1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Clin Pharmacokinet. Author manuscript; available in PMC 2021 December 01.

-, HHS Public Access
«

Published in final edited form as:
Clin Pharmacokinet. 2020 December ; 59(12): 1575-1587. doi:10.1007/s40262-020-00902-1.

Pharmacokinetic Assessment of Pre- and Post-Oxygenator
Vancomycin Concentrations in Extracorporeal Membrane
Oxygenation: A Prospective Observational Study

Ahmed A. Mahmoud?, Sean N. Avedissian?:3, Abbas Al-Qamari®, Tiffany Bohling’, Michelle
Pham?3, Marc H. Scheetz145

1Department of Pharmacy, Northwestern Memorial Hospital, 251 E. Huron Street, Feinberg
Pavilion, LC 700, Chicago, IL 60611, USA

2Antiviral Pharmacology Laboratory, Medical Center (UNMC) for Drug Discovery, University of
Nebraska, Omaha, NE, USA

3College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA

4Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University,
Downers Grove, IL, USA

SPharmacometric Center of Excellence, Chicago College of Pharmacy, Midwestern University,
555, 31st St., Downers Grove, IL 60515, USA

5Department of Anesthesiology, Northwestern Memorial Hospital, Feinberg School of Medicine,
Chicago, IL, USA

Department of Anesthesia-Critical Care Medicine, Northwestern Memorial Hospital, Chicago, IL,
USA

Abstract

Background—Extracorporeal membrane oxygenation (ECMO) is a form of cardiopulmonary
life support frequently utilized in catastrophic lung and or cardiac failure. Patients on ECMO often
receive vancomycin therapy for treatment or prophylaxis against Gram-positive organisms. It is
unclear if ECMO affects vancomycin pharmacokinetics, thus we modeled the pharmacokinetic
behavior of vancomycin according to ECMO-specific variables.

Methods—Adult patients receiving vancomycin and Veno-Arterial-ECMO between 12/1/2016
and 10/1/2017 were prospectively enrolled. Extracorporeal membrane oxygenation settings and
four sets of pre- and post-oxygenator vancomycin concentrations were collected for each patient.
Compartmental models were built and assessed ECMO flow rates on vancomycin clearance and
potential circuit sequestration. Bayesian posterior concentrations of the pre- and post-oxygenator
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concentrations were obtained for each patient, and summary pharmacokinetic parameters were
calculated. Simulations were performed from the final model for efficacy and toxicity predictions.

Results—Eight patients contributed 64 serum concentrations. Patients were a median
(interquartile range) age of 58.5 years (50.8-62.3) with a calculated creatinine clearance of 39
mL/min (29.5-62.5) and ECMO flow rates of 3980 mL/min (interquartile range = 3493.75—
4132.5). A three-compartment model best fit the data (Bayesian: plasma pre-oxygenation /2 =
0.99, post-oxygenation A2 = 0.99). Vancomycin clearance was not impacted by ECMO flow rate
(p=0.7). Simulations demonstrated that vancomycin 1 g twice daily was rarely sufficient for
minimum inhibitory concentrations > 0.5 mg/L. Doses = 1.5 g twice daily often exceeded toxicity
thresholds for exposure.

Conclusions—Extracorporeal membrane oxygenation flow rates did not influence vancomycin
clearance between flow rates of 3500 and 5000 mL/min and vancomycin was not sequestered in
ECMO. Common vancomycin regimens resulted in sub-optimal efficacy and/or excessive toxicity.
Individual therapeutic drug monitoring is recommended for patients on ECMO.

Introduction

Extracorporeal membrane oxygenation (ECMO) is a form of cardiopulmonary life support
that is often utilized in catastrophic lung and/or cardiac failure [1, 2]. Extracorporeal
membrane oxygenation is differentiated into two modalities, Veno-Veno (VV) for
respiratory support and Veno-Arterial (\VA) for cardiac and or respiratory support [1, 2]. The
use of VV-ECMO allows for full respiratory support such as with acute respiratory distress
syndrome and hypoxic respiratory failure [1], whereas VA-ECMO is used for full cardiac
support in conditions such as cardiogenic shock and post-heart transplant support.
Extracorporeal membrane oxygenation treatment is often complicated by bleeding,
thrombosis, hemolysis, liver dysfunction, renal failure necessitating renal replacement
therapy, and infections [3-5]. The most common infections are ventilator-associated
pneumonia, blood stream infections, and sepsis [3, 6]. Hence, vancomycin is frequently
utilized as empiric or definitive therapy in patients on ECMO.

