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Abstract

Astrocytes control multiple processes in the nervous system in health and disease. It is now clear 

that specific astrocyte subsets or activation states are associated with specific genomic programs 

and functions. The advent of novel genomic technologies has enabled rapid progress in the 

characterization of astrocyte heterogeneity and its control by astrocyte interactions with other cells 

in the central nervous system (CNS). In this review, we provide an overview of the multifaceted 

roles of astrocytes in the context of CNS inflammation, highlighting recent discoveries on 

astrocyte subsets and their regulation. We explore mechanisms of crosstalk between astrocytes and 

other cells in the CNS in the context of neuroinflammation and neurodegeneration, and discuss 

how these interactions shape pathological outcomes.
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Introduction

Astrocytes are abundant central nervous system (CNS) glial cells, which have emerged as 

key players in health and disease. Developmentally, astrocytes arise from neural progenitor 

cells (NPCs) within the subventricular zone (SVZ) and populate the entire brain by 

migrating along radial glia processes (Ge et al., 2012; Molofsky and Deneen, 2015). Once 

astrocytes reach their final destination, axis patterning cues guide the maturation of 

astrocytes into regionally defined subgroups with a high degree of functional specialization, 

laying the foundation for their multifaceted roles in health and disease (Deneen et al., 2006; 

Ge et al., 2012; Hochstim et al., 2008; Molofsky and Deneen, 2015; Molofsky et al., 2014; 

Tsai et al., 2012). Astrocytes are key constituents of the glia limitans, and thus actively 

contribute to the formation and maintenance of the blood brain barrier (BBB), which 

separates the peripheral blood circulation from the highly controlled CNS microenvironment 
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(Abbott et al., 2006; Sofroniew, 2015a). Furthermore, astrocytes secrete neurotrophic factors 

to regulate synaptogenesis, neuronal differentiation, and neuronal survival (Allen et al., 

2012b; Christopherson et al., 2005; Chung et al., 2015; Molofsky et al., 2014; Wheeler and 

Quintana, 2019). Once neuronal synapses are established, astrocytes actively modulate 

synaptic transmission through the release and clearance of neurotransmitters, and the 

regulation of extracellular ion concentration (Haim and Rowitch, 2017; Santello and 

Volterra, 2009; Walz, 2000).

Increased resolution into complex cellular networks enabled by new methodologies such as 

single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics, and cell-specific 

CRISPR-based perturbation studies suggests that astrocytes actively contribute to the 

pathogenesis of multiple neurological disorders. Indeed, astrocytes respond to inflammatory 

signals and can themselves promote inflammation, which makes them important players in 

neurologic diseases like multiple sclerosis (MS), Alzheimer disease (AD), Parkinson disease 

(PD), Huntington disease (HD) and amyotrophic lateral sclerosis (ALS) (Di Giorgio et al., 

2007; Diaz-Castro et al., 2019; Gu et al., 2010; Habib et al., 2020; Molofsky and Deneen, 

2015; Solano et al., 2008; Tong et al., 2014; Wheeler et al., 2020a; Wheeler and Quintana, 

2019). Thus, it is not surprising that the communication between astrocytes and CNS-

resident or CNS-infiltrating cells plays a central role in tissue physiology and pathology 

(Anderson et al., 2016; Anderson et al., 2018; Chao et al., 2019; Faulkner et al., 2004; 

Liddelow et al., 2017; Lin et al., 2017; Nagai et al., 2019; Rothhammer et al., 2016; Wheeler 

et al., 2020b; Wheeler et al., 2019). However, the mechanisms involved are not completely 

understood. In this review, we explore the communication between reactive astrocytes and 

other cells in the CNS, and discuss how these bidirectional signaling events regulate CNS 

inflammation and pathological outcomes.

Astrocytes in CNS Inflammation

It is now clear that astrocyte reactivity is a heterogeneous process resulting in a spectrum of 

molecular, cellular, and functional changes which have provided the basis for the study of 

astrocyte heterogeneity in health and disease (Anderson et al., 2014; Ben Haim and Rowitch, 

2017; Khakh and Deneen, 2019). Although the outcome and individual aspects of 

astrogliosis might differ, scientists have traditionally viewed the increased expression of glial 

fibrillary acidic protein (GFAP) as a marker of astrocyte activation and a hallmark of 

multiple CNS pathologies (Sofroniew, 2009). Interestingly, GFAP was first isolated from 

demyelinated MS plaques, providing one of the first molecular links between astrocytes and 

MS (Eng and Vanderhaegen, 1970). Over 50 years later, the repertoire of disease-associated 

astrocyte markers has grown. Indeed, advancements in genomics and spatial transcriptomics 

have fueled the identification of novel pathways that control astrocyte function in health and 

neuroinflammation (Bayraktar et al., 2020; Liddelow and Barres, 2017; Saunders et al., 

2018; Wheeler et al., 2020b; Zeisel et al., 2018; Zeisel et al., 2015). Based on these studies, 

it is now clear that different astrocyte subpopulations either promote, or limit disease 

pathogenesis in a highly context-dependent manner (Bayraktar et al., 2020; Liddelow and 

Barres, 2017; Liddelow et al., 2017; Lin et al., 2017; Molofsky et al., 2014; Rothhammer et 

al., 2016; Wheeler et al., 2020b; Wheeler and Quintana, 2019).

Linnerbauer et al. Page 2

Neuron. Author manuscript; available in PMC 2021 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CNS inflammation in MS is associated with BBB breakdown and the recruitment of 

peripheral immune cells. In this context, astrocytes sense and respond to pro-inflammatory 

cytokines secreted by CNS-resident and CNS-recruited peripheral immune cells, thereby 

modulating the responses of neighboring cells throughout the CNS (Rothhammer and 

Quintana, 2015; Sofroniew, 2015b). In vivo ablation studies in the mouse experimental 

autoimmune encephalomyelitis (EAE) model of MS suggest that astrocytes limit disease 

development in early disease stages (Liedtke et al., 1998; Mayo et al., 2014; Toft-Hansen et 

al., 2011; Voskuhl et al., 2009). In contrast, selective ablation of reactive astrocytes during 

the chronic phase of EAE ameliorated disease, decreasing microglial activation and 

monocyte infiltration (Mayo et al., 2014).

