the detected number of photons by a 

detector under the reduced tube current can be determined by Eq. 8 [35], where Nd is the 

detected photon number, Ne is the emitted photon number, li is the line integral of 

attenuation coefficients corresponding to the detector i, α and β represent the full dose tube 

current and reduced tube current respectively.

Nd = Poisson β
αNee−li (8)

CTP scans with full dose, 50% dose, and 25% dose were simulated accordingly. KWIA with 

2 and 3 rings were then applied to recover SNR of 50% dose CTP scans, while KWIA with 

3 and 4 rings were applied to recover SNR of 25% dose CTP scans. To evaluate the 

performance of KWIA, the mean signal and standard deviation (SD) of noise were measured 

in a relatively uniform region to estimate SNR (blue circle in Fig. 2 (a)). Contrast-to-noise 

ratio (CNR) was also estimated using two regions (blue circle and purple circle in Fig. 2 (a)) 

with different mean values. The value of CNR was defined as the ratio of the difference of 

mean signals between two regions to the square root of the sum of their variance. To 

evaluate the impact of different vessel sizes on the temporal fidelity of KWIA 

reconstruction, the region containing 3 time-varying vessels was selected as an ROI to 

measure the time course, as well as temporal parameters, including area-under-the-curve 

(AUC), full width at half maximum (FWHM), and root mean squared error (RMSE). To 

better demonstrate the SNR change, subtraction images between a noiseless phantom image 

and simulated low dose CTP and KWIA images were generated and presented.

C. Physical CTP Phantom Scan

The purpose of the physical phantom study was to verify the low dose simulation method, 

the SNR dependency of perfusion metrics, and the feasibility of KWIA reconstruction on 

real low dose CTP scans. A commercial CT perfusion phantom (GAMMEX, Middleton, WI, 

USA) was scanned on a Siemens SOMATOM Definition AS scanner with a fixed tube 

voltage of 100 kVp and 3 different tube currents at 200, 120 and 60 mAs respectively. The 

GAMMEX CTP phantom consisted of a homogenous scan disk (the imaged object shown in 

Fig. 4) and 4 rods (as indicated by the yellow arrows in Fig. 4), including an “artery”, a 

“vein” and 2 identical “brain tissue” rods, that were made of several discs with variable 

densities. When set in motion, the 4 rods can mimic the flow of a contrast agent through a 

blood-tissue network over time. Therefore, the phantom was capable of simulating blood 

flow through an artery, a vein and two tissue regions [36]. During the scan, three slices were 

imaged simultaneously in a total scan duration of 39 seconds with an interval of 1 second for 

each time frame. After the scan, fan beam projection data collected from scanner were 

rebinned into parallel beam projection data for offline reconstruction with KWIA.

The scan with the highest tube current of 200 mAs was used as the full dose, while the scans 

with 120 and 60 mAs were treated as 60% and 30% dose respectively. KWIA with 2 and 3 

rings were applied on the 60% dose scan, while KWIA with 3 and 4 rings on the 30% dose 
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scan. For comparison, full and low dose images were also reconstructed with standard 

regridding reconstruction without KWIA. Detailed scanning parameters are listed in Table I, 

and the sizes of rings used in KWIA are listed in Table II.

SNR was measured in a uniform region (purple circle in Fig. 4 (a)) in the scan disk of the 

CTP phantom, and CNR was measured between the scan disk region and a uniform region in 

brain tissue (blue circle in Fig. 4 (a)). The arterial input function (AIF), venous outflow 

function (VOF) and tissue signal curves were measured in ROIs of the artery, vein, and brain 

tissue, respectively.

Quantitative CTP analysis was performed using in-house MATLAB program for 

deconvolution based on the singular-value decomposition (SVD) algorithm [37]. Post-

processing of CTP images yielded cerebral blood flow (CBF) maps. CBF values in 2 brain 

tissue regions of the phantom were measured for comparison across all the reconstructed 

perfusion maps.

D. Clinical CTP Data Simulation

Six clinical CTP datasets, treated as full dose cases in this study, were acquired on a Toshiba 

Aquilion CT scanner. Detailed parameters of the CTP scan are listed in Table I. Poisson 

distributed noise was added to simulate the 50% and 25% low dose cases. The KWIA 

algorithm with 2, 3 and 4 rings was implemented and tested on the simulated low dose CTP 

scans respectively using the same ring sizes as those for digital dynamic phantom simulation 

(parameters listed in Table II).

