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Abstract 

Background:  Time-efficient and accurate whole volume thigh muscle segmentation is a major challenge in moving 
from qualitative assessment of thigh muscle MRI to more quantitative methods. This study developed an automated 
whole thigh muscle segmentation method using deep learning for reproducible fat fraction quantification on fat–
water decomposition MRI.

Results:  This study was performed using a public reference database (Dataset 1, 25 scans) and a local clinical dataset 
(Dataset 2, 21 scans). A U-net was trained using 23 scans (16 from Dataset 1, seven from Dataset 2) to automatically 
segment four functional muscle groups: quadriceps femoris, sartorius, gracilis and hamstring. The segmentation accu‑
racy was evaluated on an independent testing set (3 × 3 repeated scans in Dataset 1 and four scans in Dataset 2). The 
average Dice coefficients between manual and automated segmentation were > 0.85. The average percent difference 
(absolute) in volume was 7.57%, and the average difference (absolute) in mean fat fraction (meanFF) was 0.17%. The 
reproducibility in meanFF was calculated using intraclass correlation coefficients (ICCs) for the repeated scans, and 
automated segmentation produced overall higher ICCs than manual segmentation (0.921 vs. 0.902). A preliminary 
quantitative analysis was performed using two-sample t test to detect possible differences in meanFF between 14 
normal and 14 abnormal (with fat infiltration) thighs in Dataset 2 using automated segmentation, and significantly 
higher meanFF was detected in abnormal thighs.

Conclusions:  This automated thigh muscle segmentation exhibits excellent accuracy and higher reproducibility in 
fat fraction estimation compared to manual segmentation, which can be further used for quantifying fat infiltration in 
thigh muscles.
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Key points

•	 This fully automated deep learning-based thigh mus-
cle segmentation exhibits excellent accuracy.

•	 It can delineate four clinically relevant thigh muscle 
groups in seconds.

•	 It provides higher reproducibility in fat fraction esti-
mations compared to manual segmentation.
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Background
Previous studies have shown that fat infiltration can be 
observed in thigh muscles due to diseases such as neuro-
muscular and metabolic disorders or age-related muscle 
atrophy (sarcopenia) [1–4]. More importantly, the degree 
of intramuscular fat infiltration serves as a marker for 
disease severity and progression [5–10].

Quantitative magnetic resonance imaging (MRI) pro-
vides an excellent approach for noninvasively measuring 
the fat composition in various organs, including muscle 
tissue. Fat–water decomposition MRI, one of the quan-
titative MRI techniques, is highly suitable for fat fraction 
quantification due to its ability to separate MRI signals 
from water and fat protons based on their chemical shift 
difference. This technique was first proposed by Dixon 
[11] as the original two-point Dixon method, which 
acquires two sets of images at echo times when water 
and fat protons are in phase and out of phase [11]. With 
the advancement of MRI techniques, multipoint Dixon 
methods [12, 13] have been developed to acquire images 
at three or more echo times with different phase shifts 
between fat and water protons for fat–water separa-
tion. Compared to two-point Dixon method, three-point 
Dixon sequences [12] are able to correct the magnetic 
field inhomogeneities, which offer separated fat and 
water images for quantitative analysis. Some advanced 
multipoint Dixon techniques can address other con-
founding factors and provide more accurate fat and water 
images and the corresponding proton density fat frac-
tion (PDFF) maps [14, 15]. Currently, multipoint Dixon 
sequences have been clinically implemented and also 
widely used in research studies for quantifying intramus-
cular fat infiltration in the thigh [2–9, 15–20].

However, the need for segmentation severely limits the 
application of fat–water decomposition MRI in quantita-
tive fat assessment in clinical practice. Image segmenta-
tion is the first and crucial step in order to quantitatively 
evaluate the intramuscular fat fraction in the thigh. The 
conventional methods for segmenting thigh muscles in 
the current literature [3–5, 7–9, 15–20] rely on manu-
ally drawn regions-of-interest (ROIs), which is not only 
an extremely time-consuming and cumbersome process 
but also prone to subjective bias and inter-reader varia-
tion. A previous study [20] showed the average time for 
segmenting four entire muscle regions was approximately 
6  h for each scan. Hence, most previous studies per-
formed manual segmentation on one or a few representa-
tive slices [3–5, 7–9, 15–17]. Such a process can lower 
the accuracy and reproducibility, which is also not feasi-
ble for clinical adoption. Although recent studies devel-
oped semiautomated or automated algorithms [21–25], 
they are either based on nonquantitative MRI or difficult 
to apply in clinical settings [26]. A faster, simpler and 

fully automated thigh muscle segmentation method for 
reproducible fat fraction quantification is highly desired.