Astrocyte signaling pathways seem to converge on common downstream transcriptional 

regulators during inflammation. For example, nuclear translocation of the nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) heterodimer is a central step in 

astrocyte activation and contributes to the progression of EAE and other CNS pathologies 

(Blank and Prinz, 2014; Brambilla et al., 2005; Brambilla et al., 2012; Brambilla et al., 

2014; Brambilla et al., 2009; Loo et al., 2006; Rothhammer and Quintana, 2019). Selective 

blockade of astrocyte NF-κB signaling in models of CNS inflammation/injury including 

EAE (Brambilla et al., 2014; Brambilla et al., 2009; Loo et al., 2006; Wang et al., 2013a), 

spinal cord injury (SCI) (Brambilla et al., 2005) and optic neuritis (Brambilla et al., 2012) 

improves clinical outcomes and is associated with decreased levels of pro-inflammatory 

cytokines and oxidative stress, pointing to a central role for NF-κB in the response of 

astrocytes to inflammatory stimuli and other insults. The nuclear translocation of NF-κB is 

regulated by multiple pathways that can broadly be divided into drivers and suppressors of 

NF-κB activation.

Nuclear translocation of NF-κB in astrocytes is triggered by pro-inflammatory stimuli such 

as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-17 (Qian et al., 2007), reactive 

oxygen species (ROS) (Chandel et al., 2000), phagocytosed myelin (Ponath et al., 2017), 

Toll-like receptor (TLR) engagement (Kawai and Akira, 2007) and other factors associated 

with CNS inflammation (Fig. 1) (Filippi et al., 2018; Reich et al., 2018). In addition, 

sphingolipids like sphingosine 1-phosphate (S1P) also drive NF-κB activation and play 

important roles in the regulation MS and EAE (Rosen and Goetzl, 2005; Rothhammer et al., 

2017) (Fig. 1). S1P is a biologically active phospholipid generated from ceramide which 

controls proliferation of several cell types and leukocyte trafficking from lymphoid tissues 

into circulation (Rivera et al., 2008). Interestingly, astrocytes upregulate the expression of 

the sphingolipid receptor S1PR1 upon activation, and conditional ablation of S1PR1 in 

astrocytes results in diminished EAE severity and increased neuronal survival (Choi et al., 

2011). Modulation of S1PR1 by the FDA-approved agonist fingolimod suppresses NF-κB 

translocation in astrocytes, reducing the production of IL-6, TNF-α, granulocyte-

macrophage colony-stimulating factor (GM-CSF), chemokine (C-C motif) ligand 2 (CCL2) 

and nitric oxide (NO) levels (Rothhammer et al., 2017).

Lactosylceramide (LacCer), another ceramide-derived sphingolipid, has also been 

implicated in the regulation of astrocyte responses during CNS inflammation (Mayo et al., 

2014). LacCer synthesis is catalyzed by β−1,4-galactosyltransferase 6 (B4GALT6), an 
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enzyme whose expression is controlled by NF-κB (Chatterjee et al., 2008), and which is 

upregulated in astrocytes during the progressive phase of EAE in non-obese diabetic mice 

(Mayo et al., 2014) (Fig. 1). LacCer produced by activated astrocytes enhances IRF-1 and 

NF-κB recruitment to the promoter regions of Ccl2, Csf2 and Nos2, which subsequently 

induces cytokine production, microglial activation, and pro-inflammatory monocyte 

recruitment. Selective inactivation of B4GALT6 in astrocytes suppressed this effect and 

reduced the infiltration of pro-inflammatory monocytes into the CNS (Mayo et al., 2014), 

collectively highlighting the relevance of astrocytic sphingolipid signaling in the context of 

CNS inflammation.

Based on the potential deleterious consequences of its dysregulated activation, it is not 

surprising that multiple mechanisms limit NF-κB activation in astrocytes. One of these 

mechanisms involves the ligand- activated transcription factor aryl hydrocarbon receptor 

(AHR), whose activity is modulated by small molecules provided, for example, by cellular 

and commensal flora metabolism (Gutiérrez-Vázquez and Quintana, 2018; Wheeler et al., 

2017) (Fig. 1). Indeed, the metabolism of dietary tryptophan by the intestinal microbiota is 

an important physiologic source of AHR agonists (Rothhammer and Quintana, 2019). 

Following activation by its agonists, AHR can limit NF-κB signaling through several 

mechanisms including those mediated by the suppressor of cytokine signaling 2 (SOCS2) 

(Rothhammer et al., 2016; Yeste et al., 2016), and also AHR direct dimerization with the 

NF-κB subunits RelA and RelB (Rothhammer and Quintana, 2019; Salisbury and Sulentic, 

2015; Vogel et al., 2014; Vogel et al., 2007). Accordingly, dietary metabolites derived from 

tryptophan suppress NF-κB signaling in astrocytes and limit CNS inflammation in an AHR-

dependent manner (Rothhammer et al., 2016). Specific inactivation of Ahr in astrocytes 

worsens EAE and increases the expression of pro-inflammatory cytokines (IL-6, IL-12, 

IL-23, GM-CSF, NO), chemokines (CCL2, CCL20, CXCL10) and other molecules 

associated with astrocyte reactivity (vimentin, GFAP).

Interestingly, some gut commensal bacteria known to produce AHR agonists are ampicillin-

sensitive (Zelante et al., 2013); their elimination by ampicillin administration at late stages 

of EAE worsens disease outcome. This disease worsening and the concomitant increased 

expression of pro-inflammatory genes in astrocytes is reversed by the administration of 

indoxyl-3-sulfate (I3S), an AHR agonist whose levels in circulation are controlled by the gut 

flora (Rothhammer et al., 2016), overall highlighting how AHR participates in the control of 

NF-kB activation and CNS inflammation by the gut-CNS axis.

