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Abstract

Fully convolutional neural networks (FCNs), and in particular U-Nets, have achieved state-of-the-

art results in semantic segmentation for numerous medical imaging applications. Moreover, batch 

normalization and Dice loss have been used successfully to stabilize and accelerate training. 

However, these networks are poorly calibrated i.e. they tend to produce overconfident predictions 

for both correct and erroneous classifications, making them unreliable and hard to interpret. In this 

paper, we study predictive uncertainty estimation in FCNs for medical image segmentation. We 

make the following contributions: 1) We systematically compare cross-entropy loss with Dice loss 

in terms of segmentation quality and uncertainty estimation of FCNs; 2) We propose model 

ensembling for confidence calibration of the FCNs trained with batch normalization and Dice loss; 

3) We assess the ability of calibrated FCNs to predict segmentation quality of structures and detect 

out-of-distribution test examples. We conduct extensive experiments across three medical image 

segmentation applications of the brain, the heart, and the prostate to evaluate our contributions. 

The results of this study offer considerable insight into the predictive uncertainty estimation and 

out-of-distribution detection in medical image segmentation and provide practical recipes for 

confidence calibration. Moreover, we consistently demonstrate that model ensembling improves 

confidence calibration.
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I. Introduction

FULLY convolutional neural networks (FCNs), and in particular the U-Net [1], have become 

a de facto standard for semantic segmentation in general and in medical image segmentation 

tasks in particular. The U-Net architecture has been used for segmentation of both normal 

organs and lesions and achieved top ranking results in several international segmentation 

challenges [2]-[4]. Despite numerous applications of U-Nets, very few works have studied 

the capability of these networks in capturing predictive uncertainty. Predictive uncertainty or 

prediction confidence is described as the ability of a decision-making system to provide an 

expectation of success (i.e. correct classification) or failure for the test examples at inference 

time. Using a frequentist interpretation of uncertainty, predictions (i.e. class probabilities) of 

a well-calibrated model should match the probability of success of those inferences in the 

long run [5]. For instance, if a well-calibrated brain tumor segmentation model classifies 100 

pixels each with the probability of 0.7 as cancer, we expect 70 of those pixels to be correctly 

classified as cancer. However, a poorly calibrated model with similar classification 

probabilities is expected to result in many more or less correctly classified pixels. 

Miscalibration frequently occurs in many modern neural networks (NNs) that are trained 

with advanced optimization methods [5]. Poorly-calibrated NNs are often highly confident 

in misclassification [6]. In some applications, for example, medical image analysis, or 

automated driving, overconfidence can be dangerous.

The soft Dice loss function [7], also known as Dice loss, is a generalized measure where the 

probabilistic output of a segmenter is compared to the training data, set memberships are 

augmented with label probability, and a smoothing factor is added to the denominator to 

make the loss function differentiable. With the Dice loss, the model parameter set is chosen 

to minimize the negative of weighted Dice of different structures. Dice loss is robust to class 

imbalance and has been successfully applied in many segmentation problems [8]. 

Furthermore, Batch Normalization (BN) effectively stabilizes convergence and also 

improves performance of networks for natural image classification tasks [9]. BN and Dice 

loss have made FCN optimization seamless. The addition of BN to the U-Net has improved 

optimization and segmentation quality [10]. However, it has been reported that both BN and 

Dice loss have adverse effects on calibration quality [5], [11], [12]. Consequently, FCNs 

trained with BN and Dice loss do not produce well-calibrated probabilities leading to poor 

uncertainty estimation. In contrast to Dice loss, cross-entropy loss provides better calibrated 

predictions and uncertainty estimates, as it is a strictly proper scoring rule [13]. Yet, the use 

of cross-entropy as the loss function for training FCNs can be challenging in situations 

where there is a high class imbalance, e.g., where most of an image is considered 

background [8]. Hence, it is of great significance and interest to study methods for 

confidence calibration of FCNs trained with BN and Dice loss.
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Another important aspect of uncertainty estimation is the ability of a predictive model to 

distinguish in-distribution test examples (i.e. those similar to the training data) from out-of-
distribution test examples (i.e. those that do not fit the distribution of the training data) [14]. 

The ability of the models to detect out-of-distribution inputs is specifically important for 

medical imaging applications as deep networks are sensitive to domain shift, which is a 

recurring situation in medical imaging [15]. For instance, networks trained on one MRI 

protocol often do not perform satisfactorily on images obtained with slightly different 

parameters or out-of-distribution test images. Hence, in the face of an out-of-distribution 

sample, an ideal model knows and announces “I do not know” and seeks human intervention 

– if possible – instead of a silent failure. Figure 1 shows an example of out-of-distribution 

detection from a U-Net model that was trained with BN and Dice loss for prostate gland 

segmentation before and after confidence calibration.

II. Related Works

There has been a recent growing interest in uncertainty estimation and confidence 

measurement with deep NNs. Although most studies on uncertainty estimation have been 

done through Bayesian modeling of the NN, there has been some recent interest in using 

non-Bayesian approaches such as ensembling methods. Here, we first briefly review 

Bayesian and non-Bayesian methods and then review the recent literature for uncertainty 

estimation for semantic segmentation applications.