There were a few differences in how noise was added between the clinical data and the 

digital phantom. In digital phantom, Poisson noise was directly added on noiseless phantom 

images. Given an emitted photon number Ne for the full dose scan, the low dose scans can 

be simply simulated from noiseless phantom images using β
αNe in Eq. 8. In clinical data, 

however, no noiseless images were available, which required including additional noise on 

top of the full dose images already containing some level of noise. Also, Ne of the full dose 

images is an unknown parameter. The simulation process can be described by Eq. 9 [38]:

Nd
β = β

αNe
βe−li + Poisson0(αβ − β2

α2 Ne
αe−li) (9)

where Nd
β is the received X-ray photon number at dose β, Ne

α is the emitted photon number 

at dose α, and Poisson0 refers to the Poisson distribution with zero mean. In this case, the 

generated data will have the desired variance and mean of β
αNe

α. For Ne, we estimated it as 

4.8 × 106 by measuring the change of resultant SNR in reconstructed image. An accurate 

estimation of Ne should allow the SNR to decrease linearly with the square root of tube 

current reduction, which has been validated by our physical phantom study.

The mean signal and noise SD were measured in a uniform region (blue circle in Fig. 8 (a)) 

in grey matter to examine the impact of KWIA on SNR. CNR was also estimated between 

grey matter (blue circle in Fig. 8 (a)) and white matter (purple circle in Fig. 8 (a)). The 
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arterial input function (AIF), venous outflow function (VOF) and tissue density signal 

curves were measured in ROIs of the anterior cerebral artery, posterior part of the superior 

sagittal sinus, and uniform grey matter region without visible vessels, respectively.

Quantitative CTP analysis was performed in the same way as the physical phantom study. 

The mean CBF value of the whole brain were measured for all 6 datasets for comparison 

across all the reconstructed perfusion maps.

E. Comparison of KWIA With Other Reconstruction Algorithms

A comparison of KWIA with two other image reconstruction methods was performed on the 

clinical CTP data from the perspective of noise suppression and CBF bias reduction. The 

two methods included filtered back projection (FBP) with ramp filter, the standard algorithm 

for clinical CT, and simultaneous algebraic reconstruction regularized by total variation 

(SART-TV) [39], a state-of-art technique for CT denoising. The FBP was implemented 

using ASTRA toolbox [26], [28], and TIGRE toolbox [40] was used for SART-TV 

implementation. Among the 3 commonly used FBP filter functions (Ram-Lak, Hann, Shepp-

Logan), the Ram-Lak filter was applied in the comparison study since low-pass windowing 

functions like Hann and Shepp-Logan introduce trade-offs between denoising and 

smoothing. Quantitative comparison including SNR in GM (blue circle in Fig. 12) and WM 

(purple circle in Fig. 12), CNR between GM and WM, and the whole brain CBF 

measurements across 6 clinical datasets was performed. To achieve performance-efficiency 

balance, default hyperparameter values recommended by the TIGRE toolbox were selected, 

including 100 as the number of iterations, 1 as the step size, 15 as the value of the parameter 

for regularization strength, and 50 as the number of iterations in TV regularization step.

IV. Results

A. Digital Dynamic Phantom Simulation

Figure 2 shows the CT images (7th time frame) of 7 experimental conditions (full dose, 50% 

dose, 25% dose, KWIA 50% 2 Rings, KWIA 50% 3 Rings, KWIA 25% 3 Rings, KWIA 

25% 4 Rings), respectively. The insets show two zoomed ROIs to highlight the SNR 

changes. In these two ROIs, it can be seen that the SNR was degraded in 50% and 25% dose 

images compared to full dose images, which was recovered by KWIA reconstruction. In 

addition, the subtracted images between KWIA reconstructed images and full dose images 

illustrate that no structured noise pattern or texture changes were induced by KWIA 

reconstruction.