Astrocyte Interactions with Microglia during Neuroinflammation

Astrocytes and other glial cells, including microglia and oligodendrocytes, form and 

maintain a highly controlled microenvironment essential for efficient neuron function within 

the CNS (Allen and Lyons, 2018). While glial cells were initially thought to merely provide 

trophic support for neurons, it is now clear that a closely intertwined neuron-glia network is 

a key prerequisite for adequate CNS function (Chung et al., 2015; Fields and Stevens-

Graham, 2002; Keren-Shaul et al., 2017; Liddelow and Barres, 2017; Wallace and Raff, 

1999; Wheeler et al., 2020b).
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Astrocytes, microglia, and their interactions control CNS physiology in health and disease 

(Colombo and Farina, 2016; Glass and Saijo, 2010; Goldmann and Prinz, 2013; Keren-Shaul 

et al., 2017; Liddelow and Barres, 2017; Prinz et al., 2019; Rothhammer et al., 2018; 

Rothhammer and Quintana, 2019; Sofroniew, 2009; Vainchtein et al., 2018; Wheeler et al., 

2020b). The molecular tête-à-tête between astrocytes and microglia begins early during their 

colonization of the CNS parenchyma and plays an essential role in CNS health and neuronal 

transmission (Pfrieger and Barres, 1997). Bidirectional communication between astrocytes 

and microglia modulates CNS inflammation through the secretion of multiple cytokines and 

inflammatory mediators. For example, Liddelow and colleagues (2017) reported that LPS-

activated microglia induce a neurotoxic phenotype in reactive astrocytes. Specifically, the 

authors found that microglial secretion of IL-1α, TNF-α, and complement component 1q 

(C1q) induces a transcriptional response in astrocytes characterized by the production of an 

as-yet unidentified neurotoxic factor, decreased phagocytic activity, and the reduced 

expression of neurotrophic factors (Fig. 2A). Based on the expression of complement 

component 3 (C3), a putative marker of these neurotoxic astrocytes, the authors detected this 

neurotoxic astrocyte subset in several neurodegenerative disorders like HD, AD, and MS, 

suggesting that common mechanisms mediate microglia- astrocyte crosstalk in these 

diseases.

Astrocyte-microglia communication likely involves multiple mechanisms. One recent study 

identified positive and negative microglial regulators of astrocyte pathogenic responses. 

Rothhammer et al (2018) reported that AHR signaling in microglia regulates the expression 

of pro-inflammatory genes (Ccl2, Illb, Nos2) in astrocytes by modulating the microglial 

expression of vascular endothelial growth factor (VEGF)-B and transforming growth factor 

(TGF)-α (Fig. 2A). Microglial VEGF-B boosts NF-κB translocation in astrocytes via FLT-1 

signaling to drive their pathogenic activities during EAE, while TGF-a acts via the ErbB1 

receptor in astrocytes to limit EAE progression and induce the production of neuroprotective 

factors (White et al., 2008). Interestingly, the production of these factors in microglia is 

regulated by the intestinal flora via metabolites that cross the BBB and control microglial 

transcriptional programs (2016).

Other mechanisms by which microglia actively control astrocyte functions in 

neuroinflammation include stromal cell-derived factor (SDF)-1a signaling through C-X-C 

chemokine receptor type 4 (CXCR4), reported to drive glutamate release by astrocytes. 

Bezzi and colleagues (2001) showed that SDF1α-CXCR4 signaling in the presence of TNF-

α leads to increased intracellular Ca2+ levels and astrocyte glutamate release. Microglial 

TNF-α production promotes astrocyte glutamate release, which boosts neuron excitotoxicity 

(Fig. 2B). In summary, these findings illustrate how microglial factors modulate astrocyte 

responses, and consequently CNS pathology.

The interactions mentioned above highlight the importance of microglia to astrocyte 

communication in the regulation of CNS inflammation and neurodegeneration. Indeed, is 

important to consider the reciprocal regulation of microglia by astrocytes. GM-CSF is a 

known regulator of microglial activation, participating in numerous pro-inflammatory 

processes essential for EAE development (Hamilton, 2008; McQualter et al., 2001; Wheeler 

et al., 2020b). Interestingly, GM-CSF is produced by astrocytes as determined by GM-CSF 
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fate-mapping and other studies (Komuczki et al., 2019; Wheeler et al., 2019). Along these 

lines, Mayo et al. demonstrated that B4GALT6/LacCer-dependent signaling in reactive 

astrocytes modulates transcriptional programs in microglia and CNS-infiltrating monocytes 

via the production of GM-CSF (Mayo et al., 2014) (Fig. 2A).

Similar observations have been made for IL-6, a potent mediator of CNS inflammation with 

important roles in EAE development (Atreya et al., 2000; Gruol and Nelson, 1997; Heink et 

al., 2017; Samoilova et al., 1998). So far, only a few studies have examined the direct role of 

astrocyte-derived IL-6 on neuroinflammation, but recent data by Sanchis and colleagues 

(2020) demonstrates that conditional ablation of IL-6 in astrocytes ameliorates EAE in a 

sex-dependent manner. This effect may partially be mediated by the reduced activation of 

microglia, as global IL-6 depletion studies demonstrated reduced expression of MHC-II and 

pro-inflammatory genes (Garner et al., 2018; Savarin et al., 2015). The notion that astrocytes 

promote microglia pro-inflammatory functions through the secretion of IL-6, GM-CSF and 

other signaling factors is further supported by a recent study that investigated the 

contribution of environmental factors to the pathogenic activities of astrocytes during 

neuroinflammation (Wheeler et al., 2019). This study identified a novel signaling pathway 

driven by sigma receptor 1 (SigmaR1) and inositol-requiring enzyme-1α (IRE1α), leading 

to the activation of the transcription factor X-box binding protein 1 (XBP1) (Fig. 1), which 

enhances astrocyte-driven CNS inflammation and controls monocyte and microglia 

responses during EAE. CRISPR/Cas9-based inactivation of Sigmar1, Ern1 (encoding 

IRE1α), or Xbp1 in astrocytes, decreased pro-inflammatory gene expression in microglia 

and monocytes, suggesting that SigmaR1-IRE1α-XBP1 signaling modulates astrocyte-

microglia crosstalk (Wheeler et al., 2019). The activation of the unfolded protein response in 

astrocytes also contributes to prion-induced neurodegeneration, suggesting that therapeutic 

targeting of this pathway may be broadly applicable to multiple neurologic diseases (Smith 

et al., 2020).