Extracorporeal membrane oxygenation circuitry comprises a cannula draining blood from
the patient’s venous system, a mechanical pump, a heater, an oxygenator, and a cannula back
to the patient (e.g., arterial blood supply in VA-ECMO). The extensive circuit means that
drugs are often extracorporeal for significant time periods and contract various foreign
surfaces. Pharmacokinetics often differ for patients on ECMO because of protein binding to
the circuit, larger volumes of distribution, and significant volumes of priming fluids [7-9].

Reports in the literature on the impact of ECMO on vancomycin pharmacokinetics are
mixed. Several studies suggest alterations in vancomycin serum concentrations [10-12],
whereas other studies have not found significant differences between critically ill patients
with ECMO support compared to patients without ECMO support [13-15]. We sought to
create a mechanistically relevant model to understand the pharmacokinetic behavior of
vancomycin within an ECMO circuit and assess if ECMO flow rates impacted clearance.
Further, we employed simulations to understand which (if any) population dosing schemes
would result in maximal effectiveness and minimal toxicity for vancomycin.
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2 Materials and Methods

2.1 Patient Population

This study protocol was reviewed and approved by the institutional review boards of
Northwestern University (IRB#STU00202326) and Midwestern University (IRB#2865). A
single-center pharmacokinetic study was conducted between 12/1/2016 and 10/1/2017 at
Northwestern Memorial Hospital, an 894-bed academic medical center in Chicago, IL, USA.
Patients were prospectively enrolled if they consented, were aged 18 years or older, and
were receiving VA-ECMO and vancomycin as per the clinical team’s decision. Exclusion
criteria included reasons for altered pharmacokinetic/pharmacodynamic parameters such as
pregnancy, burns, morbid obesity with body mass index = 40 kg/mZ2, and any form of
dialysis (example: continuous renal replacement therapy). Those with a predicted life
expectancy less than 24 h, vancomycin allergy, or who received large blood transfusions
were also excluded. Patient demographics, baseline renal function (defined as estimated
creatinine clearance [CrCL, mL/min] calculated using the Cockcroft-Gault equation at the
time of study inclusion), urine output (collected over the time period of sample collection),
and baseline basic metabolic panel. Infection type (empiric and definitive) and all aspects of
vancomycin administration (e.g., dose, administration time, administration duration) were
recorded. The VA-ECMO initiation date and time, flow rates, pump rate defined as
revolutions per minute, sweep rates (rates of carbon dioxide removal), and oxygenation
levels were collected with each vancomycin assay. Paired pre- and post-oxygenator blood
draws were obtained at 6, 12, 18 and 24 h. The vancomycin assay (total of bound and
unbound vancomyecin concentration) was completed by the Clinical Chemistry Laboratory at
Northwestern Memorial Hospital (Chicago, IL, USA). The assay was performed on a
Beckman Coulter AU5800 analyzer (Danaher Corporation, Brea, CA, USA) using Emit
2000 Vancomycin, a competitive enzyme immunoassay method with a limit of
quantification of 2.0 mg/L and precision within 4% [16].

2.2 Extracorporeal Membrane Oxygenation Apparatus

The ECMO system comprised a ROTAFLOW centrifugal pump and CARDIOHELP system
(Magquet, Rastatt, Germany) in configuration with the poly-methyl-pentene QUADROX-ID
diffusion membrane hollow-fiber oxygenator (Maquet), a Fem-Flex Il femoral arterial
cannula (Edwards Lifescience, Irvine, CA, USA), and a Bio-Medicus multistage femoral
venous cannula (Medtronic, Minneapolis, MN, USA). The ECMO circuit was primed with
600 mL of normal saline.