In the Bayesian approach, the deterministic parameters of the NN are replaced by prior 

probability distributions. Using Bayesian inference, given the data samples, a posterior 

probability distribution over the parameters is calculated. At inference time, instead of single 

scalar probability, the Bayesian NN gives probability distributions over the output label 

probabilities [16], which models NN predictive uncertainty. Gal and Ghahramani [18] 

proposed to use dropout [17] as a Bayesian approximation. They proposed Monte Carlo 
dropout (MC dropout) in which dropout layers are applied before every weight together with 

non-linearities. The probabilistic Gaussian process is approximated at inference time by 

running the model several times with active dropout layers. Implementing MC dropout is 

straightforward and has been applied in several application domains including medical 

imaging [19]. In a similar Bayesian approach, Teye et al. [20] showed that training NNs with 

BN [9] can be used to approximate inference of Bayesian NNs. For networks with BN and 

without dropout, Monte Carlo Batch Normalization (MCBN) can be considered an 

alternative to MC dropout. In another Bayesian work, Heo et al. [21] proposed a method that 

allows the attention model to leverage uncertainty. By learning the Uncertainty-aware 
Attention (UA) with variational inference, they improved both model calibration and 

performance in attention models. Seo et al. [22] proposed a variance-weighted loss function 

that enables learning single-shot calibration scores. In combination with stochastic depth and 

dropout, their method can improve confidence calibration and classification accuracy. 

Recently, Liao et al. [23] proposed a method for modeling such uncertainty in intra-observer 

variability of 2D echocardiography using the proposed cumulative density function 

probability method.
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Non-Bayesian approaches have been proposed for probability calibration and uncertainty 

estimation. Guo et al. [5] studied the problem of confidence calibration in deep NNs. 

Through experiments, they analyzed different parameters such as depth, width, weight 

decay, and BN and their effect on calibration. They also used temperature scaling to easily 

calibrate trained models. Ensembling has been used as an effective tool to improve 

classification performance of deep NNs in several applications including medical image 

segmentation [24], [25]. Following the success of ensembling methods [26] in improving 

baseline performance, Lakshminarayanan proposed Deep Ensembles in which model 

averaging was used to estimate predictive uncertainty [27]. By training collections of models 

with random initialization of parameters and adversarial training, they provided a simple 

approach to assess uncertainty. This observation motivated some of the experimental design 

in our work. Unlike MC dropout, using Deep Ensembles does not require network 

architecture modification. In [27] authors showed that Deep Ensembles outperforms MC 

dropout on two image classification problems. On the downside, Deep Ensembles requires 

retraining a model from scratch, which is computationally expensive for large datasets and 

complex models.

Predictive uncertainty estimation has been studied specifically for the problem of semantic 

segmentation with deep NNs. Bayesian SegNet [28] was among the first that addressed 

uncertainty estimation in FCNs by using MC dropout. They applied MC dropout by adding 

dropout layers after the pooling and upsampling blocks of the three innermost layers of the 

encoder and decoder sections of the SegNet architecture. Using similar approaches for 

uncertainty estimation, Kwon et al. [29] and Sedai et al. [30] used Bayesian NNs for 

uncertainty quantification in segmentation of ischemic stroke lesions and visualization of 

retinal layers, respectively. Sander et al. [11] applied MC dropout to capture instance 

segmentation uncertainty in ambiguous regions and compared different loss functions in 

terms of the resultant miscalibration. Kohl et al. [31] proposed a Probabilistic U-Net that 

combined an FCN with a conditional variance autoencoder to provide multiple segmentation 

hypotheses for ambiguous images. In similar work, Hu et al. [32] studied uncertainty 

quantification in the presence of multiple annotations as a result of inter-observer 

disagreement. They used a probabilistic U-Net to quantify uncertainty in the segmentation of 

lung abnormalities. Baumgartner et al. [33] presented a probabilistic hierarchical model 

where separate latent variable are used for different resolutions and variational autoencoder 

is used for inference. Rottmann and Schubert [34] proposed a prediction quality rating 

method for segmentation of nested multi-resolution street scene images by measuring both 

pixel-wise and segment-wise measures of uncertainty as predictive metrics for segmentation 

quality. Recently, Karimi et al. [35] used ensembling for uncertainty estimation of difficult 

to segment regions and used this information to improve clinical target volume estimation in 

prostate ultrasound images. In another recent work, Jungo and Reyes [36] studied 

uncertainty estimation for brain tumor and skin lesion segmentation tasks.

In conjunction with uncertainty estimation and confidence calibration, several works have 

studied out-of-distribution detection [14], [37]-[40]. In a non-Bayesian approach, Hendrycks 

and Gimpel [14] used softmax prediction probability baseline to effectively predict 

misclassificaiton and out-of-distribution in test examples. Liang et al. [37] used temperature 

scaling and input perturbations to enhance the baseline method of Hendrycks and Gimpel 
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[14]. In the context of a generative NN scheme, Lee et al. [38] used a loss function that 

encourages confidence calibration and this resulted in improvements in out-of-distribution 

detection. Similarly, DeVries and Taylor [39] proposed a hybrid with a confidence term to 

improve out-of-distribution detection. Shalev et al. [40] used multiple semantic dense 

representations of the target labels to detect misclassified and adversarial examples.