The complexity of the bidirectional communication between microglia and astrocytes during 

neuroinflammation was further highlighted by a study investigating the effects of IL-10/

TGF-β signaling in CNS-resident cells during inflammation (Norden et al., 2014). In the 

context of EAE, astrocytes produce TGF-β in response to microglia-derived IL-10, which 

acts on microglia to limit pro-inflammatory gene expression, while it upregulates the 

expression of anti-inflammatory genes (Fig. 2A). Collectively, these data suggest that 

astrocytes modulate microglial transcriptional states as part of a bidirectional dialogue that 

coordinates the responses of CNS-resident cells. Similar mechanisms of astrocyte-microglia 

crosstalk participate in CNS development and neural circuit formation, highlighting the 

relevance of glial communication during development and under healthy conditions. For 

example, astrocyte-derived IL-33 has been proposed to function as a rheostat, modulating 

microglial synapse engulfment through mechanisms that control NF-κB signaling and 

immune functions (Tnf, Cxcl2, Cxcl10) (Nguyen et al., 2020; Vainchtein et al., 2018).

Astrocyte Interactions with Oligodendrocytes during Neuroinflammation

Oligodendrocytes had classically been viewed as immunologically inert—bystanders of 

pathogenic glial and immune cell responses (Zeis et al., 2016). However, this idea has been 
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recently challenged by several studies which demonstrate that oligodendrocytes play an 

active role in CNS immunomodulation (Falcão et al., 2018; Gibson et al., 2019; Huynh et 

al., 2014; Jakel et al., 2019; Moyon et al., 2015; Peferoen et al., 2014; Zeis et al., 2016; Zeis 

and Schaeren-Wiemers, 2008). Bidirectional communication between astrocytes and 

oligodendrocytes plays a vital role in this process, as oligodendrocytes express a wide array 

of receptors responsive to inflammatory stimuli secreted by astrocytes (Moyon et al., 2015; 

Omari et al., 2005; Zeis and Schaeren-Wiemers, 2008) and vice versa (Moyon et al., 2015; 

Ramesh et al., 2012; Tzartos et al., 2008). The exact mechanisms underlying the 

interrelationship between astrocytes and oligodendrocytes remain largely elusive, but 

accumulating evidence derived from in vitro and in vivo models of neuroinflammation 

suggests that their functions are closely intertwined. For instance, it has been shown that 

activated astrocytes promote apoptosis of oligodendrocytes via TNF (Gomez-Rivera et al., 

2017; Kim et al., 2011; Valentin-Torres et al., 2018), Fas ligand (FasL) (Li et al., 2002) and 

the secretion of glutamate (Bezzi et al., 2001), leading to reduced remyelination, myelin 

clearance and subsequent neuronal death (Butts et al., 2008) (Fig. 2B). This process has 

been postulated to amplify, or even initiate CNS autoimmunity (Traka et al., 2016), although 

inconsistent results call for the reevaluation of this “inside-out” hypothesis of the origin of 

CNS inflammation (Locatelli et al., 2012). Conversely, astrocytes can also promote 

neuroprotective oligodendrocyte functions through the recruitment of oligodendrocyte 

progenitor cells (OPCs) to sites of inflammation via the secretion of CXCL1, IL-8 and 

CCL-2 (Moyon et al., 2015; Omari et al., 2005) (Fig. 2B). Together with the production of 

ciliary neurotrophic factor (CNTF), these astrocyte activities promote the differentiation of 

OPCs into mature myelinating cells, which increases remyelination in areas of CNS 

inflammation and, consequently, help restore nerve conduction (Domingues et al., 2016).

These seemingly opposing outcomes of astrocyte-oligodendrocyte interactions highlight the 

need for studies focused on the identification of the specific astrocyte and oligodendrocyte 

subsets that participate in these interactions. Indeed, it was recently shown that reactive 

astrocytes contribute to oligodendrocyte cell death in a microglia-dependent manner in a 

mouse model of chemotherapy (Gibson et al., 2019). These data, coupled with new tools that 

enable the dissection of oligodendrocyte networks (Mount et al., 2019), promise to lend new 

insight into the interactions between astrocytes and oligodendrocytes. Other studies suggest 

that oligodendrocytes contribute to CNS inflammation through additional mechanisms 

beyond myelination. For example, Falcão and colleagues (2018) reported that 

oligodendrocytes participate in phagocytosis, antigen presentation, and the activation of 

memory and effector CD4 T cells. Oligodendrocytes also secrete the pro-inflammatory 

cytokines IL-1β, CCL-2, IL-17 and IL-6 (Moyon et al., 2015; Ramesh et al., 2012; Tzartos 

et al., 2008), which induce NF-κB signaling and pro-inflammatory functions in astrocytes 

(Fig. 2B). In addition, oligodendrocytes reportedly contribute to CNS inflammation by 

disrupting BBB integrity (Niu et al., 2019), at least partially through the competition of 

oligodendrocytes with astrocyte endfeet for cerebral vasculature, which subsequently leads 

to the downregulation of tight-junction integrity (Niu et al., 2019). Finally, single nuclei 

RNA-sequencing (snRNA-seq) studies of the white matter of MS patients suggest these 

pathogenic functions might be associated to distinctive oligodendrocyte sub-populations 

(Jakel et al., 2019). These findings highlight the importance of bi-directional communication 
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between specific astrocyte and oligodendrocyte populations for the pathogenesis of 

neurological disorders and set the stage for future investigations of their interactions.

Astrocyte Interactions with Neurons during Neuroinflammation

Astrocytes provide critical trophic support for neurons and play essential roles in health and 

development (Allen et al., 2012a; Allen and Barres, 2009; Allen and Eroglu, 2017; 

Christopherson et al., 2005; Chung et al., 2015). While initially considered as ‘brain glue’, 

providing a structural scaffold necessary for neuronal function, it is now clear that astrocyte-

neuron interactions reach far beyond the simplistic idea of structural aid (Allen and Barres, 

2009; Liddelow and Barres, 2017). Indeed, astrocyte-neuron interactions contribute to the 

pathogenesis of multiple neurologic diseases, and the neurotoxic capabilities of reactive 

astrocytes have been widely discussed (Anderson et al., 2014; Liddelow and Barres, 2017; 

Wheeler et al., 2020b; Zamanian et al., 2012), although a bona fide astrocytic neurotoxic 

factor remains to be discovered.