In recent years, deep learning techniques, in particular 
convolutional neural networks (CNNs), have been suc-
cessfully applied in medical image analysis field, notably 
in image segmentation [27]. CNNs [28, 29] are trainable 
models established by multiple layers with operations 
including convolution, pooling and activation, which can 
capture the highly nonlinear mappings between inputs 
and outputs. This approach provides a powerful tool for 
image segmentation, as CNNs can automatically learn 
and leverage the representative patterns of the training 
images and then make accurate predictions on prospec-
tive images after optimization. U-net [30], one of the 
most well-known CNN architectures, is designed par-
ticularly for semantic segmentation of biomedical images. 
This network utilizes an encoder–decoder structure with 
skip connections and is able to extract higher resolution 
features more efficiently. U-net has been applied in plenty 
of studies for medical image segmentation and achieved 
promising and robust results [27]. However, the perfor-
mance of such technique on thigh muscle segmentation 
has not yet been investigated and evaluated in the cur-
rent literature.

The purpose of this study was to train and validate a 
CNN with sufficient accuracy for automatically segment-
ing four functional thigh muscle groups using fat–water 
decomposition MRI. We further evaluated its repro-
ducibility in fat fraction estimation by comparing with 
manual segmentation and performed a preliminary 
quantitative analysis showing its ability in differentiating 
the abnormal thighs with fat infiltration.

Materials and methods
This  study  was approved  by  the  institutional  review 
board. Owing to the fact that this is a retrospective study, 
informed consent was waived.

Datasets
Figure 1 provides an overview of the datasets used in this 
study. Detailed demographic and clinical characteristics 
are provided in Additional file 1: Table S1.

Dataset 1: a public reference database MyoSegmenTUM [20]
This database consists of 25 fat–water decomposition 
MRI scans collected from 19 subjects (15 healthy vol-
unteers and 4 patients with neuromuscular diseases) 
using 6-echo 3D spoiled gradient echo (GRE) sequences. 
Details on MRI acquisitions were described in the ref-
erence [20]. Three healthy subjects were scanned three 
times with repositioning for reproducibility assessment. 
The manual segmentation masks of all scans were pro-
vided in the database as ground truth. The manual ROIs 
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delineated four clinically relevant muscle groups (whole 
volume in 3D): quadriceps femoris muscle (ROI1), sarto-
rius muscle (ROI2), gracilis muscle (ROI3) and hamstring 
muscles (ROI4), with an average segmentation time 
of ~ 6 h per scan.

Dataset 2: local clinical data
Fat–water decomposition MRI images of 21 subjects 
were collected between 2018 and 2020 for clinical pur-
pose in our site on a 1.5-T GE Signa scanner, using a 3D 
three-point Dixon method and an iterative algorithm 
IDEAL [13] for fat–water decomposition. Images were 
acquired with the following parameters: repetition time 
(TR) = 7.608 ms, effective echo time (TE) = 3.576 ms, flip 
angle = 8°, reconstructed matrix size = 512 × 512,voxel 
size = 0.7422 × 0.7422 × 6mm3, the band width of 
244  Hz/voxel. Scanning was performed with two con-
secutive stacks (upper and lower portions of the thigh) in 
the axial plane to cover the whole bilateral thigh volumes 
using GE HD 12-channel body array coil, and each stack 
had approximately 40 slices. The manual segmentation 
masks of 11 scans were drawn by an operator and exam-
ined and approved by a radiologist with 12 years’ experi-
ence. The manual masks contained the same four ROIs as 
Dataset 1.

MRI preprocessing
For all scans, the left and right sides of the thighs were 
first separated and treated as two thigh volumes for anal-
ysis, which also doubled the dataset size. As a preproc-
essing step, the subcutaneous fat and skin were removed 
automatically on water images to potentially improve 

the segmentation performance: (1) A K-means cluster-
ing was first performed on water images and the cluster 
with higher intensity was kept (subcutaneous fat with 
lower intensity was removed); (2) the skin region was 
then removed by applying an order-statistic filtering on 
the mask generated in the last step; and (3) the final mask 
was generated after filling the holes and a dilation (in case 
muscle regions were incorrectly removed in the previous 
steps). The MRI preprocessing was performed in MAT-
LAB R2019a. The water and fat images covering only the 
muscle regions for each thigh volume were used for the 
CNN training and evaluation.