III. Contributions

In this work, we study predictive uncertainty estimation for semantic segmentation with 

FCNs and propose ensembling for confidence calibration and reliable predictive uncertainty 

estimation of segmented structures. In summary, we make the following contributions:

• We analyze the choice of loss function for semantic segmentation in FCNs. We 

compare the two most commonly used loss functions in training FCNs for 

semantic segmentation: cross-entropy loss and Dice loss. We train models with 

these loss functions and compare the resulting segmentation quality and 

predictive uncertainty estimation. We observe that FCNs trained with Dice loss 

perform significantly better segmentation compared to those trained with cross-

entropy but at the cost of poor calibration.

• We propose model ensembling [27] for confidence calibration of FCNs trained 

with Dice loss and batch normalization. By training collections of FCNs with 

random initialization of parameters and random shuffling of training data, we 

create an ensemble that improves both segmentation quality and uncertainty 

estimation. We also compare ensembling with MC dropout [18], [28]. We 

empirically quantify the effect of the number of models on calibration and 

segmentation quality.

• We propose to use average entropy over the predicted segmented object as a 

metric to predict segmentation quality of foreground structures, which can be 

further used to detect out-of-distribution test inputs. Our results demonstrate that 

object segmentation quality correlates inversely with the average entropy over 

the segmented object and can be used effectively for detecting out-of-distribution 

inputs.

• We demonstrate our method for uncertainty estimation and confidence 

calibration on three different segmentation tasks from MRI images of the brain, 

the heart, and the prostate. Where appropriate, we report the statistical 

significance of our findings.

IV. Applications & Data

Table I shows the number of patient images in each dataset and how we split these into 

training, validation, and test sets. In the following subsections, we briefly describe each 

segmentation task, data characteristics, and pre-processing.
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A. Brain Tumor Segmentation Task

For brain tumor segmentation, data from the MICCAI 2017 BraTS challenge [41], [42] was 

used. This is a four-class segmentation task; multiparametric MRI of brain tumor patients 

are to be segmented into enhancing tumor, non-enhancing tumor, edema, and background. 

The training dataset consists of 190 multiparametric MRI (T1-weighted, contrast-enhanced 

T1-weighted, T2-weighted, and FLAIR sequences) from brain tumor patients. The dataset is 

further subdivided into two sets: CBICA and TCIA. The images in CBICA set were 

acquired at the Center for Biomedical Image Computing and Analytics (CBICA) at the 

University of Pennsylvania [41]. The images in the TCIA set were acquired across multiple 

institutions and hosted by the National Cancer Institute, The Cancer Imaging Archive 

(TCIA). The CBICA subset was used for training and validation and the TCIA subset was 

reserved as the test set.

B. Ventricular Segmentation Task

For heart ventricle segmentation, data from the MICCAI 2017 ACDC challenge for 

automated cardiac diagnosis was used [43]. This is a four-class segmentation task; cine MR 

images (CMRI) of patients are to be segmented into the left ventricle, the myocardium, the 

right ventricle, and the background. This dataset consists of end-diastole (ED) and end-

systole (ES) images of 100 patients. We used only the ED images in our study.

C. Prostate Segmentation Task

For prostate segmentation, the public datasets, PROSTATEx [44] and PROMISE12 [45] 

were used. This is a two-class segmentation task; Axial T2-weighted images of men 

suspected of having prostate cancer are to be segmented into the prostate gland and the 

background. For PROSTATEx dataset, 40 images with annotations from Meyer et al. [46] 

were used. All these images were acquired at the same institution. PROSTATEx dataset was 

used for both training and testing purposes, and PROMISE12 dataset was set aside for test 

only. PROMISE12 dataset is a heterogeneous multi-institutional dataset acquired using 

different MR scanners and acquisition parameters. We used the 50 training images for which 

ground truth is available.

D. Data Pre-processing

Prostate and cardiac images were resampled to the common in-plane resolution of 0.5×0.5 

mm and 2×2 mm, respectively. Brain images were resampled to the resolution of 1×1×2 

mm. All axial slices were then cropped at the center to create images of size 224 × 224 

pixels as the input size of the FCN. Image intensities were normalized to be within the range 

of [0,1].

V. Methods

A. Model

Semantic segmentation can be formulated as a pixel-level classification problem, which can 

be solved by convolutional neural networks [47]. The pixels in the training image and label 

pairs can be considered as N i.i.d data points D = {xn, yn}n = 1
N , where x ∈ ℝM is the M-

Mehrtash et al. Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dimensional input and y can be one and only one of the k possible classes k ∈ {1, …, K}. 