In this context, multiple studies have shown that the activation of NF-κB signaling in 

astrocytes during CNS inflammation triggers the production of NO (Locatelli et al., 2018; 

Rothhammer and Quintana, 2015; Wheeler et al., 2019), which shows detrimental effects on 

neurons when in excess (Calabrese et al., 2007). Indeed, a study by Colombo et al. (2012) 

presents an interesting conundrum of neurotrophin-induced NO neurotoxicity in astrocytes. 

While BDNF and NO foster neuronal survival under healthy conditions, elevated BDNF 

levels and the upregulation of its receptor, tropomyosin-related kinase B (TrkB) on activated 

astrocytes result in excessive NO production in vitro and, consequently, NO-driven 

neurotoxicity (Figs. 1,2B) (Colombo et al., 2012). Accordingly, the astrocyte-specific 

inactivation of TrkB ameliorates EAE and decreases neurodegeneration. In addition to NO-

driven neurotoxicity, reactive astrocytes can also promote neuronal death through deficits in 

the control of neurotransmitter uptake and release. As described above, this effect is partially 

regulated by microglial CXCR4-dependent release of excessive amounts of glutamate during 

neuroinflammation, ultimately resulting in excitotoxicity and neuronal loss (Bezzi et al., 

2001) (Fig. 2B). In a model of HD, Tong and colleagues demonstrated that accumulation of 

mutant huntingtin (mHTT) in striatal astrocytes was associated with the reduced expression 

of the inward rectifying K+ channel Kir4.1, resulting in increased extracellular K+ levels and 

consequently, neuronal excitotoxicity (Tong et al., 2014). Other roles of astrocytes in 

excitotoxicity include the reduced expression of the glutamate uptake transporters GLAST 

and GLT-1 in models of neuroinflammation (Pitt et al., 2000), AD (Matos et al., 2008) and 

ALS (Pardo et al., 2006), as well as reduced GABAergic neurotransmission in HD (Yu et al., 

2018), highlighting the role of altered glial neurotransmitter recycling as a common 

mechanism of neurodegeneration in multiple diseases.

Besides the excessive secretion of cytotoxic species and the dysregulation of 

neurotransmitter uptake and release, alterations in the metabolic crosstalk between 

astrocytes and neurons also contribute to neurodegeneration in MS and other diseases. Chao 

et al (Chao et al., 2019) demonstrated that LacCer-induced activation of cytosolic 

phospholipase A2 (cPLA2) and its interaction with the mitochondrial antiviral signaling 

protein (MAVS) alters astrocyte metabolism, impairing the metabolic support of neurons via 
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the lactate shuttle (Suzuki et al., 2011). Specifically, the LacCer-induced binding of cPLA2 

to MAVS disrupts the complex of MAVS with hexokinase-2 (HK2), decreasing glycolysis 

and lactate production (Fig. 1). Under healthy conditions, lactate provided by astrocytes 

supports the metabolic needs of neurons (Magistretti and Allaman, 2018). However, the 

decreased metabolic support of neurons by astrocytes amplifies neurodegeneration. Similar 

observations of dysfunctional metabolic coupling between astrocytes and neurons have been 

made in the context of AD (Merlini et al., 2011), PD (Öhman and Forsgren, 2015), HD 

(Diaz-Castro et al., 2019; Polyzos et al., 2019), and ALS (Ferraiuolo et al., 2011). Although 

much of these data are derived from in vitro work, these findings strongly suggest that 

astrocytes can promote neuronal death by multiple mechanisms including excitotoxicity and 

dysfunctional metabolism. This astrocyte-driven neurotoxicity could synergize with deficits 

in the regulation of behavior by astrocytes in specific neural circuits, which may also 

contribute to and amplify neurologic disability (Adamsky et al., 2018; Nagai et al., 2019; Yu 

et al., 2018). New approaches will be needed to validate our current understanding of 

astrocyte-induced neurotoxicity in vivo and examine how therapeutic strategies could be 

used to reprogram reactive astrocytes in a neuroprotective state.

Astrocyte Interactions with Endothelial Cells during Neuroinflammation

Astrocyte foot processes form the glia limitans, which together with capillary endothelial 

cells, pericytes, and the basal lamina constitute the BBB that separates the CNS from the 

peripheral blood circulation (Abbott et al., 2006; Chow et al., 2020; Obermeier et al., 2013; 

Sofroniew, 2015b). Under healthy conditions, the BBB regulates the influx of hydrophilic 

substances, protects the brain from circulating pathogens, and contributes to the partial 

‘immune privilege’ of the CNS (Abbott et al., 2006; Kipnis, 2016; Louveau et al., 2015b; 

Obermeier et al., 2013; Sofroniew, 2015b). Astrocytes and endothelial cells act as 

gatekeepers of the CNS and their crosstalk is essential to restrict leukocyte trafficking into 

the parenchyma. In the context of neuroinflammation, bidirectional communication between 

astrocytes and endothelial cells promotes BBB leakiness and allows for the infiltration of 

peripheral immune cells. Astrocyte-derived VEGF plays a central role in this process and 

participates in a signaling cascade that eventually results in increased BBB permeability 

(Sofroniew, 2015b). Indeed, Argaw and colleagues (2012) demonstrated that VEGF-A 

production in astrocytes is upregulated in response to IL-1β, a cytokine produced by 

activated microglia during neuroinflammation (Liddelow et al., 2017; Prinz et al., 2019; 

Wheeler et al., 2020b). VEGF-A induces the endothelial nitric oxide synthase (eNOS)-

dependent downregulation of tight-junction proteins claudin-5 (Cldn5) and occludin (Ocln) 
in endothelial cells, which eventually disrupts tight-junctions and BBB integrity. In line with 

these findings, conditional ablation of Vegfa in astrocytes ameliorates EAE, and is 

characterized by a reduction in leukocyte infiltration, demyelination, and oligodendrocyte 

loss (Argaw et al., 2012).

Astrocytes also produce factors that boost BBB integrity during inflammatory conditions. 

For example, astrocytes promote BBB stability via the production of sonic-hedgehog (Shh) 

(Alvarez et al., 2011), a morphogen that has numerous roles during development and 

adulthood (Fuccillo et al., 2006; Ihrie et al., 2011). Stimulation of human astrocytes with 

TNF-α and IFN-γ leads to increased expression of Shh and subsequent upregulation of 
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endothelial cell tight-junctions. Of note, SHH+ immunoreactive astrocytes are detected 

around MS demyelinating lesions, and SHH receptor expression is upregulated in 

endothelial cells (Alvarez et al., 2011). Collectively, these data highlight the importance of 

the control of the BBB by astrocyte-endothelial cell interactions during CNS inflammation, 

as well as the need to identify astrocyte subsets with seemingly opposing roles on BBB 

integrity.

