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Abstract

Rationale and Objectives: To develop classification and regression models interpreting tumor 

characteristics obtained from structural (T1w and T2w) MRI data for early detection of dendritic 

cell (DC) vaccine treatment effects and prediction of long-term outcomes for LSL-
KrasG12D;LSLTrp53R172H;Pdx-1-Cre(KPC) transgenic mice model of pancreatic ductal 

adenocarcinoma(PDAC).

Materials and methods: Eight mice were treated with DC vaccine for three weeks while eight 

KPC mice were used as untreated control subjects. The reproducibility of the computed 264 

features was evaluated using the intra-class correlation coefficient. Key variables were determined 

using a three-step feature selection approach. Support vector machines classifiers were generated 

to differentiate treatment-related changes on tumor tissue following 1st and 3rd weeks of the DC 

vaccine therapy. The multivariable regression models were generated to predict overall survival 

(OS) and histological tumor markers of KPC mice using quantitative features.

Results: The quantitative features computed from T1w MRI data has better reproducibility than 

T2w MRI features. The KPC mice in treatment and control groups were differentiated with a 

longitudinally increasing accuracy (1st and 3rd weeks: 87.5% and 93.75%). The linear regression 

model generated with five features of T1w MRI data predicted OS with an RMSE <6 days. The 
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proposed multivariate regression models predicted histological tumor markers with relative error 

<2.5% for fibrosis percentage (RMSE: 0.414), CK19+ area (RMSE: 0.027), and Ki67+ cells 

(RMSE:0.190).

Conclusion: Our results demonstrated that proposed models generated with quantitative MRI 

features can be used to detect early treatment-related changes in tumor tissue and predict OS of 

KPC mice following DC vaccination.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal types of 

cancer in the United States (1). Due to frequent diagnosis at advanced stages, only 20% of 

the patients are surgical candidates, and 5-year overall survival (OS) remains ≤9% with a 

median OS ≤6 months for advanced-stage patients (2). Therefore, developing novel 

treatment methods and identifying biomarkers for early detection and dynamic monitoring 

are among the key topics of cancer research.

Many experimental cancer immunotherapies now involve vaccination of cancer patients with 

autologous dendritic cells (DCs) loaded with tumor antigens (DC vaccines) (3–5). 

Therapeutic DC vaccination has a clinically relevant mechanism of action with great 

potential for systemic treatment of many cancers including PDAC patients (6, 7). Clinical 

trials have not yet demonstrated positive therapeutic efficacy and clinical response has been 

limited to a minority of patients (3–5). However, recent preclinical studies demonstrate 

potential approaches to improve the efficiency of immunotherapy (8–10). With the 

increasing number of studies focusing on immunotherapy, it has become clear that current 

clinical response evaluation criteria, including response evaluation criteria in solid tumors 

(RECIST v1.1), immune-RECIST (iRECIST), immune-modified RECIST (imRECIST), and 

immune-related response criteria (irRC), do not adequately reflect immune response and OS 

benefit following DC vaccination therapy (11–13). Therefore, noninvasive cancer 

immunotherapy response evaluation approaches are needed for monitoring tumor 

microenvironment variation and assessing the DC vaccine response.

Radiomics, high throughput quantitative feature extraction procedure, describes underlying 

tissue structures and characterizes malignancies into categories. Several studies have already 

investigated the potential of MRI radiomics for diagnosis, tumor classification, prediction of 

gene mutation or OS, detection of disease stage, and response assessment after neoadjuvant 

chemotherapy (14–18). Despite promising results of the studies integrating T1w, T2w, 

diffusion-weighted and contrast-enhanced MRI imaging approaches, non-standard 

acquisition or analysis methods restrict validation and qualification of biomarkers based on 

diffusion-weighted and contrast-enhanced MRI (19, 20). Therefore, clinically standard MRI 

(T1w and T2w) data might be preferred for the reproducibility of the developed models.
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The purpose of our study was to investigate the potential of multi-parametric radiomic 

analysis for detection of early immunotherapeutic response and prediction of OS of PDAC 

subjects following DC vaccine therapy by developing classification and regression models 

with reproducible radiomics features computed from structural (T1w and T2w) MRI data.