The use of FCNs for image segmentation allows for end-to-end learning, with each pixel of 

the input image being mapped by the FCN to the output segmentation map. Compared to 

FCNs, patch-based NNs are much slower at inference time as they require sliding window 

mechanisms for predicting each pixel [48]. Moreover, it is more straightforward to 

implement segment-level loss functions such as Dice loss in FCN architectures. FCNs for 

segmentation usually consist of an encoder (contracting) path and a decoder (expanding) 

path [1], [48]. FCNs with skip-connections are able to combine high level abstract features 

with low-level high-resolution features, which has been shown to be successful in 

segmentation tasks [1], [10]. NNs can be formulated as parametric conditional probability 

models, p(yj∣xj, θ), and the parameter set θ is chosen to minimize a loss function. Both 

cross-entropy (CE) and negative of Dice Similarity Coefficient (DSC), known as Dice loss, 

have been used as loss functions for training FCNs. Class weights are used for optimization 

convergence and dealing with the class imbalance issue. With CE loss, parameter set is 

chosen to maximize the average log-likelihood over training data:

ℒCE = − 1
N ∑

i = 1

N
∑

k = 1

K
ωk ln (p(yi = k ∣ xi, θ)) ⋅ (yi = k), (1)

where p(yi = k ∣ xi, θ) is the probability of pixel i belonging to class k, (yi = k) is the binary 

indicator which denotes if the class label k is the correct class of ith pixel, ωk is the weight 

for class k, and N is the number of pixels that are used in each mini-batch.

With the Dice loss, the parameter set is chosen to minimize the negative of weighted Dice of 

different structures:

ℒDSC = − 2 ∑
k = 1

K ωk∑i = 1
N [p(yi = k ∣ xi, θ) ⋅ (yi = k)]

∑i = 1
N [p(yi = k ∣ xi, θ) + (yi = k)] + ϵ

, (2)

where p(yi = k ∣ xi, θ) is the probability of pixel belonging to class k, (yi = k) is the binary 

indicator which denotes if the class label k is the correct class of ith pixel, ωk is the weight 

for class k, N is the number of pixels that are used in each mini-batch, and ϵ is the 

smoothing factor to make the loss function differentiable. Subsequently, p(yi∣xi, θ*) is used 

for inference, where θ* is the optimized parameter set.

B. Calibration Metrics

The output of an FCN for each input pixel is a class prediction yj and its associated class 

probability p(yj∣xj, θ). The class probability can be considered the model confidence or 

probability of correctness and can be used as a measure for predictive uncertainty at the 

pixel level. Strictly proper scoring rules are used to assess the calibration quality of 

predictive models [13]. In general, scoring rules assess the quality of uncertainty estimation 

in models by awarding well-calibrated probabilistic forecasts. Negative log-likelihood 

(NLL), and Brier score [49], are both strictly proper scoring rules that have been previously 

used in several studies for evaluating predictive uncertainty [5], [18], [27]. In a segmentation 

problem, for a collection of N pixels, NLL is calculated as:
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NLL = − 1
N ∑

i = 1

N
∑

k = 1

K
ln (p(yi = k ∣ xi, θ)) ⋅ (yi = yk) (3)

Brier score (Br) measures the accuracy of probabilistic predictions:

Br = 1
N ∑

i = 1

N 1
K ∑

k = 1

K
[p(yi = yk ∣ xi, θ) − (yi = yk)]2

(4)

In addition to NLL and Brier score, we directly assess the predictive power of a model by 

analyzing test examples confidence values versus their measured expected accuracy values. 

To do so, we use reliability diagrams as visual representations of model calibration and 

Expected Calibration Error (ECE) as summary statistics for calibration [5], [50]. Reliability 

diagrams plot expected accuracy as a function of class probability (confidence). The 

reliability diagram of a perfectly calibrated model is the identity function. For expected 

accuracy measurement, the samples are binned into N groups and the accuracy and 

confidence for each group are computed. Assuming Dm to be indices of samples whose 

confidence predictions are in the range of (m − 1
M , m

M ], the expected accuracy of the Dm is 

Acc(Dm) = 1
∣ Dm ∣ ∑i ∈ Dm1(yi = yi). The average confidence on bin Dm is calculated as 

P (Dm) = 1
Dm ∣ ∑i ∈ Dm p(yi = yi ∣ xi, θ). ECE is calculated by summing up the weighted 

average of the differences between accuracy and the average confidence over the bins:

ECE = ∑
m = 1

M ∣ Dm ∣
N ∣ ACC(Dm) − P (Dm) ∣ , (5)

where N is the total number of samples. In other words, ECE is the average of gaps on the 

reliability diagram.

C. Confidence Calibration with Ensembling

We propose to empirically determine whether ensembling [26] results in confidence 

calibration of otherwise poorly calibrated FCNs trained with Dice loss. To this end, similar 

to the Deep Ensembles method [27], we train M FCNs with random initialization of the 

network parameters and random shuffling of the training dataset in mini-batch stochastic 

gradient descent. However, unlike the Deep Ensemble method, we do not use any form of 

adversarial training. We train each of the M models in the ensemble from scratch and then 

compute the probability of the ensemble pE as the average of the baseline probabilities as 

follows:

pE(yj = k ∣ xj) = 1
M ∑

m = 1

M
p(yj = k ∣ xj, θm

∗ ), (6)

where p(yi = k ∣ xi, θm
∗ ) are the individual probabilities.
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D. Segment-level Predictive Uncertainty Estimation

For segmentation applications, besides the pixel-level confidence metric, it is desirable to 

have a confidence metric that captures model uncertainty at the segment-level. Such a metric 

would be very useful in clinical applications for decision making. For a well-calibrated 

system, we anticipate that a segment-level confidence metric can predict the segmentation 

quality in the absence of ground truth. The metric can be used to detect out-of-distribution 

samples and hard or ambiguous cases. Such metrics have been previously proposed for street 

scene segmentation [34]. Given the pixel-level class predictions yi and their associated 

ground truth class yi for a predicted segment Sk = {s ∈ (xi, yi) ∣ yi = k}, we propose to use 

the average of pixel-wise entropy values over the predicted foreground * segment Sk as a 

scalar metric for volume-level confidence of that segment as:

ℋ(Sk) = − 1
Sk

∑
i ∈ Sk

[p(yi

= k ∣ xi, θ) ⋅ ln (p(yi = k ∣ xi, θ)) + (1 − p(yi
= k ∣ xi, θ)) ⋅ ln (1 − p(yi = k ∣ xi, θ))] .