Convolutional neural network training
A CNN was trained to automatically segment the four 
thigh muscle groups (ROI1–ROI4) using a U-net archi-
tecture [30] in Keras [31] with TensorFlow backend [32] 
on a Windows workstation with an Nvidia 1080Ti GPU. 
The network architecture is shown in Fig.  2. The whole 
dataset with manual ROIs for developing the CNN con-
sisted of 25 scans from Dataset 1 and 11 scans from 
Dataset 2. The network was trained in 2D using a total 
of 4968 slices from 46 thigh volumes (23 scans, 16 from 
Dataset 1 and seven from Dataset 2). The preprocessed 
water and fat images were used as two input chan-
nels, and both channels were independently normal-
ized  to  [0,  1]. The manual segmentation masks were 
provided as ground truth. The network was trained using 
a batch size of 6 for 1000 epochs on ~ 3/4 of the train-
ing set (3940 slices from 36 thigh volumes of 18 scans, 
13 from Dataset 1 and five from Dataset 2). Validation 
was  performed  after  each  epoch using on the rest ~ 1/4 

Fig. 1  An overview of the two datasets and workflow of this study
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of the training set (1028 slices from ten thigh volumes of 
five scans, three from Dataset 1 and two from Dataset 2). 
The network was trained using Adam optimizer with a 
learning rate of 10−6 [33]. The training objective was to 
minimize the categorical cross-entropy loss between the 
CNN outputs and the manual segmentations. The CNN 
outputs were compressed to the range (0,1) using a sig-
moid function. A threshold of 0.5 was applied to bina-
rize the CNN outputs. The binarized CNN outputs were 
stacked back to thigh volumes, and for each ROI, only 
the largest region in 3D was kept as the final automated 
mask.

Convolutional neural network evaluation
The CNN segmentation was evaluated using an inde-
pendent testing set consisting of those MRI scans that 
were not used for CNN training but had manual ROIs. 
The testing set included the MRI images acquired from 
the three subjects with three repeated scans in Dataset 1 
(3 × 3 scans, 6 × 3 thigh volumes) and four scans in Data-
set 2 (eight thigh volumes). The performance of the CNN 
segmentation was assessed by comparing with manual 
segmentation in three ways: (1) Dice coefficient at the 
volume level; (2) differences in volume and fat fraction 
estimation; the percent differences in volume between 
manual and CNN segmentation were assessed; for each 
scan, a fat fraction map was generated as the ratio of 
fat image over the sum of water and fat images, and the 
mean fat fraction (meanFF) values in each muscle group 
were calculated. (3) Reproducibility in meanFF deter-
mined by the intraclass correlation coefficients (ICCs) in 
each ROI using the repeated scans in Dataset 1. For (1) 

and (2), in order to avoid bias from the repeated scans, 
the values of each thigh volume with repeated scans were 
averaged for assessment.

A quantitative analysis using CNN segmentation
A preliminary quantitative analysis was performed using 
the clinical scans of 14 subjects in Dataset 2 that were not 
used for CNN training. As few patients received biopsy-
based pathological examination, radiological assessment 
was used as a reference standard. Among the 14 subjects, 
seven of them had no radiological evidence of abnormal 
fat infiltration in their thigh muscles, while the remain-
ing seven subjects showed abnormal fat replacement of 
muscle (14 normal vs. 14 abnormal thigh volumes). The 
meanFF values in each ROI were calculated using the 
CNN segmentation masks. A one-tailed, two-sample t 
test assuming unequal variances was performed to detect 
possible differences in meanFF between normal and 
abnormal thighs. A p value of < 0.05 considered statisti-
cally significant.

Results
Performance of the CNN segmentation
Figures 3 and 4 show the MRI images and the segmenta-
tion results of a representative slice in the independent 
testing set from Dataset 1 and Dataset 2, respectively. 
The manual segmentation and automated segmentation 
show excellent agreement visually. The CNN generated 
the ROIs within 10–30 s for each thigh volume.