2.3 Pharmacokinetic Models

The non-parametric adaptive grid algorithm [17, 18] within the Pmetrics (version 1.5.0)
package (Los Angeles, CA, USA) [18] for R (version 3.5.1, Vienna, Austria) [19] was
utilized to conduct the population pharmacokinetic (PK)/pharmacodynamic analysis. Several
population PK models with varying physiologically relevant compartments were
investigated. The simplest model considered was a two-compartment model representing
pre- and post-oxygenator sampling. To facilitate simulations and explore the role of ECMO
flow rates, compartmental transfer to the ECMO unit was modeled as a function of flow rate.
‘Sequestration’ was assessed as the rate and extent of drug sequestration from the ECMO
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unit. Variables known to impact vancomycin pharmacokinetics (e.g., patient body size and
CrCL) were considered in the model and assessed with linear regression and Spearman’s
Rho. Covariate explorations included: calculated CrCL [20] (via Cockcroft-Gault) and body
surface area on vancomycin clearance, ECMO flow rate on inter-compartmental flow
constant (Q), and total body weight (TBW) on volume of distribution.

Vancomycin clearance was linearly scaled to both CrCL and body surface area, standardized
to 120 mL/min and 1.73 m?, respectively. The ECMO flow rate was standardized to 4000
mL/min, and the volume of distribution was linearly scaled to TBW and standardized to a
70-kg patient. Assay error (standard deviation, SD) was accounted for using an error
polynomial as a function of the measured concentration, Y'(i.e., SD = Gy + C; Y) with initial
Cp and C inputs of 2 and 0.15, respectively. The inverse of the observed variance (SD?) was
used as the first estimate for observation weighting [18]. Residual error and process noise
was estimated using the multiplicative gamma (i.e., error = gamma*SD), which was given a
starting value of gamma equal to 3. Final model selection prioritized a mechanistically
relevant, yet parsimonious model as defined by Akaike information criteria and — 2 log-
likelihood values (compared against a Chi-squared distribution) for appropriate degrees of
freedom [18, 21]. Goodness-of-fit and predictive performance of the competing models were
evaluated, as previously described [22].

2.4 Non-compartmental Analysis

A non-compartmental analysis of the posterior-predicted vancomycin concentration-time
profiles using pre-oxygenator concentrations was conducted to facilitate comparisons of the
population-predicted vancomycin parameters from our final model and to compare PK
estimates reported in previous studies. The Bayesian posteriors were utilized to calculate 24-
h exposure and PK parameters including: area under the curve (AUC), elimination rate
constant (K), maximum concentration, clearance, and volume of distribution at steady state.
Pharmacokinetic values were estimated using previously described methods with Pmetrics
commands ‘makeNCA’ and ‘makeAUC” within /R [18, 23].

2.5 Simulations and Probability of Target Attainment

Simulations of vancomycin plasma concentration—time curves were completed using a
multi-modal sampling method from the final model [18, 23]. Covariate ranges for ECMO
flow rate simulations were selected to encompass common ranges for ECMO flow rates and
the ranges of ECMO rates in the eight patients (i.e., 3500 mL/min, 3820 mL/min [median
value], 4000 mL/min, 4500 mL/min, and 5000 mL/min). Our covariates for simulation were
fixed to the median values of 84 kg for TBW and 45 mL/min for CrCL. Monte Carlo
sampling from the weighted multi-modal distribution generated a novel population of 1000
parameter sets. From each of the 1000 sets of simulated parameters, concentration-time
profiles were created for common vancomycin dosing regimens from 2000 to 4000 mg/day
(i.e., 1000 mg twice daily, 1500 mg twice daily, and 2000 mg twice daily). An infusion time
of 1 h was used for all simulations. Plasma concentrations were generated every half-hour
for the first 24 h. Plasma vancomycin concentration-time profiles were not corrected for
protein binding (free fraction = 100% assumed), as the majority of clinical assays available
measure total vancomycin concentrations [24]. In the probability of target attainment (PTA)
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analysis, doubling MICs between 0.5 and 8 mg/L were evaluated and a target AUC4/MIC
of 400 mg*h/L was selected as the efficacy endpoint based on the new Infectious Diseases
Society of America vancomycin guidelines [25]. A toxicity threshold was set at AUC,4/MIC
of 515 mg*h/L and 550 mg*h/L based on the recent literature identifying these exposures as
more nephrotoxic with no clinical efficacy gained [26-28].