Table III lists the SNR values of the seven experimental conditions respectively. The SNR of 

50% and 25% dose images were about 73% and 52% of that in full dose images, which are 

consistent with theoretical prediction. KWIA, however, was able to recover the SNR of 50% 

and 25% dose images to be comparable to that of the full dose images. Consistent with our 

prediction, increased number of rings in KWIA reconstruction led to greater SNR. The CNR 

results of low dose simulation are consistent with our prediction as well, and KWIA was 

able to recover CNR to full dose level.
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Temporal signals of the 3 vessels with different sizes (2.5, 5, and 10 mm in diameter) are 

shown in Fig. 3. In 10 mm (Fig. 3 (a)) and 5 mm (Fig. 3 (b)) vessels, no apparent difference 

between KWIA and full dose curves can be observed. This shows the capability of KWIA to 

preserve high temporal resolution. However, slight reduction in the maximum peak can be 

observed in 2.5 mm (Fig. 3 (c)) vessel of KWIA images, likely due to temporal blurring 

caused by the averaging of high frequency k-space data between neighboring time frames in 

KWIA.

To quantitatively estimate the effect of temporal blurring, temporal parameters including 

AUC, FWHM, and RMSE were calculated and shown in Table IV. There is up to about 1% 

difference in AUC and 7% difference in FWHM, respectively, for the smallest vessel. The 

RMSE is generally small (< 0.01) for 5 and 10 mm vessels, and increases up to 0.027 for the 

2.5 mm vessel. The RMSE is smaller with higher dose and fewer rings used.

B. Physical CTP Phantom Experiment

Figure 4 shows images (11th time frame) of the CTP phantom scans at a single slice within 

the scan disk with 7 experimental conditions, including full dose (200 mAs), 60% dose (120 

mAs), 30% dose (60 mAs), 60% dose with KWIA 2 and 3 Rings, 30% dose with KWIA 3 

and 4 Rings, respectively. The zoomed insets illustrate SNR changes, while the subtracted 

images show residual noise patterns between the full dose and rest experimental conditions 

respectively. Similar to the simulated digital phantom study, a greater level of noise can be 

observed with real 60% and 30% dose scans, which were recovered to be comparable to that 

of the full dose scan with KWIA. There are residual edge signals in the subtracted images 

between low doses and full dose images, due to slight displacement of the phantom between 

scans. Nevertheless, the consistency of the residual noise pattern and edge signals across the 

low dose and KWIA reconstructed images suggests that KWIA does not introduce structured 

noise pattern or texture changes.

Table V lists the SNR and CNR measurements of the phantom images under seven 

experimental conditions respectively. The measured SNR and CNR values of low dose scans 

strictly follow the theoretical value predicted by Eq. 4, which validates our low dose 

simulation performed in section 3. B and 3. D. It can be seen that KWIA is able to recover 

SNR and CNR of low dose scans to be comparable with that of the full dose scan. The more 

rings used in KWIA, the greater SNR and CNR recovery.

Figure 5 shows AIF, VOF and brain tissue signal curves. No apparent differences can be 

observed between time curves of full dose and low dose images reconstructed with KWIA 

suggesting that that no temporal blurring was introduced by KWIA.

Figure 6 shows quantitative CBF maps of the CTP phantom with seven different 

experimental conditions. It can be observed that an increasing bias was introduced in the 

CBF map with decreasing radiation dose (from full dose to 60% and 30% dose). The bias 

was corrected with KWIA reconstruction (see Fig. 7 (a)), and the resultant CBF maps were 

visually similar to that of the full dose scan.
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C. Clinical CTP Data Simulation

Figure 8 shows a representative image (15th time frame) of clinical CTP data, including 

simulated 50% and 25% doses and KWIA reconstructed images. The insets show two 

zoomed ROIs to better illustrate the SNR difference. The SNR reduction from full dose to 

50% and 25% dose can be clearly observed, whereas this SNR reduction can be successfully 

recovered to be comparable to full dose level with KWIA reconstruction. The subtraction 

images between KWIA and full dose images show no structured noise pattern or texture 

changes introduced by KWIA reconstruction. Due to possible motion occurring between 

frames, some low-level ringing artifacts can be observed in subtraction images.