Materials and Methods

The procedure followed in our study was performed according to the regulations determined 

by the Institutional Animal Care and Use Committee of our institution.

Animal Model and DC Vaccine Treatment

Due to similar pathophysiological aspects and biological characteristics to human PDAC, 

LSLKrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) transgenic mouse model of PDAC was 

utilized in this study. When pancreatic tumors reach a detectable size with MRI (tumor size 

≥ 2 mm), eight KPC mice treated with 3×106 DC vaccines via intraperitoneal injection 1, 8, 

and 15 days after tumor detection while eight KPC mice were used as untreated control 

subjects.

MRI Acquisition and Processing

Tumor progression was monitored via biweekly MRI scans performed with a 7T Bruker 

preclinical scanner. After tumors were detected via MRI (tumor size ≥ 2 mm), KPC mice 

were continued to scan weekly using MRI sequences listed in Table 1 with respiratory 

triggering.

T1w and T2w MRI data were co-registered by performing 2D affine transformation with 

3DSlicer (v4.10.2). On the basis of T1w and T2w MRI data, pancreatic tumors were 

delineated on the slice with maximal tumor diameter using ITK-Snap (v3.8.0) by consensus 

of two experienced radiologists in abdominal MRI. Two weeks after initial segmentation, the 

first radiologist outlined the tumors again to assess the reproducibility of the radiomic 

features. A sample MRI slice and tumor masks for selected samples were presented in 

Figure 1A and agreement of the tumor mask images were visualized with a Bland-Altman 

plot in Figure 1B.

Histology

Pancreatic tumor tissues were dissected via surgery, fixed in 10% formalin, and embedded in 

paraffin. A representative 5μm thick tumor tissue for each sample slide was quantitatively 

analyzed by an experienced pathologist using ImageJ (v1.52q) to measure fibrosis 

percentage, CK19+ area, and Ki67+ cells.

Feature Extraction

Since MRI voxel intensity is relative and not absolute, acquired data are not directly 

comparable across different samples. Therefore, MRI images are standardized with z-score 

normalization and quantized using fixed bin-size approach suggested by image biomarker 

standardization initiative (21). To determine optimal bin-size, experiments were repeated 

using four different bin-sizes (8, 16, 32 and 64).
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Two hundred sixty-four features were extracted from each MRI modality (T1w and T2w) 

using four types of image characteristics (intensity, texture, binary-pattern and shape) and 

two filters (wavelet and gradients). Briefly, 6 intensity (first-order statistics), 40 texture (co-

occurrence, run-length, size-zone, and neighborhood gray-tone difference matrix, 10 binary-

pattern, fractal dimension, and 9 shape features were computed from raw MRI images (22–

24). Moreover, 6 intensity features were calculated from oriented gradient histogram and 

192 features (variance, power, intensity, and texture) were extracted from four wavelet 

coefficient (approximate, vertical, horizontal, and diagonal) images (17). All radiomic 

features were extracted from tumor region (ROIs) determined with a consensus of two 

radiologists and transformed into the range of [0, 1] by performing min-max normalization.

Statistical Analysis

The reliability of the generated mask images was assessed by computing the Dice similarity 

metric that measures the overlap of two binary mask images. Besides, the reproducibility of 

the quantitative features extracted from T1w or T2w MRI data was evaluated with an 

intraclass correlation coefficient (ICC) using features computed over two tumor masks. The 

variables with an ICC value larger than 0.75 were considered reproducible and other 

variables were removed from the feature set. Besides, variables correlated (r>0.75) with 

tumor size were also removed from the feature set. The remaining variables were clustered 

based on Pearson correlation coefficients of the features. An individual radiomic feature 

with excellent reproducibility from each cluster was selected as a representative variable. 