3 Results

3.1 Patient Population

A total of eight patients each provided eight samples in a 24-h study period with a median
(IQR) age of 58.5 (50.8-62.3) years, weight of 83 (73-88.13) kg, body surface area of 1.82
(1.6-2.2) m?, body mass index of 29.4 (25.23-32.43) kg/m?, and calculated CrCL of 39
(29.5-62.5) mL/min. The median (IQR) ECMO flow rate was 3980 (3493.75-4132.5) mL/
min. The median number of vancomycin doses per patient was two doses with the median
dose of 1000 mg. Complete patient demographics can be found in Table 1.

3.2 Pharmacokinetic Model Selection and Parameters

All 64 vancomycin plasma concentrations were utilized for the PK model build. Vancomycin
concentrations are described in Table 1. A three-compartment base model was chosen over a
two-compartment base model because of an improved Akaike information criteria score
(235.9 vs 337, Table 4 of the Appendix). Creatinine clearance and TBW were found to be
significant covariates via univariate linear regression analyses (CrCL vs vancomycin
clearance, p=0.003, TBW vs volume [V1], p< 0.01). Further, upon visual inspection and
Spearman Rho calculation, significant relationships (p < 0.01) between TBW and V1 (Rho:
0.59) and CrCL and vancomycin clearance (Rho: 0.61) were also found. Based on this
relationship and the well-known impact of these variables on vancomycin clearance [29, 30],
clearance and V1 were standardized for TBW and CrCL (example in Fig. 1) and included in
the final model. The ECMO flow rate was also included in the final model per original study
objective. A complete model build with comparisons can be found in Table 4 of the
Appendix.

The Bayesian individual posterior fits of the observed data were pre-oxygenator: /2 = 99.3%
and post-oxygenator: /2 = 99.6%, with low bias (pre-oxygenator = — 0.12 pg/mL, post-
oxygenator = — 0.43 pg/mL) and low imprecision (pre-oxygenator = 1.3 pgZ/mL2, post-
oxygenator =— 0.9 pg2/mL2). The population PK model fits of the observed data were pre-
oxygenator: A2 = 76% and post-oxygenator: /2 = 78%, with low bias (pre-oxygenator =
1.57 pg/mL, post-oxygenator = 1.31 pg/mL) and imprecision (pre-oxygenator = 47 pg2/mL2,
post-oxygenator = 42.5 ug2/mL2). The observed vs predicted plots for both fits (pre- and
post-oxygenator) from the final model can found in Fig. 2a, b.

The weighted parameter values and variability measures (i.e., median, IQR) for the final
population PK model are summarized in Table 2. The final model parameters included a
volume term for TBW covariate adjustment (14), volume in the peripheral compartment
(V5), volume in the ECMO compartment ( V3), clearance term for CrCL covariate
adjustment (CL), inter-compartment flow rate 1 (Q,), inter-compartment flow rate 2 (@),
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and ECMO drug sequestration (Koyt). Briefly, the final model’s median (coefficient of
variation %) parameter values for Vg, V5, V3, CLg, Q1, @, and Kyt Were 13.4 L (74.18%),
32.72 L (18.97%), 0.22 L (107.43%), 6.89 L/h (35.42%), 9.1 L (40.01%), 8.78 L (62.89%),
and 0.79 h™1 (68.64%), respectively.

3.3 Simulations and Probability of Target Attainment Across SDD Minimum Inhibitory
Concentrations

The results of the target attainment analysis using the pre-oxygenator concentrations are
shown in Table 6 of the Appendix. All vancomycin dosing regimens produced PTAs above
90% at a MIC of 0.5 mg/L. Conversely, at MICs of 1 mg/L and above, only 1500 mg and
2000 mg twice daily produced a PTA > 90%. At MICs of 2 mg/L and above, no regimen was
able to produce a favorable PTA of > 90%. The ECMO flow rate did not meaningfully
impact the PTA for each regimen or MIC as the PTA for an AUC,4/MIC = 400 mg*h/L was
similar between all rates (Fig. 3).

The probability of reaching the toxicity threshold can be found in Table 6 of the Appendix.
Briefly, simulations showed that only the regimen of 1000 mg twice daily (2000 mg/day)
produced a favorable mean AUC,4/MIC and the lowest probability (< 20%) of reaching
toxicity thresholds of = 550 and 515 mg*h/L. Doses of 1500 mg twice daily and 2000 mg
twice daily produced a high probability (> 80%) of reaching the toxicity thresholds
specified. The complete population parameter value covariance matrix can be found in Table
7 of the Appendix.