Table VI shows quantitative measurements of grey and white matter ROIs across the 7 

experimental conditions. The SNR of simulated 50% dose images was 75% (WM) and 71% 

(GM) (70.7% in theory) of full dose SNR, and 54% (WM) and 50% (GM) (50% in theory) 

for 25% dose images. On 50% dose images, KWIA reconstruction with 2 and 3 rings 

improved SNR to 92% and 100% of full dose level respectively for white matter, and 89% 

and 95% respectively for grey matter. On 25% dose images, KWIA reconstruction with 3 

and 4 rings improved SNR to 89% and 95% of full dose level respectively for white matter, 

and 74% and 84% for grey matter. As for noise SD, simulated 50% dose images increased 

SD to 1.38 (WM) and 1.37 (GM) (1.41 in theory) times of full dose level, and simulated 

25% dose images increased SD to 1.84 (WM) and 2.05 (GM) (2 in theory) times of full dose 

level. KWIA reconstruction also decreased noise SD to full dose level. The CNR measured 

between WM and GM was 0.38 (0.39 in theory) for 50% dose and 0.28 (0.28 in theory) for 

25% dose. KWIA also showed its ability to significantly improve CNR.

The VOF, AIF, and tissue signal curves of full dose and 4 KWIA reconstructions are 

presented in Fig. 9 (a), (b), and (c), respectively. The signal curves of 4 KWIA 

reconstructions closely follow those of the full dose images.

To evaluate the potential impact of KWIA on small vessels due to the averaging of high 

spatial frequency signals, Fig. 9 (d) shows the dynamic signal curves of a small vessel with a 

width about 1 mm. No apparent temporal smoothing was observed for this small vessel with 

KWIA reconstructions.

Quantitative CBF maps of a clinical case are shown in Fig. 10. Reduction of radiation dose 

to 50% and 25% introduced a substantial bias in the quantification of CBF maps, which was 

larger at 25% compared to 50% dose. However, the CBF maps of KWIA reconstructions 

were able to substantially correct the bias, especially in KWIA 50% 3 Rings and KWIA 

25% 4 Rings which are visually comparable with the full dose images and show improved 

contrast between grey and white matter. The quantitative CBF values of the 7 conditions are 

displayed as bar plots in Fig. 7 (b). Finally, CBF values measured in whole brain between 

full dose and each low dose or KWIA case are demonstrated by the Bland-Altman plots in 

Fig. 11. CBF biases or mean differences were obvious in low dose conditions (8.6 and 

27.2ml/100g/min for 50% and 25% respectively), which were minimized or reduced in all 

KWIA reconstructions. However, there was a small bias (~ 7ml/100g/min) between CBF 

values calculated with full dose and KWIA 25% 4 Rings CTP data. Low dose conditions 

also showed wider limits of agreement or 95% confidence interval of CBF differences (10.4 
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and 13.7 ml/100g/min for 50% and 25% dose respectively) compared with their 

corresponding KWIA reconstructions with the same dose (7.0 and 7.6 ml/100g/min for 

KWIA 50% with 2 and 3 rings, respectively, and 9.1 and 7.8 ml/100g/min for KWIA 25% 

with 3 and 4 Rings, respectively). The variability of scatters was consistent across the graph, 

suggesting that the change of difference does not depend on the average.

D. Comparison With Other Reconstruction Algorithms

Figure 12 displays the CTP images and CBF maps of full dose FBP (gold standard), 3 

simulated 50% dose (Fig. 12 (a)) and 3 simulated 25% dose (Fig. 12 (b)) reconstructed by 

FBP, KWIA and SART-TV respectively. The SNR and CNR values for CTP images, and 

mean CBF values for CBF maps are listed in Table VII. The 50% and 25% dose FBP images 

exhibit large image degradation (26% (GM) and 20% (WM) SNR reduction for 50% dose, 

and 54% (GM) and 60% (WM) SNR reduction for 25% dose) and CBF overestimation (19% 

increase for 50% dose, and 48% increase for 25% dose), whereas KWIA yielded excellent 

reconstruction results comparable to the full dose FBP (92% (GM) and 96% (WM) of full 

dose FBP for 50% dose, and 82% (GM) and 88% (WM) of full dose FBP for 25% dose) 

without introducing smoothing effect or loss of spatial resolution. The CBF bias due to 50% 

and 25% dose, which were 10.6 and 27.2 ml/100g/min respectively, was largely suppressed 

by KWIA to 2.3 and 9.1 ml/100g/min respectively. SART-TV showed stronger denoising 

effect than KWIA with SNR and CNR higher than those of full dose FBP images. However, 

there was a slight over-correction of CBF bias using SART-TV (−4.3 and −1.4ml/100g/min 

for 50% and 25% respectively) and the reconstructed images appeared smoothed. It might be 

possible to achieve better performance of SART-TV by tuning hyperparameters to balance 

denoising power and spatial smoothness. However, the tuning process of SART-TV is 

constrained by the prolonged computation time, which further limits the use of SART-TV in 

clinical CTP scans.