Afterward, the importance of the selected variables was computed using RELIEFF algorithm 

which calculates the importance of each variable by analyzing interactions with its nearest 

neighbors (25). The top-ranked twenty features were selected from feature sets of T1w and 

T2w MRI data. For the combination model (T1w+T2w), the representative features of T1w 

and T2w MRI were combined, and top-ranked 20 features were determined with RELIEFF 

algorithm.

The support vector machines (SVM) with a leave-one-out cross-validation approach was 

employed to construct classifiers to identify treatment-related changes on tumor tissue 

following the first and third dosages of DC vaccine therapy. A multivariable regression 

model was generated to predict the OS of KPC mice using MRI features acquired one week 

after tumor detection. Moreover, histological tumor markers were predicted with regression 

models generated with features of the last MRI acquisition of the KPC mice. The 

performance of the classifiers was evaluated with accuracy while regression models were 

assessed with root-mean-squared error (RMSE), adjusted r2 value, and Pearson’s correlation 

coefficient. The survival function of the KPC mice was evaluated using Kaplan Meier 

analysis. A p-value of less than 0.05 was considered statistically significant.

Results

The generated mask images obtained a dice similarity metric of 0.94 which corresponds to 

94% similarity and a standard deviation of 0.01 (1%). An average of 163 features was 

identified as reproducible among 264 variables for T1w MRI data while 154 features were 

reproducible for T2w MRI data. The number of reproducible features increased with the bin-
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size for T1w MRI (154, 154, 168 and 173 features) while reproducibility was intended to 

decrease as increasing the bin-size larger than thirty-two levels for T2w MRI (144, 152, 165, 

and 155 features). The ICC scores of the variables computed from T1w and T2w MRI data 

with a bin-size of eight were presented in Figure 2 and ICC scores of variables with 

remaining quantization level were presented in Supplementary Figures 1–3.

The important radiomics features were identified by performing a multi-step feature 

reduction process. Initially, an average of 24 features extracted from T1w MRI data and 35 

features of T2w MRI data were removed from feature sets due to correlation with tumor 

size. The remaining variables were clustered according to inter-correlation among the 

features. An average of 126 clusters was generated for features of T1w MRI data while 

radiomics features of T2w MRI data were grouped in 61 clusters. The top-ranked twenty 

features for MRI modalities were further processed in a multivariable analysis.

Four features were identified among twenty variables for MRI modalities via analysis of 

leave-one-out cross-validation accuracy of the generated classifiers. The classifier generated 

with four features of T1w MRI data detected vaccine-related changes in the tumor 

microenvironment with an increasing accuracy during the treatment (1st week: 87.5%, and 

3rd week: 93.8%). Besides, classifier generated with T2w MRI features had a diagnostic 

accuracy of 81.3% and 87.5% for the first and third weeks of the DC vaccine therapy, 

respectively. Moreover, the combined classification model obtained an improving accuracy 

from 87.5% to 93.8% for the first and third weeks of treatment, respectively. The best 

performance was obtained with the features computed from MRI data quantized with a bin 

size of eight (Figure 3).

Kaplan-Meier analysis was performed to evaluate the survival function of the KPC mice 

(Figure 4A). The treated KPC mice (median: 57 days) had a longer OS compared to 

untreated mice in the control group (median: 37 days). The regression models were 

generated to predict OS with five radiomics features of MRI modalities, separately. The 

regression model constructed with T1w MRI data had an RMSE of 5.96 days that 

corresponds to a relative error of 13.1%. Besides, the T2w MRI model obtained an RMSE of 

7.20 days and a relative error of 15.9% (Figure 4B). Moreover, the model generated with 

features of combined MRI had an RMSE of 5.96 days corresponding to a relative error of 

13.1%. The optimal bin-size for computing the descriptive features was thirty-two levels. 

Furthermore, all three regression models resulted in a strong Pearson correlation (r = [0.96, 

0.94, 0.96]) and adjusted r-squared values (r2 = [0.89, 0.83, 0.89]).