4 Discussion

We found that vancomycin clearance was not impacted by ECMO flow rate, and the ECMO
circuit resulted in minimal sequestration of vancomycin. Further, our simulations suggest
that a population dosing approach is not sufficient for either attainment of efficacy or
avoidance of toxicity. Thus, these data indicate that individual therapeutic drug monitoring
should be performed on patients receiving vancomycin while on ECMO. Future work will
be needed to determine if our proposed model can be utilized as a Bayesian prior to
minimize the number of samples required to determine the vancomycin AUC. Patients
receiving ECMO therapy are at a high risk for methicillin-resistant Staphylococcus aureus
catheter-related bloodstream infections and/or nosocomial infections. Thus, vancomycin is
commonly utilized as either empiric or definitive therapy [31, 32].

Recent data have better delineated the therapeutic window for vancomycin in the setting of
methicillin-resistant S. aureus bacteremia. Effectiveness for vancomycin exists when the
AUC,4/MIC ratio approaches 400 mg*h/L; however, lower exposures may be efficacious
[25, 27]. The toxicity window for vancomycin is also becoming clearer. Vancomycin
AUC,4/MIC should remain below ~515 mg*h/L [26-28] to prevent proximal tubular
necrosis [33-35]. Our simulations suggest that commonly utilized vancomycin doses and the
application of population PK approaches will struggle to keep patients precisely within an
AUC,4/MIC window of 400 mg*h/L. It is also important to note that the threshold for
efficacy depends on MIC whereas the toxicity threshold only considers exposure (i.e., AUC).

Clin Pharmacokinet. Author manuscript; available in PMC 2021 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Mahmoud et al.

Page 7

Thus, MICs < 1 mg/L are needed to simultaneously meet the requirement of AUC,4/MIC ~
400 mg*h/L and AUC,4/MIC < 515 mg*h/L.

Previous studies have looked at vancomycin pharmacokinetics in patients on ECMO. A
study by Wu and colleagues focused on adults that received a minimum of four vancomycin
doses [7]. The authors enrolled both VV, VA, and Veno-Veno-Arterial patients in the study
with either a centrifugal pump or a roller pump. The authors included 11 patients,
demonstrating a mean clearance of 1.18 mL/min/kg, and a mean volume of distribution at
steady state of 0.84 L/kg. When compared to the mean clearance and volume of distribution
at steady state of a matched cohort of critically ill patients not on ECMO, their values were
1.45 mL/min/kg and 0.81 L/Kkg, respectively. Interestingly, it was noted that when a
centrifugal pump was used, the vancomycin elimination rate was not affected; however,
when a roller pump was used, patients’ vancomycin clearance was significantly lower in
patients with ECMO roller pumps compared to centrifugal pumps [7]. Overall, the authors
hypothesized that the difference in volume of distribution at steady state and clearance was
due to priming fluid and the patient acuity rather than drug sequestration in the circuit.
Similarly, Donadello and colleagues described continuous infusion vancomycin population
pharmacokinetics in critically ill patients. Patients were enrolled within the first 24 h of
vancomycin administration and were + ECMO and + continuous renal replacement therapy
[14]. The authors included a total of 11 patients on ECMO (five VA ECMO, six VV ECMO)
and demonstrated that no adjustment in vancomycin dosing was required for patients
receiving ECMO therapy compared to patients not on ECMO with a similar acuity of illness.
Multiple other studies have demonstrated that the presence of ECMO did not result in
different trough concentrations between similar two patient populations [7, 11, 13, 14].

The utility of trough vancomycin concentrations may be insufficient to explain the full PK
relationship and thus AUC is a better predictor for kidney injury [36, 37]. Pharmacokinetic
parameters from our study are similar to those reported in the literature. Vancomycin
clearance (CLg) was 6.89 L/h, which was similar to the findings of Wu and colleagues (5.9
L/h), and slightly faster than Donadello et al. and Moore et al. (2.4 L/h and 2.8 L/h,
respectively) [13, 14]. The median volume of distribution was 0.52 L/kg, which similarly
fell in between what is reported in the literature (0.25 L/kg, 0.7L/kg, and 0.84 L/kg) [7, 13,
14]. These findings underscore the importance for patient individualized dosing of
vancomycin and utilization of loading doses to rapidly achieve the goal AUC, while
therapeutic drug monitoring should be performed to avoid iatrogenic kidney injury.