Table VII also lists the execution time (ET) of reconstructing a 512-by-512 image from a 

728-by-1152 sinogram using FBP, KWIA, and SART-TV respectively. With the same 

implementation environment (MATLAB, Intel i5–9400F), it took 11.2 seconds for KWIA to 

reconstruct an image which was similar to the reconstruction time of 9.3 seconds required by 

FBP. In comparison, SART-TV took 265.8 seconds with a graphic processing unit 

(MATLAB, GTX 1660 Ti).

V. Discussion

Projection imaging data such as CT can be related to the spatial frequency domain (e.g., k-

space in MRI) through the central-slice theorem by performing 1-D FT of each projection of 

an object, which is equivalent to a line through the center of the 2-D FT plane (i.e., k-space). 

By converting the CT sinogram into “k-space” data, we can adapt many innovative MRI 

reconstruction algorithms to preserve high spatial and temporal resolutions of undersampled 

CT data. In a previous study, we introduced an innovative image reconstruction algorithm 

based on k-space weighted image contrast (KWIC) [23], [41] for radiation dose reduction of 

CTP [24]. Our preliminary results showed that KWIC was able to reduce the radiation dose 

of existing CTP methods by 50–75% without compromising imaging speed or quality. 
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However, the original KWIC algorithm requires rapid-switching pulsed X-ray at pre-

specified rotation angles – a hardware capability not available on most commercial CT 

scanners.

In order to address this limitation, here we introduce a novel algorithm termed k-space 

weighted image average (KWIA) that preserves image quality (SNR and CNR), spatial and 

temporal resolutions, as well as quantification accuracy of low-dose CTP data (50–75% dose 

reduction) to be comparable to those of standard CTP scans. Unlike KWIC which requires a 

modified CT hardware, KWIA can be implemented by simply reducing the tube current. In 

this work, we demonstrated the feasibility of KWIA using both digital phantom and clinical 

CTP data with simulated low doses, as well as a physical CTP phantom with real low dose 

scans. Compared to existing low dose CT techniques such as iterative reconstruction, our 

approach is unique and has several advantages: 1) It is based on Fourier based CT image 

reconstruction, does not make assumptions of noise characteristics, and preserves the texture 

and resolution of CT images; 2) It has a low computational overhead and doesn’t affect the 

clinical workflow; and 3) It does not require modification of existing CT hardware, and 

therefore has a low barrier for clinical adoption. The k-space noise at different frequencies is 

averaged when converting into image space through FT [42], therefore KWIA improves the 

SNR of CTP images without affecting the resolution, texture or other characteristics. 

Previous studies have shown that the accuracy of CTP quantification is highly dependent on 

the noise level of CT images [43], [44]. Overestimation of perfusion often occurs in the 

presence of substantial noise using singular value decomposition (SVD) based 

deconvolution analysis. By recovering the SNR of low dose CTP images, KWIA was able to 

correct the bias of perfusion quantification with 50–75% dose reduction.

Only the applications of KWIA on 2D parallel beam and fan beam CT were evaluated in this 

study. Nevertheless, the theoretical principle of KWIA is applicable to low dose 3D cone 

beam CT (CBCT). Specifically, the central slice theorem for 3D CBCT geometry states that 

1D FT of any 1D Radon data of a 3D object, which can be obtained indirectly with 

Grangeat’s method, is identical to the same radial line in the 3D k-space [45]. Across 

different time frames, KWIA will be able to partition, weight and average these radial lines 

from the center of the 3D k-space to the periphery, if a complete 3D Radon space can be 

obtained in CBCT. Previous studies have also shown the reliability and efficiency of Fourier 

based reconstruction for 3D CBCT [46]. Alternatively, for CBCT with circular geometry, 

where only the middle plane defined by the X-ray source trajectory has a complete set of 

Radon data, approximate reconstruction [47] can be applied on the projection data of the off-

middle planes which can be converted to k-space for KWIA processing (with the caveat that 

the larger the cone angle, the less accurate the approximation is).