(7)

In calculating the average entropy of Sk, we assumed binary classification: the probability of 

belonging to class p(yi = k ∣ xi, θ) and the probability of belonging to other classes 

1 − p(yi = k ∣ xi, θ).

VI. Experiments

A. Training Baselines

For all of the experiments, we used a baseline FCN model similar to the two-dimensional U-

Net architecture [1] but with fewer kernel filters at each layer. The input and output of the 

FCN have a size of 224 × 224 pixels. Except for the brain tumor segmentation that used a 

three-channel input (T1CE, T2, FLAIR), for the rest of the problems the input was a single 

channel. The network has the same number of layers as the original U-Net but with fewer 

kernels. The number of kernels for the encoder section of U-Net were 8, 8, 16, 16, 32, 32, 

64, 64, 128, and 128. The parameters of the convolutional layers were initialized randomly 

from a Gaussian distribution [51]. For each of the three segmentation problems, the model 

was trained 100 times with CE and 100 times with Dice loss, each with random weight 

initialization and random shuffling of the training data. For the models that were trained 

with Dice loss, the softmax activation function of the last layer was substituted with sigmoid 

function as it improved the convergence substantially. For CE loss, class weights ωk, were 

calculated as inverse frequencies of the class labels for the combined pixels in training and 

validation data. For Dice loss, uniform class weights, ωk, were used for all the foreground 

segments, except for the myocardium class in heart segmentation where the class weight was 

three times the other two foreground classes. For optimization, stochastic gradient descent 

with the Adam update rule [52] was used. During the training, we used a mini-batch of 16 

*Following the convention in the semantic segmentation literature, we are using foreground and background labels regardless of the 
fact that the problem is binary or k-class segmentation [48].
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examples for prostate segmentation and 32 examples for brain tumor and cardiac 

segmentation tasks. The initial learning rate was set to 0.005 and it was reduced by a factor 

of 0.5 – 0.8 if the average validation Dice score did not improve by 0.001 in 10 epochs. We 

used 1000 epochs for training the models with an early stopping policy. For each run, the 

model checkpoint was saved at the epoch where the validation DSC was the highest.

B. Cross-entropy vs. Dice

CE loss aims to minimize the average negative log-likelihood over the pixels, while Dice 

loss improves segmentation quality in terms of the Dice coefficient directly. As a result, we 

expect to observe models trained with CE to achieve a lower NLL and models trained with 

Dice loss to achieve better Dice coefficients. Here, our main focuses are to observe the 

segmentation quality of a model that is trained with CE in terms of Dice loss and the 

calibration quality of a model that was trained with Dice loss. We compare models trained 

with CE with those trained with Dice on three segmentation tasks.

C. MC dropout

MC dropout was implemented by modifying the baseline network as it was done in Bayesian 

SegNet [28]. Dropout layers were added to the three inner-most encoder and decoder layers 

with a dropout probability of 0.5. At inference time, Monte Carlo sampling was done with 

50 samples and the mean of the samples was used as the final prediction.

D. Confidence Calibration

We used ensembling (Equation 6) to calibrate batch normalized FCNs trained with Dice 

loss. For the three segmentation problems, we made ensemble predictions and compared 

them with baselines in terms of calibration and segmentation quality. For calibration quality, 

we compared NLL, Brier score, and ECE%. For segmentation quality, we compared dice 

and 95th percentile Hausdorff distance. Moreover, for calibration quality assessment we 

calculated the metrics on two sets of samples from the held-out test datasets: 1) the whole 

test dataset (all pixels of the test volumes) 2) pixels belonging to dilated bounding boxes 

around the foreground segments. The foreground segments and the adjacent background 

around them usually have the highest uncertainty and difficulty. At the same time, 

background pixels far from foreground segments show less uncertainty but outnumber the 

foreground pixels. Using bounding boxes removes most of the correct (certain) background 

predictions from the statistics and will lead to a better highlighting of the differences among 

models. For all three problems, we constructed bounding boxes of the foreground structures. 

The boxes are then dilated by 8 mm in each direction of the in-plane axes and 2 slices 

(which translates to 4mm to 20mm) in each direction of the out-of-plane axis.

We also measured the effect of ensembles by calculating pE(y∣x) (Equation 6) for ensembles 

with number of models (M) of 1, 2, 5, 10, 25, and 50. To provide better statistics and reduce 

the effect of chance in reporting the performance, for each ensemble, we sampled the 100 

baseline models n times and reported the averages and 95% CI of the NLL and Dice. For 

example, for M=50, instead of reporting the means of NLL and Dice on a single set of 50 

models (out of the 100 trained models), we sampled n sets of 50 models and reported the 
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averages and 95% CI of the NLL and Dice. For prostate and heart segmentation tasks n was 

set to 50 and for brain tumor segmentation n was set to 10.