Astrocyte Interactions with Peripheral Immune Cells during 

Neuroinflammation

The CNS parenchyma is usually considered an ‘immune privileged’ compartment under 

healthy conditions, which provides limited access to peripheral antibodies and leukocytes 

(Louveau et al., 2015a; Ransohoff and Engelhardt, 2012). However, astrocytes are amongst 

the first CNS-resident cells encountered by CNS-infiltrating leukocytes during 

neuroinflammation. Moreover the anatomical location of astrocyte endfeet enables them to 

react to soluble factors in the meningeal space (Iliff et al., 2012; Sofroniew, 2015b). As 

activated immune cells migrate from the periphery into the CNS, bidirectional interactions 

with astrocytes actively shape the recruitment, diapedesis and extravasation of leukocytes 

past endothelial barriers into perivascular spaces and the CNS parenchyma. CCL2 and 

CXCL10 are chemokines secreted by activated astrocytes that control the recruitment of 

perivascular leukocytes into the CNS (Fig. 2C) (Kim et al., 2014; Mills Ko et al., 2014; Paul 

et al., 2014). Interestingly, both CCL2 and CXCL10 are controlled by NF-κB (Brambilla et 

al., 2012; Brambilla et al., 2009), and have been shown to play important roles during CNS 

inflammation. For example, astrocyte-derived CCL2 is critical for both the onset (Huang et 

al., 2001) and the progression of EAE (Kim et al., 2014; Moreno et al., 2014), as its deletion 

is associated with decreased leukocyte infiltration and a transcriptional shift of macrophages 

towards an anti-inflammatory phenotype. Similar observations have been made for 

astrocyte-derived CXCL10, as the conditional ablation of CXCL10 results in decreased 

accumulation of leukocytes in perivascular spaces (Mills Ko et al., 2014). While CCL2 and 

CXCL10 represent signaling molecules through which astrocytes control the recruitment of 

monocytes, macrophages and T cells to the CNS (Gerard and Rollins, 2001), astrocyte-

derived CXCL12 regulates the recruitment of pathogenic B-cells (Krumbholz et al., 2006).

Astrocytes also control peripheral leukocytes once they have been recruited to the CNS. 

Following activation, astrocytes upregulate the expression of FasL to induce cell death in 

infiltrating lymphocytes via caspase signaling (Choi et al., 1999; Wang et al., 2013b). 

Conditional ablation of FasL expression by astrocytes worsens EAE, further supporting an 

anti-inflammatory role of astrocyte-induced apoptosis (Wang et al., 2013b). In contrast, 

Krumbholz and colleagues (2005) defined a mechanism through which astrocyte-derived 

BAFF supports B-cell survival in inflammatory diseases and primary B cell lymphoma. In 

support of these findings, BAFF is expressed by human astrocytes and increased BAFF 

levels are detected in the cerebral spinal fluid of MS patients. These opposing effects of 

astrocytes on T- and B-cell survival are in agreement with astrocyte targeting studies in early 

versus late stages of EAE, therefore highlighting the time-dependency (likely associated to 

the dominance of different activation states during the disease course) of their functions in 
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disease (Liedtke et al., 1998; Mayo et al., 2014; Toft-Hansen et al., 2011; Voskuhl et al., 

2009). While ablation of astrocytes during early stages potentially prevent astrocyte-induced 

cell death in infiltrating leukocytes and consequently allows for the spread of peripheral 

immune cells in the CNS, loss of astrocytes during late stages might in turn hinder 

pathogenic B-cell functions and reduce CNS inflammation.

In addition, astrocytes can sense and respond to various inflammatory cues once leukocytes 

are engrafted within the CNS parenchyma. For example, TH1 cell-derived IFN-γ upregulates 

astrocyte expression of IFN-g receptor 1 (IFNGR1) and MHC-II, allowing them to act as 

nonprofessional antigen-presenting cells (APCs) (Fontana et al., 1984; Gold et al., 1996; 

Hashioka et al., 2010; Soos et al., 1998; Sun and Wekerle, 1986; Yang et al., 2012). 

Furthermore IL-17, the signature cytokine of pathogenic TH17 cells, and GM-CSF, produced 

by pathogenic TH1 and TH17 cells, activate pro-inflammatory transcriptional programs in 

astrocytes (Elain et al., 2014; Kang et al., 2010; Wheeler et al., 2020b; Yi et al., 2014) (Fig. 

2C). Taken together, these findings highlight the important functions of astrocytes in the 

potentiation of inflammatory cascades in the CNS. In a positive feedback loop, astrocytes 

can respond to pro-inflammatory cytokines secreted by infiltrating lymphocytes with the 

production of chemokines that further attract peripheral immune cells to the CNS, ultimately 

leading to chronic CNS inflammation and neurodegeneration.

Epigenetic Alterations in Astrocytes during CNS Inflammation

The chronic exposure to inflammatory signals and crosstalk with CNS-resident and non-

resident cells alters astrocyte transcriptional programs, inducing “memory” responses 

stabilized by epigenetic modifications (Saijo et al., 2009; Wheeler et al., 2020b). In the 

context of inflammation, “memory” is usually associated with the response of T cells and B 

cells to repetitive encounters with the same antigen. Thus, a first encounter with a stimulus 

(“priming”) elicits transcriptional modifications, which lead to a different response in terms 

of quantity and quality, upon later encounter with the same stimulus. Immune memory can 

manifest as “immune training”, which describes an enhanced and diversified response to re-

stimulation; or “immune tolerance,” which refers to a dampened response upon secondary 

stimulation (Neher and Cunningham, 2019; Nott and Glass, 2018; Wendeln et al., 2018).