Despite KWIA’s potential to reduce CTP dose, it has a few limitations. KWIA improves 

image SNR by averaging high frequency k-space data with neighboring time frames, and is 

therefore potentially more sensitive to patient head motion than standard CTP scans. 

Another potential drawback of KWIA is the temporal blurring of dynamic signal changes of 

fine vessels and/or structures. As shown in Fig. 3, slight temporal blurring can be observed 

in 2.5 mm vessel of KWIA images, but not in vessels with 5 and 10mm sizes. Nevertheless, 

significant temporal blurring of clinical CTP data with KWIA reconstructions was not 
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observed. The AIF and VOF curves reconstructed with KWIA also matched well with those 

of standard CTP data, and no apparent temporal signal deviations were observed for a vessel 

with ~1mm size. The potential temporal blurring of KWIA may depend on various 

parameters such as the rate of signal change and sampling rate of CTP, which merit further 

evaluation. In addition, iterative reconstruction algorithms such as SART-TV may have 

stronger denoising capability than KWIA. Nevertheless, KWIA is more advantageous in 

terms of the ease and robustness for implementation, computational speed, and retainment of 

texture and resolution. Comparison of KWIA with other iterative reconstruction and deep 

learning based denoising methods should also be performed in future studies. Lastly, the 

CBF bias reduction performance of KWIA was only evaluated by the CBF maps generated 

from standard SVD CTP analysis in this study. Alternative CTP analysis with denoising 

capabilities such as Bayesian probabilistic method need to be tested using KWIA 

reconstructed CTP images [48].

In this work, KWIA was applied to simulated low dose CTP data with reduced X-ray tube 

current which has a relatively straightforward relationship with SNR. It is also possible to 

reduce tube voltage, the square of which is generally acknowledged to be proportional to the 

received radiation dose [49]. The temporal window size or footprint of KWIA was kept as 

short as possible to minimize potential temporal blurring in this study. Nevertheless, the 

windowing function for averaging neighboring time frames as well as the number and size 

of rings in KWIA could be further optimized based on trade-offs between SNR improvement 

and the loss of temporal resolution. Alternative functions such as inverse NUFFT (iNUFFT) 

may be applied for regridding reconstruction. In the future, deep learning based approaches 

may be combined with KWIA to further improve its robustness in the presence of patient 

head motion or other artifacts (e.g. streaking due to photon starvation). Lastly, KWIA may 

be directly applied on CTP data acquired with standard radiation dose to reduce noise and 

enhance image contrast.

VI. Conclusion

In this research, we presented a new low dose CTP technique termed KWIA, with a constant 

reduced tube current and projections averaging in outer k-space. The proposed technique 

was evaluated using a digital phantom, a physical phantom and clinical CTP data, and it can 

achieve considerable dose-savings (50–75%) without compromising the image quality and 

perfusion metrics. Due to its robustness and simplicity, KWIA may provide a promising 

method for reducing radiation exposure to patients undergoing CTP exams.
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Fig. 1. 
Schematic diagram of KWIA. Four time frames of CTP data (t0−t3) with reduced radiation 

dose are acquired. Each 2D FT or k-space can be divided into multiple rings. Outer rings can 

be averaged between neighboring time frames to improve SNR.
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Fig. 2. 
FORBILD CT phantom with 3 vessels of different sizes. (a) and (b) contains the full dose, 

low dose simulation, and 4 KWIA simulation results. Two ROI were enlarged to emphasize 

SNR change. And subtraction images (window level and window center were adjusted for 

visual observation) were made to show the structural change.
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Fig. 3. 
The gamma variate dynamic time curves (full dose and 4 KWIA cases) of 3 vessels with 

different sizes in digital phantom.
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Fig. 4. 
Scans of the CTP phantom. (a) and (b) contains the full dose (200 mAs), low dose (120 mAs 

and 60 mAs), and 4 KWIA reconstruction results. An ROI was enlarged to emphasize SNR 

change. And subtraction images (window level and window center were adjusted for visual 

observation) were made to show the structural change.
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Fig. 5. 
AIF, VOF and brain tissue signal curves of full dose and low dose images reconstructed with 