Several limitations to our work exist. Our study was single center with a small sample size
and utilized a single ECMO methodology (i.e., VA) and a pump for all patients.
Additionally, flow rates in our study ranged from approximately 3500 mL/min to 4100 mL/
min. While the flow rates were somewhat constrained, this range is common in ECMO and
no impact on vancomyecin clearance was observed. Last, it is not uncommon that patients
supported on ECMO also receive renal replacement therapy; however, we sought to capture
the effects of the circuit and to remove any confounders, thus this modeling may not depict
what may occur in patients receiving concomitant renal replacement therapy and ECMO.
Despite these limitations, our study is unique in that we sampled vancomycin concentrations
pre- and post-oxygenators and have fit a representative PK structural model.
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5 Conclusions

We found that vancomycin was not sequestered in ECMO, and vancomycin clearance was
not significantly impacted by ECMO flow rate between 3500 and 5000 mL/min. Simulations
from our model indicate that patients should receive a vancomycin loading dose and have
individual therapeutic drug monitoring performed as common vancomycin doses are
predicted to result in low efficacy and unnecessary toxicity.
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Appendix
See Fig. 4 and Tables 4, 5, 6 and 7.
Concentrations did not significantly differ when comparing the time-matched pre- and post-
oxygenator concentrations (mean difference — 0.22 mg/L, 0.90 mg/L SD, p=0.18)
indicating little sequestration (Fig. 4 of the Appendix). Results of the non-compartmental
analysis from the Bayesian posterior-predicted concentrations (i.e., pre-oxygenator
concentrations) for the eight patients are summarized in Table 3. Briefly, within the eight
study patients, the median (IQR) clearance and volume of distribution at steady-state values
were 3.4 (1-3.87) L/h and 43.91 (40.65-51.4) L, respectively.
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Key Points

Multiple recommendations exist for dosing vancomycin in patients receiving
extracorporeal membrane oxygenation (ECMO).

We sought to create a relevant systems model to explain vancomycin transit through an
ECMO circuit.

ECMO variables did not impact vancomycin pharmacokinetics; minimal vancomycin
sequestration was observed.

Vancomycin can be dosed using traditional therapeutic drug monitoring approaches (i.e.
venous blood sampling and standard clinical pharmacokinetic modeling).
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Table 1

Baseline demographics

Variable (N = 8 patients) Median (IQR)

Age, years 58.5 (50.8-62.3)

Male, % 5 (63)

Height, cm 171.35 (160.6-175.93)

Weight, kg 83.05 (73-88.13)

BMI, kg/m? 29.4 (25.3-32.4)

BSA, m? 1.83 (1.6-2.2)

BUN, mg/dL 31 (21-37.5)

Scr, mg/dL 1.64 (1.14-2.89)

CrCL, mL/min 39 (29.5-62.5)

ECMO flow rates, mL/min
T=6
7=12
7=18
T=24

Vancomycin concentrations, mcg/mL

Pre-oxygenator, 6-h post-dose
Post-oxygenator, 6-h post-dose
Pre-oxygenator, 12-h post-dose
Post-oxygenator, 12-h post-dose
Pre-oxygenator, 18-h post-dose
Post-oxygenator, 18-h post-dose
Pre-oxygenator, 24-h post-dose
Post-oxygenator, 24-h post-dose
Indication, count (%0)

Empiric treatment of infection

Definitive treatment of infection

Infectious site, presumed or confirmed, n (%)

Pulmonary system
Vascular

Intraabdominal

3980 (3493.75-4132.5)
3867.5 (3457.5-4078.75)
3867.5 (3513.75-4078.75)
3795.5 (3451.25-4063.75)

24.9 (10-34.95)
26.05 (9.825-33.55)
15.95 (6.575-26.5)
15.45 (6.3-22.325)
18.5 (12.65-23.6)
17.6 (12.125-23.95)
13.1 (8.875-17.375)
12.7 (8.9-17.175)

7(87)
1(13)

4 (50)
6 (75)
1(12.5)

BM/body mass index, BSA body surface area, BUN blood urea nitrogen, CrCL creatinine clearance, ECMO extracorporeal membrane

oxygenation, /QR interquartile range, Scrserum creatinine
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