Pioneering studies have extended the concept of memory to the innate immune response, to 

describe “trained” innate immunity associated to extensive epigenetic and metabolic 

remodeling (Netea et al., 2020). Indeed, it has been recently reported that microglia can also 

undergo training (Nott and Glass, 2018; Nott et al., 2019; Wendeln et al., 2018). This is an 

important finding in the context of neurological diseases, as epigenetic alterations may 

stabilize pathogenic activation states in CNS-resident cells, and might therefore offer novel 

therapeutic targets. Indeed, multiple reports suggest an important role for epigenetic 

modifications in the control of glial responses during neurologic disorders (Ayata et al., 

2018; Baranzini et al., 2010; Huynh et al., 2014; Koch et al., 2013; Kular et al., 2018; 

Staszewski and Prinz, 2014; Wendeln et al., 2018).

Most work on trained immunity in glial cells has focused on microglia, as they express a 

multitude of immune receptors (Ayata et al., 2018; Colonna and Butovsky, 2017; Heneka et 
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al., 2015; Nott et al., 2019; Prinz et al., 2019; Saijo et al., 2009; Wendeln et al., 2018). In a 

recent study, Wendeln and colleagues (2018) explored the question of whether microglia are 

trained in the context of neurologic diseases, and potentially contribute to the progression of 

AD and stroke. These studies established that peripherally applied pro-inflammatory stimuli 

drive immune training and tolerance mechanisms in microglia through extensive epigenetic 

reprogramming, inducing changes in microglial responses that persist for at least six months. 

Furthermore, these studies established that microglia trained by a single injection of 

lipopolysaccharide (LPS) exacerbate cerebral β-amyloidosis, while repeated LPS 

stimulation leads to immune tolerance and reduced Aβ-accumulation. Interestingly, these 

studies also detected reduced numbers of astrocytes in LPS-primed mice. Indeed, pro-

inflammatory stimuli have been shown to induce epigenetic alterations in astrocytes, with 

long-term consequences for neuroimmune crosstalk (Beurel, 2011; Correa et al., 2011; Suh 

et al., 2010; Wheeler et al., 2020b). Furthermore, studies on the epigenetic control of 

astrocytes during differentiation and development support potential roles for epigenetic 

modifications in the regulation of astrocyte responses during neuroinflammation (Hatada et 

al., 2008; O’Callaghan et al., 2014; Takizawa et al., 2001); future studies should determine 

whether bona fide astrocyte trained responses contribute to the pathogenesis of neurologic 

disorders.

Histone Modifications

The epigenetic processes supporting trained immunity can broadly be divided into histone 

modifications and DNA methylation. Histone methylation and acetylation have been linked 

to the control of astrocytes in CNS inflammation. In a study investigating the effects of 

aging on histone methylation in astrocytes following ischemia, Chisholm et al. (2015) found 

that cerebral artery occlusion resulted in an increase of the H3K4me3 histone methylation 

mark (transcriptional enhancer), while levels of H3K9me3 (transcriptional repressor) were 

reduced, therefore suggesting an overall increase in transcriptional activity. Interestingly, 

pathway analysis detected increased VEGF signaling associated to higher H3K4me3 levels 

and decreased histone deacetylase (HDAC) expression, supporting a long-term effect of 

astrocyte-derived VEGF production on endothelial cell function and BBB permeability. 

HDACs have long been targeted in neurological disorders (Falkenberg and Johnstone, 2014) 

and multiple reports support a role of HDACs in astrocyte activation and neuroimmune 

crosstalk (Beurel, 2011; Correa et al., 2011; Saijo et al., 2009; Suh et al., 2010).

In another study, Ayata and colleagues (2018) reported that environmental stimuli drive the 

epigenetic regulation of region-specific clearance activity in microglia. The authors found 

that exposure to apoptotic cells induce the expression of KDM6A and KDM6B, histone 

demethylases that catalyze the removal of the transcriptional repressor H3K27me3 histone 

methylation marks in microglia, leading to the induction of inflammatory gene expression. 

Similar mechanisms may operate in astrocytes, as soluble factors derived from microglia 

boost HDAC activity in astrocytes (Correa et al., 2011). Although the specific signals 

through which microglia control histone modifications in astrocytes are not yet known, these 

initial findings suggest long-term effects of astrocyte-microglia crosstalk.

Linnerbauer et al. Page 12

Neuron. Author manuscript; available in PMC 2021 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A pioneering study by Saijo and colleagues (2009) defined a microglia-astrocyte trans-

repression pathway that negatively regulates pro-inflammatory responses and reduces 

neurotoxicity in the context of PD. The authors demonstrated that microglia and astrocyte 

activation induces the recruitment of the nuclear receptor related-1 (Nurr1) transcription 

factor, the co-repressor complex CoREST and NF-κB to target sites that control pro-

inflammatory gene expression. The resulting transcriptional suppression of pro-

inflammatory mediator expression in microglia and astrocytes prevented the synergistic 

amplification of pro-inflammatory responses and neurotoxicity. HDAC1 is a component of 

the CoREST complex. Thus, a Nurr1-mediated negative feedback loop between astrocytes 

and microglia might participate in the long-term suppression of pro-inflammatory responses. 

This hypothesis is in line with the findings of Beurel et al (Beurel, 2011), who reported that 

repeated stimulation of astrocytes with LPS results in HDAC6-induced histone deacetylation 

and tolerance characterized by decreased IL-6 production. Collectively, these results suggest 

that histone modifications induced by the crosstalk with other cell types, trigger long-term 

changes in astrocyte responses.

DNA Methylation

DNA methylation represses gene expression through the addition of methyl groups that 

impair interactions with transcriptional regulators (Greenberg and Bourc’his, 2019). DNA 

methylation is tightly regulated during astrocyte development (Fan et al., 2005; Hatada et al., 

2008). Similarly, DNA methylation was recently reported to control astrocyte pro-

inflammatory responses (Wheeler et al., 2020b), and has been proposed to contribute to CNS 

pathology in MS (Huynh et al., 2014). Single-cell RNA sequencing identified a subset of 

astrocytes expanded in EAE and MS. This astrocyte subset was characterized by decreased 

activation of NRF2, a transcription factor linked to neuroprotective astrocyte functions 

(Filippi et al., 2018). Follow up genomic analyses identified MAFG, a basic region and 

leucine zipper (bZIP)-type transcription factor of the family of small MAF proteins, as a 

negative regulator of NRF2 signaling in activated astrocytes. MAFG heterodimerizes with 

NRF2 to induce NRF2-driven gene expression, but MAFG homodimers compete for MAFG/

NRF2 responsive elements to suppress NRF2-signaling (Katsuoka and Yamamoto, 2016) 

(Fig. 3). In addition, MAFG cooperates with the methionine adenosyltransferase IIα 
(MAT2α), which participates in the synthesis of substrates for DNA methylation and has 

been shown to cooperate with small MAF proteins to act as a transcriptional repressor 

(Katoh et al., 2011) (Fig. 3). In line with these findings, increased DNA méthylation was 

detected in NRF2-responsive elements of this astrocyte subset during EAE. Moreover, 

MAFG- and MAT2α-dependent CRISPR/Cas9-driven inactivation of Mat2α or Mafg 
ameliorated EAE.