There were significant differences between the control and treatment groups in terms of 

histological tumor markers (p < 0.03). KPC mice in the control group had a higher 

percentage of fibrosis (21.10% ± 3.87% vs. 11.86% ± 2.66%) and the number of Ki67+ cells 

than KPC mice in the treatment group (218.15 ± 28.41 vs. 85.19 ± 40.05). Besides, 

untreated KPC mice had a lower CK19+ area than treated KPC mice (16.27 ± 3.35 vs. 30.54 

± 3.16). The regression models were generated to predict the behavior of these markers of 

KPC mice in the control and treatment groups. A regression model generated with T2w MRI 

features had the best prediction performance for fibrosis percentage with an RMSE of 0.35 

that corresponds to a relative error of 2.1% while the models generated with T1w or 
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combined MRI had lower accuracy (RMSE: [0.41, 0.39] and relative error: [2.5%, 2.4%]). 

The bin-size of eight was optimum for computing features to predict fibrosis percentage. For 

CK19 marker, regression models integrating five features extracted from T1w, T2w, and 

combined MRI data (T1w+T2w) predicted CK19+ area with an RMSE of 0.03, 0.04 and 

0.08 that corresponded to a relative error of 1%, 2%, and 4%, respectively. The model 

generated with T1w MRI features computed from MRI data quantized with eight levels has 

the lowest RMSE as predicting CK19+ area. Besides, three regression models generated to 

express Ki67+ cells with features of T1w, T2w, and combined MRI data. These models 

predicted measured values of the Ki67 marker with an RMSE ≤ 0.21 and a relative error of 

0.1%. The best performance was obtained with the model integrating five features of T1w 

MRI data quantized with thirty-two levels. The performance of the generated regression 

models was visualized using Pearson correlation and RMSE in Figure 5. The features used 

to generate classification and regression models were presented in Table 2.

Discussion

In this study, we investigated potential learning models generated with reproducible 

radiomics features computed from structural MRI data for early detection of immune-related 

treatment effects following DC vaccine and prediction of OS in the KPC mouse model. The 

results demonstrated that proposed models constructed with structural MRI radiomics 

features can be used as a noninvasive tool for dynamic monitoring of therapeutic responses 

and detection of OS following DC vaccination.

In recent years, several studies have investigated the potential of multi-parametric MRI 

radiomics features for stratifying tumor types and prediction of prognosis, treatment 

outcomes, and recurrence (26–28). Although the studies demonstrated the potential of multi-

parametric MRI radiomics nomograms, histological analysis was not utilized to evaluate the 

potential of the multi-parametric radiomics models. Therefore, preclinical studies are still 

required to validate the potential of multi-parametric MRI models before translation to 

clinical studies.

The purpose of this study was to develop learning (classification and regression) models for 

early detection of immune-response and prediction OS for dynamic monitoring of tumor 

microenvironment using reproducible features extracted from clinically standard MRI data. 

The proposed learning models generated with identified features demonstrated the potential 

of T1w MRI data for early detection of immune-related treatment effects and prediction of 

OS, and histopathological tumor markers (fibrosis, CK19+, and Ki67+). Besides, the 

regression model constructed with T2w features accurately predicted the fibrosis percentage.

There were several limitations to this study. First, a limited number of PDAC subjects were 

included in our study due to the nature of the preclinical studies. Further studies will be 

performed increasing the number of samples before translating to clinical studies. Moreover, 

the tumors were outlined using a manual approach despite that it was widely performed in 

preclinical studies. An automated segmentation process will be beneficial to minimize the 

pre-processing time for larger studies. Finally, the reproducibility of the computed features 

was evaluated by analyzing the data acquired from a single scanner due to the monocentric 
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setting of the study. Multi-institutional studies will further advance the analysis of 

reproducibility.

