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Plant productivity shapes how species compete and respond to 
stressors (Mahaut et al., 2020) and consequently how species are 
distributed in space, thereby shaping the assembly of plant commu-
nities. Productivity is traditionally estimated directly by measuring 
aboveground biomass and cover, but remote sensing is emerging 
as a less time- and resource-intensive tool (Heinsch et al., 2006; Yu 
et al., 2018). Estimating vegetation cover requires relatively little time 
and resources but considers growth in only two dimensions, ignor-
ing vegetation height and density. Biomass estimates more directly 
measure total plant growth; however, collecting, drying, and weigh-
ing biomass are both resource intensive and destructive, limiting the 
practicality of biomass studies at large spatial and temporal scales.

Recent developments in remote multispectral imagery and veg-
etation structure mapping have improved our ability to estimate 

plant productivity (Cerasoli et al., 2018; Fischer et al., 2019). 
Multispectral vegetation indices (VIs) are a collection of ratios and 
transformations of light reflectance intensities detected in certain 
spectral bands. They are based on the light that is reflected by veg-
etation, which is influenced by leaf health, density, and photosyn-
thetic activity (Xue and Su, 2017); thus, VIs have emerged as an 
important tool for estimating plant community productivity (Wang 
et al., 2010; Cavender-Bares et al., 2017). Many VIs use the ratio 
of red to near-infrared reflectance because of the correlation be-
tween the contrast in the absorption of these bands and leaf health 
(Myneni et al., 1995). The normalized difference vegetation index 
(NDVI; Tucker, 1979) is the most commonly used VI. NDVI is 
based on the ratio of red and near infrared reflectance and is of-
ten applied in ecological studies (Pettorelli et al., 2005), where it has 
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PREMISE: Measuring plant productivity is critical to understanding complex community 
interactions. Many traditional methods for estimating productivity, such as direct 
measurements of biomass and cover, are resource intensive, and remote sensing techniques 
are emerging as viable alternatives.

METHODS: We explore drone-based remote sensing tools to estimate productivity in a 
tallgrass prairie restoration experiment and evaluate their ability to predict direct measures 
of productivity. We apply these various productivity measures to trace the evolution of plant 
productivity and the traits underlying it.

RESULTS: The correlation between remote sensing data and direct measurements of 
productivity varies depending on vegetation diversity, but the volume of vegetation 
estimated from drone-based photogrammetry is among the best predictors of biomass and 
cover regardless of community composition. The commonly used normalized difference 
vegetation index (NDVI) is a less accurate predictor of biomass and cover than other equally 
accessible vegetation indices. We found that the traits most strongly correlated with 
productivity have lower phylogenetic signal, reflecting the fact that high productivity is 
convergent across the phylogeny of prairie species. This history of trait convergence connects 
phylogenetic diversity to plant community assembly and succession.

DISCUSSION: Our study demonstrates (1) the importance of considering phylogenetic 
diversity when setting management goals in a threatened North American grassland 
ecosystem and (2) the utility of remote sensing as a complement to ground measurements of 
grassland productivity for both applied and fundamental questions.
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been shown to be correlated with productivity in trees (Wang et al., 
2004) and biomass in prairie (Wang et al., 2016) and tundra habitats 
(Goswami et al., 2015). Furthermore, variation in reflectance across 
spectra may be phylogenetically conserved (Cavender-Bares et al., 
2016, 2017), suggesting that multispectral analyses can potentially 
be used to remotely estimate the community phylogenetic compo-
sition and diversity.

Remote sensing techniques can also estimate productivity 
by providing data to model the physical structure of vegetation. 
Photogrammetry uses overlapping photographs to reconstruct 3D 
structures, producing models of the outermost layer of vegetation 
visible in the photographs (Baltsavias, 1999). It can accurately cap-
ture the structure of large and complex vegetation forms, both as 
individuals (Scher et al., 2019) and as blocks of vegetation. Light 
detection and ranging (LiDAR) yields a more nuanced view of the 
layers of vegetation that comprise a community or individual plant 
(Baltsavias, 1999; Dubayah and Drake, 2000), enabling the estima-
tion of both vegetation volume and density. While LiDAR provides 
more detail than photogrammetry, both techniques can accurately 
estimate biomass from volume over small areas (Wallace et al., 
2017). Furthermore, photogrammetry requires only red-green-
blue (RGB) photographs, whereas LiDAR requires more expensive 
equipment (Solazzo et al., 2018).

High-resolution satellite imagery remains prohibitively expen-
sive for many ecology applications (Wang et al., 2010). By contrast, 
the cost of quality drone imagery is decreasing rapidly, making it 
an exciting tool for the investigation of individual plants and lo-
cal landscapes (Cannon et al., 2018). Precision agriculture regularly 
uses high-resolution drone-based imagery (Zhang and Kovacs, 
2012), and the decreasing costs of drone imagery are making this 
technology equally accessible to ecologists.