Table  1 summarizes the mean and standard deviation 
Dice coefficients between manual and automated seg-
mentation results for ROI1 ~ ROI4 of each thigh volume 

Fig. 2  U-net architecture for segmentation of the four thigh muscle regions
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in the testing set. To avoid bias, the Dice coefficients of 
each thigh volume with repeated scans were first aver-
aged (their mean ± standard deviation was calculated as 
shown in Table  1). It is noted that some ROIs are very 
small, or some regions (particularly at either end of mus-
cle insertion/attachment) can be more inaccurate, which 
impacts the Dice coefficient. Our mean Dice coefficients 
were > 0.85 for all ROIs, even for the smallest ROI2. The 
Dice coefficients of ROI2 and ROI3 were relatively lower 
than those of ROI1 and ROI4 because ROI2 and ROI3 are 
smaller muscle groups.

Figure  5 demonstrates the percent differences in vol-
ume and meanFF differences between manual and auto-
mated segmentation for each thigh volume in the testing 
set (the values of each thigh volume with repeated scans 
were averaged). The average percent difference in vol-
ume (absolute values) was 7.57%. As ROI2 and ROI3 are 
relatively small muscle regions, the percent difference in 
volume could be large even if the volume difference was 
small. The differences in meanFF of all thigh volumes 
were within an acceptable range (− 0.5 to 1.5%). The aver-
age of the absolute differences in meanFF was 0.17%.

Table 2 demonstrates the ICCs of meanFF in the four 
ROIs based on the repeated scans. As shown, CNN-
based segmentation method produced more reproduc-
ible fat fraction measures than manual segmentation in 
all ROIs.

Quantitative analysis results
Figure  6 illustrates the meanFF differences between the 
14 normal and 14 abnormal thigh volumes in Dataset 2 
calculated using the CNN-based automated ROIs. For 
all ROIs, abnormal thighs showed significantly higher fat 
fraction than normal thighs, although a clear threshold 
could not be defined based on this preliminary analysis.

Discussion
In this work, we adopt the U-net architecture to train 
a CNN using fat–water decomposition MRI for thigh 
muscle segmentation. Time-efficient thigh muscle seg-
mentation is a major challenge in moving from a pri-
marily qualitative assessment of thigh muscle MRI in 
clinical practice, to potentially more accurate and quan-
titative methods. Compared to the time-consuming 

Fig. 3  A scheme of this study, with MRI images and the segmentation results of an example from Dataset 1 in the testing set. a–c the original water 
image, fat image and PDFF map provided by Dataset 1, d the manual segmentation masks of four ROIs, e, f the preprocessed water image and fat 
image covering the whole thigh muscles as CNN input channels, g the automated CNN-derived segmentation masks. For d, g, segmentations are 
superimposed on the water image, with ROI1 (quadriceps femoris) in red, ROI2 (sartorius) in green, ROI3 (gracilis) in blue and ROI4 (hamstrings) in 
yellow
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and labor-intensive manual annotation, which ordinar-
ily takes at least 5–6  h, the proposed fully automated 
method provided sufficiently accurate segmentation tak-
ing between 10–30 s for each thigh volume. In terms of 
fat fraction quantification, the automated segmentation 
demonstrated higher reproducibility in fat fraction esti-
mation compared to manual segmentation (overall ICCs: 
0.921 vs. 0.902). A reproducible measurement allows 
serial monitoring, which can be useful, particularly if 
there is an intervention to allow for the detection of dis-
ease progression or for evaluation of treatment efficacy. 
Furthermore, the automated segmentation enabled the 
quantitative evaluation of fat infiltration in thigh muscles 
and showed potential for assisting diagnosis or surveil-
lance when applied to clinical data.

This CNN segmentation method was trained using 
images from two datasets that were acquired by research 
used six-point Dixon (Dataset 1) and also clinically 
implemented three-point Dixon (Dataset 2). Although 
the two datasets were obtained with different sequences 
and scanners, our generalized network demonstrates sat-
isfying segmentation accuracy in both datasets. This an 
important strength of our segmentation network as it can 

be applied to both clinical and research data for further 
studies. Both three-point and the more advanced six-
point Dixon methods have been widely used for quantify-
ing muscle fat content [2]. The six-point Dixon method 
used in Dataset 1 [20] not only addresses magnetic field 
inhomogeneities but also corrects for confounding fac-
tors including T1 bias, T2* decay and multispectral com-
plexity of fat protons, in order to perform more accurate 
fat–water separation and obtain the PDFF maps. PDFF 
is a standardized biomarker of tissue fat concentration 
that reflects the fundamental property of tissue [14]. If 
available, such a method is preferred for more accurate 
muscle fat quantification, as suggested by previous stud-
ies [2, 15]. For three-point Dixon method, although some 
confounding factors exist, it has also been widely used to 
measure the fat replacement of skeletal muscle [2] due 
to its higher availability in clinical practice, and its inter- 
and intra-rater reliability has also been validated [5, 15, 
16].