In conclusion, our study demonstrated that multivariable learning (classification and 

regression) models generated with quantitative imaging features extracted from structural 

MRI data can serve as a noninvasive tool to detect early immunotherapeutic response 

following the DC vaccine therapy and predict OS of PDAC subjects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Reproducibility of the mask images. Representation of the T1w and T2w MRI images of 

samples from untreated control (top row) and DC vaccine (bottom row) group were 

presented in (A). Bland-Altman plot to show the inter-observer reproducibility of the masks 

that generated 2-week apart.
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Figure 2. 
The ICC measurements of the quantitative features extracted from T1w (A) and T2w MRI 

(B) with a bin size of eight. The ICC values were measured using two masks generated in 2 

weeks apart by the same radiologist to determine the reproducibility of the features.
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Figure 3. 
The behavior of the generated three SVM classifiers (T1w, T2w, T1w+T2w) while an 

increasing number of features. (A) represents the training and test accuracies after the first 

dosage of the DC vaccine treatment and the results for the data acquired after the 3rd dosage 

of the DC vaccine are presented in (B).
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Figure 4. 
The survival function of the KPC model was presented using Kaplan-Meier analysis (A). 

The prediction performance of the generated multivariable model while increasing the 

number of features (B).
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Figure 5. 
The fitting performance of the multivariable models concerning observed histology data. 

Pearson correlation coefficients between the generated model and observed data are 

presented in (A) and the percentage of the root mean squared error was given in (B) for 

evaluation of the prediction performance.
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Table 1.

MRI acquisition parameters on 7T Bruker MRI scanner

MRI Sequence TR (ms) TE (ms) FA (°) Thickness/Gap (mm) Averages Resolution (μm)

T1w (axial) 630 20 90 0.7/0.7 2 156.25

T2w (coronal) 1600 37 180 1.0/2.0 1 96.35

T2w (axial) 2066 40 180 0.8/0.8 2 117.19
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Table 2.

MRI radiomic features that used to build classification and regression models

Features

1 2 3 4 5

Treatment

T1w SR LGLE LGL RE (a) LGL RE ZS variance

T2w ZS variance Dissimilarity (a) Busyness Coarseness (d)

T1w+T2w LGL RE (a, t1) LZ HGLE (d, t1) ZS variance (t1) ZR LGLE (t1)

Overall Survival

T1w LR HGLE (v) Solidity HGL ZE SZ HGLE HGL RE

T2w RP (v) LZ LGLE (a) LBP-6 RP (a) Entropy (a)

T1w+T2w LR HGLE (v, t1) HGL ZE (t1) HGL RE (t1) SZ HGLE (t1) Solidity (t1)

Trichrome

T1w GL variance (v) SZ HGLE (h) CM energy (v) FD ZP (h)

T2w Busyness FD LBP-9 GL NU (d) CM contrast (a)

T1w+T2w Dissimilarity (v, t2) CM variance (a, t1) SZ LGLE (v, t2) Busyness (a, t1) GL NU (a, t1)

CK19 marker

T1w SZ HGLE (a) RL variance (h) SZ LGLE (d) LBP-4 SZ HGLE (h)

T2w CM energy (v) GL variance (v) GL NU (d) SRE (a) LBP-9

T1w+T2w ZS variance (a, t1) RL NU (v, t2) HoG_mean (t2) AU (d, t1) CM energy (a, t1)

Ki67 marker

T1w CM energy (d) AU (d) Kurtosis (h) Entropy (h) AU (h)

T2w Kurtosis (v) Coarseness (d) Coarseness (h) LZ LGLE (a) SR LGLE (a)

T1w+T2w CM energy (d, t1) AU (d, t1) Kurtosis (h, t1) Entropy (h, t1) AU (h, t1)

Abbreviations

AU: Autocorrelation; CM: co-occurrence matrix; FD: fractal dimension; GL: gray-level; HGLE: high gray-level; HoG: histogram of oriented 
gradients; LGLE: low gray-level emphasis; LR: long-run; LZ: large-zone; NU: nonuniformity; RE: run emphasis; RL: run-length; RP: run 
percentage; SR: short-run emphasis, SZ: small-zone; ZE: zone emphasis; ZP: zone percentage; ZS: zone-size.

(a, -): approximate wavelet coefficients; (v,-): vertical wavelet coefficients; (h,-): horizontal wavelet coefficients; (diagonal,-): diagonal wavelet 
coefficients;

(-, t1): T1w image; (-, t2): T2w image;
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