KWIA. No apparent difference can be observed all curves. The second peaks in AIF and 

VOF represent the second-pass of contrast bolus.
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Fig. 6. 
CBF maps (ml/100g/min) of the CTP phantom. Bias is introduced in the low dose CBF 

maps, which is corrected by KWIA.
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Fig. 7. 
Bar plots of the mean CBF values for the physical phantom (a) and the clinical data (b) in 

full dose, low dose, and 4 KWIA conditions. For physical phantom, each condition includes 

2 measurements in 2 tissue regions. And for the clinical data, each condition contains 6 

whole brain measurements from 6 clinical datasets. Error bars indicate standard deviation.
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Fig. 8. 
Clinical CT images, 25% and 50% dose simulation from original dose, and KWIA 

reconstructions. (a) and (b) contains the full dose, low dose simulation, and 4 KWIA 

reconstruction results. Two ROI were enlarged to emphasize SNR change. And subtraction 

images (window level and window center were adjusted for visual observation) were made 

to show the structural change. Visible SNR and CNR reduction can be observed in 50% and 

25% dose simulation cases, and KWIA’s ability of SNR recovery can also be visually 

captured. In ROIs, the SNR changes can be seen more clearly, the performance of noise 

reduction in ROI 1 and contrast recovery in ROI 2 can be demonstrated with KWIA. No 

structural difference can be detected from subtraction images.
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Fig. 9. 
Dynamic contrast curves for venous (a), arterial (b), tissue ROI (c), and an about 1 mm wide 

small vessel (d) of full dose case and KWIA simulation cases. No apparent differences can 

be observed in all 4 signals. In arterial, tissue, and the small vessel signals, KWIA 

simulation with 25% dose reduction tends to have a greater difference than KWIA 

simulation with 50% dose reduction.

Zhao et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
CBF maps (ml/100g/min) of 2 clinical CTP cases. From top to bottom are full dose, 50% 

and 25% dose with regridding reconstruction, as well as KWIA 50% with 2 and 3 Rings, 

KWIA 25% with 3 and 4 Rings respectively.
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Fig. 11. 
Bland-Altman plots for comparisons of whole brain CBF values measured between full dose 

and low dose conditions as well as low dose with KWIA reconstructions.
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Fig. 12. 
Reconstructed images (top row of (a) and (b)) and CBF maps (bottom row of (a) and (b)) 

with full dose FBP, 50% dose FBP, 25% dose FBP, KWIA 50% 3 Rings, KWIA 25% 4 

Rings, 50% dose SART-TV, and 25% dose SART-TV. Insets with magnified regions of 

images show SNR and spatial smoothness of each reconstruction method.
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TABLE I

Imaging and Reconstruction Parameters

Parameters Digital phantom simulation Physical phantom scan Clinical CTP dataset simulation

Slices 1 3 4

Tube voltage (kVp) NA 100 80

Tube current (mAs) NA 200, 120, 60 100, 50, 25

Cycle time (s) 2 1 2

Cycles 27 39 27

Projections per turn 1152 1152 1152

Detectors 728 736 728

Slice thickness (mm) NA 10 8

Pixel spacing(mm2) 0.75 × 0.75 0.59 × 0.59 0.48 × 0.48

Image size 512 × 512 512 × 512 512 × 512

Axial coverage (mm) 384 300 243.75

Source-to-detector (mm) NA 1085.6 Unknown

Source-to-patient (mm) NA 595 Unknown

CDTIvol (mGy) NA 344,206,103 184,92,46
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TABLE II

KWIA Ring Size (Radius) Definition

Digital phantom & clinical data Physical phantom

KWIA 50% KWIA 25% KWIA 60% KWIA 30%

Ring 2 / 3 Rings 3 / 4 Rings 2 / 3 Rings 3 / 4 Rings

Ring 1 130 / 130 92 / 92 142 / 142 100 / 100

Ring 2 364 / 234 182 / 182 368 / 256 234 / 190

Ring 3 NA / 364 364 / 273 NA / 368 368 / 280

Ring 4 NA/NA NA / 364 NA / NA NA / 368
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TABLE III