E. Segment-level Predictive Uncertainty

For each of the segmentation problems, we calculated volume-level confidence for each of 

the foreground labels and ℋ(S) (Equation 7) vs. Dice. For prostate segmentation, we are 

also interested in observing the difference between the two datasets of PROSTATEx test set 

(which is the same as the source domain) and PROMISE-12 set (which can be considered as 

a target set).

Finally, in all the experiments, for statistical tests and calculating 95% confidence intervals 

(CI), we used bootstrapping (n=100). P-values of less than 0.01 were regarded as statistically 

significant. In all the presented tables, boldfaced text indicates the best results for each 

instance and shows that the differences are statistically significant.

VII. Results

Table II compares the calibration quality and segmentation performance of baselines and 

ensembles (M=50) trained with CE loss with those that were trained with Dice loss and 

those that were calibrated with MC dropout. The averages and 95% CI values for NLL, Brier 

score, and ECE% for the bounding boxes around the segments are provided. Table II also 

compares the averages and 95% CI values of Dice coefficients of foreground segments for 

baselines trained with cross-entropy loss, Dice loss, and baselines calibrated with 

ensembling (M=50) for the whole volume. Calibration quality results for whole volumes and 

segmentation quality results in terms of Hausdorff distances are provided in Tables I and II 

of the supplementary Material, respectively. For all tasks across all segments, in terms of 

segmentation performance, baselines trained with Dice loss outperform those trained with 

CE loss and ensembles of models trained with Dice loss outperform all the other models. 

For all three segmentation tasks, calibration quality was significantly better in terms of NLL 

and ECE% for baseline (single) models trained with CE comparing to those that were 

trained with Dice loss. However, the direction of change for Brier score was not consistent 

among models trained with CE vs models trained with Dice loss. For bounding boxes of 

brain tumor and prostate segmentation, the Brier scores were significantly better for models 

trained with Dice loss compared to those trained with CE, while in the case of the heart 

segmentation was the opposite. The ensemble models show significantly better calibration 

qualities for all metrics across all tasks. In all cases ensembling outperformed baselines and 

MC dropout models in terms of calibration quality. We observe that ensembling improves 

the calibration quality of the models trained with Dice loss significantly. MC dropout 

consistently improves the calibration quality of the models trained with Dice loss. However, 

for models trained with CE loss, MC dropout only improves the calibration quality of 

prostate application models and not brain and heart applications.

The graphs in Figure 2 show the quantitative improvement in the calibration and 

segmentation as a function of the number of models in the ensemble, for each of the three 

segmentation applications of the prostate, the heart, and the brain tumors. As we see, for the 

prostate, the heart, and the brain tumor segmentation, using even five ensembles (M=5) of 
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baselines trained with Dice loss can reduce the NLL by about 66%, 44%, and 62%, 

respectively. Qualitative examples for improvement as a function of number of models in 

ensemble are provided in the Supplementary Material Figures 5 and 6.

Figure 3 provides scatter plots of Dice coefficient vs. the proposed segment-level predictive 

uncertainty metric, ℋ(S) (Equation 7), for models trained with Dice loss and calibrated with 

ensembling (M=50). For better visualization, Dice values were logit transformed 

logit(p) = ln( p
1 − p ) as in [53]. In all three segmentation tasks, we observed a strong 

correlation (0.77 ≤ r ≤ 0.92) between logit of Dice coefficient and average of entropy over 

the predicted segment. For the prostate segmentation task, a clustering is obvious among the 

test set from the source domain (PROSTATEx dataset) and those from the target domain 

(PROMISE12). Investigation of individual cases reveals that most of the poorly segmented 

cases, which were predicted correctly using ℋ(S), can be considered out-of-distribution 

examples as they were imaged with endorectal coils.

VIII. Discussion

Through extensive experiments, we have rigorously assessed uncertainty estimation for 

medical image segmentation with FCNs. Furthermore, we proposed ensembling for 

confidence calibration of FCNs trained with Dice loss. We have performed these 

assessments using three common medical image seg-mentation tasks to ensure the 

generalizability of the findings. The results consistently show that for baseline (single) 

models, cross-entropy loss is better than Dice loss in terms of uncertainty estimation in 

terms of NLL and ECE%, but falls short in segmentation quality. We then showed that 

ensembling with M ≥ 5 notably calibrates the confidence of models trained with Dice loss 

and CE loss. Importantly, we also observed that in addition to NLL reduction, the 

segmentation accuracy in terms of the Dice coefficient and Hausdorff distance was also 

improved through ensembling. We also showed that ensembling outperforms MC dropout in 

estimating the uncertainty of deep image segmenters. This confirms previous findings in the 

image classification literature [27]. Consistent with the results of previous studies [2], we 

observed that segmentation quality improved with ensembling. The results of our 

experiments for comparing cross-entropy with Dice loss are in line with the achieved results 

of Sanders et al. [11].

Importantly, we demonstrated the feasibility of constructing metrics that can capture 

predictive uncertainty of individual segments. We showed that the average entropy of 

segments can predict the quality of the segmentation in terms of Dice coefficient. 