This automated, fast and reproducible thigh muscle 
segmentation is expected to be useful for quantitative 
assessment of the intramuscular fat infiltration in clinical 
practice. We thereby performed a preliminary analysis 

Fig. 4  MRI images and the segmentation results of an example from Dataset 2 in the testing set. a–c the original water image, fat image and the 
calculated fat fraction map, d the manual segmentation masks of four ROIs, e, f the preprocessed water image and fat image covering the whole 
thigh muscles as CNN input channels, g the automated CNN-derived segmentation masks. For d, g, segmentations are superimposed on the water 
image, with ROI1 (quadriceps femoris) in red, ROI2 (sartorius) in green, ROI3 (gracilis) in blue and ROI4 (hamstrings) in yellow
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using our local clinical data, which demonstrates the 
feasibility of using this CNN-based thigh muscle seg-
mentation method in differentiating the normal thighs 
and the abnormal thighs with fat infiltration. Significant 
differences between normal and abnormal thighs were 
detected in all four ROIs using the CNN-based auto-
mated segmentation.

Our method shows advantages compared to other 
studies that tackled this challenging task in recent years 
[21–25]. Kemnitz et al. [21] developed a semiautomated 
thigh muscle segmentation method using an active shape 
model. In order to achieve high agreement with manual 
segmentation, this method required manual interaction 
to modify the individual thigh component masks as the 
first step before applying the segmentation. Later in 2019, 
they also applied a U-net deep learning architecture for 
fully automated thigh muscle segmentation [22]. The seg-
mentation was performed only for a particular anatomi-
cal location (33% of the femoral bone), which might not 
be used for volumetric analysis. In addition, these two 
studies used nonquantitative T1-weighted MRI, which 
limited their applications in quantitative studies. Rod-
rigues et  al. [23] developed an automated thigh muscle 
segmentation method based on local texture analysis 
using three-point Dixon MRI data. They segmented the 
entire muscle region without distinguishing any muscle 
groups. Mesbah et al. [24] segmented three thigh muscle 

groups on the fat and water images utilizing a 3-D Joint 
Markov Gibbs Random Field model. The approach was 
performed on the preselected 50 central slices in a total 
of seven steps, which might make it difficult to apply in 
clinical settings. Moreover, the above studies did not per-
form reproducibility analysis. Ogier et  al. [25] designed 
a semiautomatic segmentation pipeline of individual leg 
muscles using two-point Dixon and three-point Dixon 
images based on automatic propagation through nonlin-
ear registrations of initial delineation. The reproducibil-
ity was also assessed on four subjects scanned twice on 
the same day. However, the initial manual thigh muscle 
segmentation of three slices was required. It is also noted 
that the two-point Dixon technique can suffer from 
phase errors due to static field inhomogeneity, which 
should be used with caution in quantitative measurement 
[34]. Our CNN-based automated method for thigh mus-
cle segmentation on the whole volumes is designed for 
quantitative fat–water decomposition MRI (three-point 
and six-point Dixon sequences), which could be further 
used to identify potential image-based biomarkers. It 
produces sufficiently accurate segmentation of four mus-
cle groups in seconds and exhibits high reproducibility 
compared with manual segmentation.

The current study has some limitations. First, the num-
ber of subjects was relatively small. In order to reduce the 
effect of the small dataset, the sample size was doubled 

Table 1  Segmentation accuracy assessed by  Dice coefficients between  manual and  automated segmentation for  each 
ROI of each thigh volume in the testing set

ROI1, quadriceps femoris; ROI2, sartorius; ROI3, gracilis; ROI4, hamstrings; SD, standard deviation

ROI1 ROI2 ROI3 ROI4

Dataset 1
(mean ± SD as repeated scans were 

performed)