Of note, GM-CSF produced by pro-inflammatory T-cells recruited to the CNS drives 

MAFG/MAT2α signaling in astrocytes, suggesting that the crosstalk between astrocytes and 

T cells regulates the epigenetic program that stabilizes and controls this astrocyte subset in 

the context of CNS inflammation (Fig. 3). Taken together, these observations shed new light 

onto the long-term epigenetic regulation of glial responses and its control by astrocyte-

immune cell crosstalk (Ayata et al., 2018; Jakovcevski and Akbarian, 2012; Staszewski and 

Prinz, 2014). Novel tools, such as spatial transcriptomics (Eng et al., 2019; Moffitt et al., 
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2018; Rodriques et al., 2019; Wang et al., 2018), astrocyte-specific optogenetics (Adamsky 

et al., 2018; Nagai et al., 2019), and neuron-glia circuit mapping in virtual environments 

(Mu et al., 2019), will deepen our understanding of the epigenetic control of astrocyte 

responses, while identifying candidate targets for therapeutic intervention.

Concluding remarks

Astrocytes play multiple roles during CNS inflammation. On the one hand, they can restrict 

the influx of peripheral immune cells into the CNS, while producing neurotrophic factors to 

promote tissue repair. On the other hand, astrocytes can promote neurodegeneration and 

inflammation through the recruitment of peripheral inflammatory cells, the activation of 

CNS-resident microglia and their own intrinsic neurotoxic activities. The proper control of 

these diverse astrocyte responses requires the precise integration of signaling cues derived 

from CNS-resident and -recruited cells, highlighting the importance of regional location and 

cellular environment.

A central question in astrocyte biology has been the extent of astrocyte heterogeneity. The 

diversity of astrocyte subsets and activation states is now widely appreciated (Anderson et 

al., 2014; Ben Haim and Rowitch, 2017; Khakh and Deneen, 2019), but many questions still 

remain outstanding. Future studies should address important questions: (1) How many 

astrocyte subsets exist? (2) How are they regulated, how plastic are they, and what are their 

functions? (3) Where are they located? (4) With which cells do they communicate? (5) What 

are the correlates of these populations in humans? Clues to solving these problems could be 

gleaned from pioneering fate-mapping and cross-species studies of microglia (Geirsdottir et 

al., 2019; Ginhoux et al., 2010; Tay et al., 2017).

Novel technologies will also be needed to extensively characterize the astrocytic subsets 

involved, their cellular interactions, and what defines them in the context of their location in 

specific CNS microenvironments. For example, high throughput screens for the molecular 

characterization of astrocytes across brain region and disease states would greatly advance 

our knowledge of astrocyte heterogeneity. These screens may enable a thorough analysis of 

the interactions between astrocytes and other cells in the CNS, seeding additional questions: 

Which molecules are used by astrocytes to communicate with neighboring cells? On what 

timescale? How plastic are these interactions? Importantly, these analyses may lead to an 

understanding of how astrocyte interactions with other cell types could be exploited for 

therapeutic purposes.

In addition, it is important to understand astrocyte networks on a global level. Both 

functional and structural connectivity-mapping studies are needed to establish how 

astrocytes interact with neurons, other glial cells, and immune cells in health and disease 

(Fields, 2013). Analogous approaches have transformed our understanding of neural circuits 

(Chen et al., 2019; Huang et al., 2020; Kebschull et al., 2016; Oh et al., 2014). In summary, 

the future of glial biology will likely rest on the integration of multiple high throughput 

technologies to define the location, plasticity, connectivity, regulation and function of 

astrocyte subsets across the CNS.
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Figure 1. Astrocyte signaling in the context of CNS inflammation.
The transcription factor NF-κB controls multiple aspects of astrocyte pro-inflammatory 

responses. NF-κB signaling is triggered/boosted by cytokines released by microglia and 

other cells in the inflamed CNS, and by the sphingolipids S1P and LacCer. AHR activation 

by dietary components, environmental factors or metabolites derived from the commensal 

flora limits NF-κB activation. Additional inflammatory pathways are triggered by the 

binding of environmental toxins to S1R/IRE1α and downstream signaling through XBP1.
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Figure 2. Astrocyte interactions in the context of neuroinflammation.
(A) Bidirectional communication between astrocytes and microglia regulates their responses 

during CNS inflammation. (B) Upon activation, astrocytes release neurotoxic amounts of 

NO, glutamate or downregulate the uptake of extracellular neurotransmitter, ultimately 

leading to neuronal and oligodendrocyte death. Astrocytes furthermore control the 

recruitment of oligodendrocytes through the secretion of multiple cytokines. In addition, 

astrocytes respond to pro-inflammatory mediators secreted by activated oligodendrocytes. 

(C) Astrocytes control the recruitment of leukocytes into perivascular spaces and the CNS 

parenchyma through the secretion of multiple molecules. Interactions between activated 

astrocytes and endothelial cells increase BBB permeability and facilitate leukocyte 

infiltration, while bidirectional communication between astrocytes and peripheral immune 

cells potentiates CNS inflammation and contributes to disease progression.
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Figure 3. Pro-inflammatory cytokine-induced epigenetic suppression of NRF2 signaling during 
CNS inflammation.
During initial exposure to inflammatory signals, astrocytes upregulate the formation of 

MAFG homodimers, which outcompete MAFG/NRF2 heterodimer binding to 

transcriptional response elements that control NRF2 signaling. In addition, MAT2α 
cooperates with MAFG and induces DNA methylation marks that restrict chromatin 

accessibility. Collectively, these epigenetic modifications suppress NRF2-driven inhibition 

of NF-κB signaling and lead to sustained inflammation.
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