Preliminary results suggest that calibrated FCNs have the potential to detect out-of-

distribution samples. Specifically, for prostate segmentation, the ensemble correctly 

predicted the cases where it failed due to differences in imaging parameters (such as 

different imaging coils). However, it should be noted that this is an early attempt to capture 

the segment-level quality of segmentation and the results thus need to be interpreted with 

caution. The proposed metric can be improved by adding prior knowledge about the labels. 

Furthermore, it should be noted that the proposed metric does not encompass any 

information on number of samples used in that estimation.
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As introduced in the methods section, some loss functions are “proper scoring rules”, a 

desirable quality that promotes well-calibrated probabilistic predictions. The Deep 

Ensembles method has a proper scoring rule requirement for the baseline loss function [27]. 

The question arises: “Is the Dice loss a proper scoring rule?” Here, we argue that there is a 

fundamental mismatch in the potential usage of the Dice loss for scoring rules. Scoring rules 

are functions that compare a probabilistic prediction with an outcome. In the context of 

binary segmentation, an outcome corresponds to a binary vector of length n, where n is the 

number of pixels. The difficulty with using scoring rules here is that the corresponding 

probabilistic prediction is a distribution on binary vectors. However, the predictions made by 

deep segmenters are collections of n label probabilities. This is in contrast to distributions on 

binary vectors, which are more complex and in general characterized by probability mass 

functions with 2n parameters, one for each of the 2n possible outcomes (the number of 

possible binary segmentations). The essential problem is that deep segmenters do not predict 

distributions on outcomes (binary vectors). One potential workaround is to say that the 

network does predict the required distributions, by constructing them as the product of the 

marginal distributions. This, though, has the problem that the predicted distributions will not 

be similar to the more general data distributions, so in that sense, they are bound to be poor 

predictions.

We used segmentation tasks in the brain, the heart and the prostate to assess uncertainty 

estimation. Although each of these tasks was performed on MRI images, there were subtle 

differences between them. The brain segmentation task was performed on three-channel 

input (T1 contrast-enhanced, FLAIR, and T2) while the other two were performed on single-

channel input (T2 for prostate and Cine images for the heart). Moreover, the number of 

training samples, the size of the target segments, and the homogeneity of samples were 

different in each task. Only publicly available datasets were used in this study to allow 

others to easily reproduce these experiments and results. The ground truth was created by 

experts and independent test sets were used for all experiments. For prostate gland 

segmentation and brain tumor segmentation tasks, we used multi-scanner, multi-institution 

test sets. For all three tasks, the boundaries of the target segments were commonly identified 

as areas of high uncertainty estimate. Compared to the prostate and heart applications, we 

observed lower segmentation quality in the brain tumor application. Segmentation of lesions 

(in this case brain tumors) is generally a harder problem compared to the segmentation of 

organs (in this case the heart, and the prostate gland). This is partly due to the fact that 

lesions are more heterogeneous. However, as shown in Figure 3 the calibrated models 

successfully predicted the segmentation quality and total failures (where the model failed to 

predict any meaningful structure – e.g. Dice score ≤ 0.05.

Our focus was not on achieving state-of-the-art results on the three mentioned segmentation 

tasks, but on using these to understand and improve the uncertainty prediction capabilities of 

FCNs. Since we performed several rounds of training with different loss functions, we 

limited the number of parameters in the models to speed up each training round; we carried 

out experiments with 2D CNNs (not 3D), used fewer convolutional filters in our baseline 

compared to the original U-Net, and performed limited (not exhaustive) hyperparameter 

tuning to allow reasonable convergence. 2D U-Nets have been used extensively to segment 

3D images and we used these to conduct the experiments reported above. 2D vs 3D is one of 
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the many design choices or hyper-parameters of constructing deep networks for semantic 

segmentation, without a clear-cut answer that 2D U-Nets are always better for 2D images 

and 3D-UNets are always better for 3D images. In fact, in some applications, 2D networks 

have outperformed 3D networks [2]. However, in the case of confidence calibration using 

deep ensembles, preliminary experiments (that we have included in Appendix F of the 

Supplementary Material) indicate no difference between using 3D U-Nets or 2D U-Nets. A 

comprehensive empirical study on this topic would be quite interesting.

In this paper, we compared calibration qualities of two commonly used loss functions and 

showed that loss function directly affects calibration quality and segmentation performance. 

As stated earlier, calibration quality is an important metric that provides information about 

the quality of the predictions. We think it is important for users of deep networks to be aware 

of the calibration qualities associated with different loss functions, and to that end, we think 

that it would be interesting to investigate the calibration and segmentation quality of other 

commonly used loss functions such as combinations of Dice loss and cross-entropy loss, as 

well as the recently proposed Lovász-Softmax loss [54] that we think is promising for 

medical image segmentation.

For the proposed segment-level predictive uncertainty measure (Equation 7), we assumed 

binary classification and entropy of the foreground class was calculated by considering every 

other class as background. However, there are neighborhood relationships between classes 

and adjacent pixels that could be further integrated using measures such as multi-class 

entropy or similar strategies such as the Wasserstein losses [?].