The Digital Phantom SNR and CNR Measurement in Different Conditions

Cases Full dose 50% dose 25% dose KWIA 50% 2Rings KWIA 50% 3Rings KWIA 25% 3Rings KWIA 25% 4Rings

SNR 3.79 2.76 1.98 3.68 4.34 3.37 3.98

/ 73% 52% 97% 115% 89% 105%

CNR 0.85 0.61 0.43 0.81 0.95 0.75 0.89

/ 72% 51% 95% 112% 88% 105%
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TABLE IV

RMSE, AUC, and FWHM Measurement for 3 Vessels With Different Size Contained in FORBILD Phantom

Full dose KWIA 50% 2Rings KWIA 50% 3Rings KWIA 25% 3Rings KWIA 25% 4Rings

RMSE 2.5 mm / 0.014 0.016 0.026 0.027

5 mm / 0.006 0.006 0.010 0.011

10 mm / 0.003 0.003 0.005 0.005

AUC 2.5 mm 10.2 10.1 10.1 10.1 10.1

error / ~1% ~1% ~1% ~1%

5 mm 12.2 12.2 12.2 12.3 12.3

error / <1% <1% ~1% ~1%

10 mm 13.1 13.1 13.1 13.1 13.1

error / <1% <1% <1% <1%

FWHM(s) 2.5 mm 13.7 12.7 12.7 12.9 13.0

error / 7% 7% 6% 5%

5 mm 13.1 12.9 12.9 13.0 13.1

error / 2% 2% ~ 1% <1%

10 mm 12.9 13.0 13.0 12.9 12.9

error / ~1% ~1% <1% <1%
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TABLE V

The Physical Phantom SNR and CNR Measurement in Different Conditions

Cases Full dose 60% dose 30% dose KWIA 60% 2Rings KWIA 60% 3Rings KWIA 30% 3Rings KWIA 30% 4Rings

SNR 2.04 1.56 1.08 2.06 2.40 1.82 2.11

/ 76% 53% 101% 118% 89% 103%

CNR 1.77 1.36 0.89 1.83 2.11 1.47 1.72

/ 77% 50% 103% 119% 83% 97%
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TABLE VI

Quantitative Measurement of SNR and CNR in Clinical Data

Cases Full dose 50% dose 25% dose KWIA 50% 2 
Rings

KWIA 50% 3 
Rings

KWIA 25% 3 
Rings

KWIA 25% 4 
Rings

Mean(GM) 52.2 52.3 52.8 52.3 52.3 52.7 52.8

Mean(WM) 40.3 41.0 41.0 41.0 41.0 41.3 41.4

SD(GM) 13.9 19.1 28.4 15.6 14.4 18.8 16.5

SD(WM) 16.8 23.2 31.0 18.4 17.2 20.6 18.5

SNR(GM) 3.8 2.7 1.9 3.4 3.6 2.8 3.2

/ 71% 50% 89% 95% 74% 84%

SNR(WM) 2.4 1.8 1.3 2.2 2.4 2.0 2.2

/ 75% 54% 92% 100% 83% 92%

CNR 0.6 0.4 0.3 0.5 0.5 0.4 0.5

/ 67% 50% 83% 83% 67% 83%
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TABLE VII

Quantitative Comparison Among FBP, KWIA, and SART-TV

Cases Full dose 
FBP

50% dose 
FBP

25% dose 
FBP

KWIA 50% 3 
Rings

KWIA 25% 4 
Rings

50% dose 
SART- TV

25% dose 
SART- TV

SNR(GM) 3.9 2.9 2.1 3.6 3.2 5.5 4.5

SNR(WM) 2.5 2 1.5 2.4 2.2 3.7 3.28

CNR 0.6 0.4 0.3 0.5 0.5 0.8 0.6

CBF(WB) 55.1 65.7 81.3 57.4 64.2 50.8 53.7

±2.8 ±4.6 ±6.3 ±3.4 ±5.0 ±2.6 ±2.6

ET(s) 9.3 9.3 9.3 11.2 11.2 265.8 265.8
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