 1st, left 0.942 ± 0.002 0.886 ± 0.007 0.866 ± 0.015 0.915 ± 0.004

 1st, right 0.923 ± 0.010 0.812 ± 0.038 0.866 ± 0.011 0.900 ± 0.014

 2nd, left 0.927 ± 0.006 0.848 ± 0.005 0.846 ± 0.024 0.917 ± 0.004

 2nd, right 0.927 ± 0.013 0.872 ± 0.007 0.877 ± 0.013 0.902 ± 0.024

 3rd, left 0.933 ± 0.003 0.869 ± 0.007 0.861 ± 0.003 0.925 ± 0.003

 3rd, right 0.932 ± 0.011 0.874 ± 0.004 0.876 ± 0.021 0.915 ± 0.014

Dataset 2

 1st, left 0.958 0.890 0.881 0.905

 1st, right 0.954 0.918 0.897 0.911

 2nd, left 0.923 0.848 0.819 0.842

 2nd, right 0.920 0.774 0.835 0.824

 3rd, left 0.944 0.806 0.819 0.904

 3rd, right 0.946 0.814 0.771 0.871

 4th, left 0.960 0.914 0.931 0.897

 4th, right 0.959 0.904 0.902 0.884

 Mean 0.939 0.859 0.860 0.894

 SD 0.015 0.044 0.040 0.029
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after separating the left and right thigh volumes, and our 
network was trained in 2D using a total of 4968 slices. 
However, more data are needed to further improve the 
segmentation performance and also validate its repro-
ducibility. Second, the current CNN segmentation was 

not suitable for patients with markedly severe fat infiltra-
tion (i.e., whole muscle group involvement obscuring the 
muscle boundary), as we had limited data of such cases 
to train the network. Third, for the preliminary quantita-
tive analysis, the pathology results, usually used as a gold 
standard, were missing for our dataset. In addition, only 
meanFF was calculated, and no clear thresholds were 
found to distinguish the normal and abnormal thighs 
in our preliminary results. Fourth, it is noted that both 
segmentations yielded only moderate reproducibility in 
ROI2, which suggests ROI2, the sartorius muscle, might 
not be suitable for quantitative determination of fat 
infiltration. This is probably because ROI2 is the small-
est muscle region among these four ROIs. For a very 
small ROI, a little difference in ROI delineation can lead 
to a large difference in fat fraction estimation. Finally, 
the segmentation network was trained and tested only 
based on these two datasets. Although satisfying results 
were achieved for these two datasets, external validation 

Fig. 5  a Percent differences in volume between manual and automated segmentation for the 26 thigh volumes in the testing set. The average of 
the absolute differences was 7.57%. b The differences in meanFF between manual and automated segmentation for the 26 thigh volumes in the 
testing set. The average of the absolute differences was 0.17%

Table 2  Reproducibility analyses calculated by  ICCs 
on meanFF of the repeated scans

ROI1, quadriceps femoris; ROI2, sartorius; ROI3, gracilis; ROI4, hamstrings

ICCs [95% 
confidence 
interval]

Manual segmentation CNN-based 
automated 
segmentation

ROI1 0.889 [0.645,0.982] 0.910 [0.702,0.985]

ROI2 0.604 [0.126,0.922] 0.639 [0.171,0.930]

ROI3 0.889 [0.645,0.982] 0.913 [0.710,0.986]

ROI4 0.942 [0.798,0.991] 0.968 [0.884,0.995]

Overall 0.902 [0.820,0.953] 0.921 [0.852,0.962]
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using an independent dataset acquired with a different 
scanner is further needed to ensure the reproducibil-
ity and feasibility of this segmentation method in clini-
cal practice. Further studies are also needed to establish 
age-specific reference ranges as well as to improve and 
validate the segmentation performance across the spec-
trum of diseases. In addition, more image-based features 
or biomarkers can be investigated in future studies with 
a larger dataset, and other factors, including age, sex and 
body mass index, need to be considered.

Conclusions
In conclusion, we present a deep learning-based thigh 
muscle segmentation method using fat–water decom-
position MRI. This fast and automated method exhibits 
excellent segmentation accuracy and higher reproduc-
ibility in fat fraction estimation compared to manual 
segmentation, which would be beneficial to clinical 

practice such as quantifying fat infiltration in thigh 
muscles associated with ageing, or in conditions such 
as neuromuscular disorders. Moreover, reproducible 
segmentation allows serial monitoring which can be 
particularly useful for detection of disease progression 
or for evaluation of treatment efficacy.
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