There remains a need to study calibration methods that, unlike ensembling, do not require 

training from scratch which is time-consuming. In this work, we only investigated 

uncertainty estimation for MR images. Although parameter changes occur more often in 

MRI comparing to computed tomography (CT), it would still be very interesting to study 

uncertainty estimation in CT images. Parameter changes in CT can also be a source of 

failure in CNNs. For instance, changes in slice thickness or use of contrast can result in 

failures in predictions and it is highly desirable to predict such failures through model 

confidence.

We believe that our research will serve as a base for future studies on uncertainty estimation 

and confidence calibration for medical image segmentation. Further study of the sources of 

uncertainty in medical image segmentation is needed. Uncertainty has been classified as 

aleatoric or epistemic in medical applications [55] and Bayesian modeling [56]. Aleatoric 

refers to types of uncertainties that exist due to noise or the stochastic behavior of a system. 

In contrast, epistemic uncertainties are rooted in limitation in knowledge about the model or 

the data. In this study, we consistently observed higher levels of uncertainty at specific 

locations such as boundaries. For example in the prostate segmentation task, single and 

multiple raters often have higher inter- and intra-disagreements in the delineation of the base 

and apex of the prostate rather than at the mid-gland boundaries [45]. Such disagreements 

can leave their traces on models that are trained using ground truth labels with such 

discrepancies. It has been shown that with enough training data from multiple raters, deep 

models are able to surpass human agreements on segmentation tasks [47]. However, few 
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works have been addressed the correlation of ground truth quality and model uncertainty that 

results from rater disagreements [57], [58].

We conclude that model ensembling can be used successfully for confidence calibration of 

FCNs trained with Dice Loss. Also, the proposed average entropy metric can be used as an 

effective predictive metric for estimating the performance of the model at test-time when the 

ground-truth is unknown.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Calibration and out-of-distribution detection.
Models for prostate gland segmentation were trained with T2-weighted MR images acquired 

using phased-array coils. The results of inference are shown for two test examples imaged 

with: (a) phased-array coil (in-distribution example), and (b) endorectal coil (out-of-

distribution example). The first column shows T2-weighted MRI images with the prostate 

gland boundary drawn by an expert (white line). The second column shows the MRI 

overlaid with uncalibrated segmentation predictions of an FCN trained with Dice loss. The 

third column shows the calibrated segmentation predictions of an ensemble of FCNs trained 

with Dice loss. The fourth column shows the histogram of the calibrated class probabilities 

over the predicted prostate segment of the whole volume. Note that the bottom row has a 

much wider distribution compared to the top row, indicating that this is an out of distribution 

example. In the middle column, prediction prostate class probabilities ≤ 0.001 has been 

masked out.
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Fig. 2. 
Improvements in calibration as a function of the number of models in the ensemble for 

baselines trained with cross-entropy and Dice loss functions. Calibration quality in terms of 

NLL improves as number of models M increases for prostate, heart, and brain tumor 

segmentation. For each task an ensemble of size M=10 trained with Dice loss outperforms 

the baseline model (M=1) trained with cross-entropy in terms of NLL. Same plot with 95% 

CIs and for both whole volume and bounding box measurements are given in Figure 4 of the 

Supplementary Material.
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Fig. 3. 
Segment-level predictive uncertainty estimation: Top row: Scatter plots and linear regression 

between Dice coefficient and average of entropy over the predicted segment ℋ(S). For each 

of the regression plots, Pearson’s correlation coefficient (r) and 2-tailed p-value for testing 

non-correlation are provided. Dice coefficients are logit transformed before plotting and 

regression analysis. For the majority of the cases in all three segmentation tasks, the average 

entropy correlates well with Dice coefficient, meaning that it can be used as a reliable metric 

for predicting the segmentation quality of the predictions at test-time. Higher entropy means 

less confidence in predictions and more inaccurate classifications leading to poorer Dice 

coefficients. However, in all three tasks there are few cases that can be considered outliers. 

(A) For prostate segmentation, samples are marked by their domain: PROSTATEx (source 

domain), and the multi-device multi-institutional PROMISE12 dataset (target domain). As 

expected, on average, the source domain performs much better than the target domain, 

meaning that average entropy can be used to flag out-of-distribution samples. The two 

bottom rows correspond to two of the cases from the PROMISE12 dataset are marked in 

(A): Case I and Case II; These show the prostate T2-weighted MRI at different locations of 

the same patient with overlaid calibrated class probabilities (confidences) and histograms 

depicting distribution of probabilities over the segmented regions. The white boundary 

overlay on prostate denotes the ground truth. The wider probability distribution in Case II 

associates with a higher average entropy which correlates with a lower Dice score. Case-I 

was imaged with phased-array coil (same as the images that was used for training the 

models), while Case II was imaged with endorectal coil (out-of-distribution case in terms of 

imaging parameters). The samples in scatter plots in (B) and (C) are marked by their 

associated foreground segments. The color bar for the class probability values is given in 
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Figure 1. Qualitative examples for brain and heart applications and scatter plots for models 

trained with cross-entropy are given in Figures 7 and 8 of the Supplementary Material, 

respectively.
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TABLE I.

Number of patients for training, validation, and test sets used in this study.

Application Brain Heart Prostate

Dataset CBICA TCIA ACDC PROSTATEx PROMISE12
†

# Training 66 – 40 16 –

# Validation 22 – 10 4 –

# Test – 102 50 20 35

†
Used only for out-of-distribution detection experiments.
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