In this study, we first investigate how high-resolution (<1.5 cm) 
drone-based multispectral imagery and volume estimates correlate 
with field-based estimates of grassland productivity. We compare 
four productivity proxies: two measured from field observations 
(aboveground biomass and percent vegetation cover) and two mea-
sured via drone-based photography (individual light spectra and VIs 
[Table 1] and photogrammetry-derived vegetation volume). We then 
use the productivity proxies to illuminate how the evolution of func-
tional traits that influence plant productivity and competitive inter-
actions shape the phylogenetic distribution of grassland productivity. 
Our study demonstrates the utility of remote sensing to address fine-
scale ecological questions efficiently and economically. Furthermore, 
it advances our understanding of how the evolution of plant traits 
and lineage diversity shape grassland ecosystem processes.

METHODS

Site

Our study system is a tallgrass prairie restoration experiment lo-
cated at The Morton Arboretum in northeastern Illinois, USA. 
The soils (Markham series, fine, illitic, mesic, mollic oxyaquic 
Hapludalfs) on the site are deep and moderately well drained, 
forming in a thin layer of silt loam loess overlying silty clay loam 
till (USDA-NRCS, 2019). Our experiment manipulates phyloge-
netic and trait diversity in mixed species plots drawn from 127 
tallgrass prairie plants, all of which essentially reached maximum 
productivity at the time the biomass and remote sensing data were 
collected (Hipp et al., 2018). The site is divided into 437 4-m2 plots, 
which were partitioned based on measurements of their soil traits 
into two superblocks (west and east), each containing three blocks 
(A–C in the west superblock, D–F in the east superblock; Fig. 1). 
Of the 437 plots, our analysis used 326 plots of two types, monocul-
ture and multispecies, all planted from plugs in August–September 
2016, with follow-up planting of failed or initially unavailable plants 
in summer 2017. For each of the 127 species used, we planted one 
monoculture plot in each superblock, for a total of 254 monocul-
ture plots. Each multispecies plot was planted with one of 36 com-
binations of 15-species mixes, and the 15-species planting order 
was randomized within each quarter plot. Multispecies plots were 
also duplicated in both superblocks for a total of 72 multispecies 
plots. Complete details of the experimental design are described by 
Hipp et al. (2018).

Soil analysis

We measured the A horizon in each plot and interpolated the grav-
imetric soil moisture, loss on ignition soil organic matter, pH, elec-
trical conductivity, wet aggregate stability, and phosphorus from 
measurements of a subset of the plots. We used a principal com-
ponent analysis to identify groups of plots that differed in these 
soil characteristics and thus partitioned the site into blocks. See 
Appendix S1 for details.

Photo capture and orthomosaic construction

A DJI Phantom 4 drone (Shenzhen DJI Sciences and Technologies 
Ltd., Shenzhen, China) carrying a Parrot Sequoia (Parrot Drones 
SAS, Paris, France) was flown over the experimental prairie on 1 
August 2017, during the peak of its first full growing season fol-
lowing establishment. The drone captured 598 RGB photos and 
single-band images of the red, green, near-infrared, and red edge 
bands. For details, see Appendix S1.

Seven orthomosaics were produced by merging 598 photos of 
the site into a single image; each orthomosaic shows one of the 
three VIs measured (Table 1) or one of the four wavelength bands 
(Table 1, Appendix S2). Values of each VI range from −1 to 1, with 
high values representing dense vegetation and values close to and 
below 0 representing non-vegetative surfaces. Each VI, however, 
captures differences in vegetation density at varying levels; for ex-
ample, NDVI saturates at high levels of chlorophyll concentration, 
and therefore does not capture variation in high vegetation den-
sities. The green normalized difference vegetation index (GNDVI) 
uses green reflectance instead of red and has a larger dynamic range 
at high vegetation densities (Gitelson et al., 1996); GDVI2, a form 

TABLE 1. Spectral bands and vegetation indices used in analyses.

Index Name Reference
Wavelength range 

or formula

GRE Green 530–570 nm
RED Red 640–680 nm
REG Red edge 730–740 nm
NIR Near infrared 770–810 nm
NDVI Normalized difference 

vegetation index
Tucker (1979) (NIR − R)/(NIR + R)

GNDVI Green normalized 
difference vegetation 
index

Gitelson et al. 
(1996)

(NIR − G)/(NIR + G)

GDVI2 Generalized difference 
vegetation index

Wu (2014) (NIR2 − R2)/(NIR2 + R2)
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of the generalized difference vegetation index (GDVI), is derived 
from NDVI and increases the dynamic range at low vegetation den-
sities (Wu, 2014). The orthomosaics were exported from Agisoft 
Photoscan (Agisoft, St. Petersburg, Russia) in the tagged image file 
format (TIFF).

Biomass

Vegetative material was collected between 9 October and 20 
November 2017, before the first major frost, to avoid leaf disintegra-
tion. In the multispecies plots, all vegetative material in the south-
west quadrant was collected. In the monoculture plots, material was 
collected only from the central 0.25 m2 of the southwest quadrant. 
All individuals of the planted species rooted inside the given area 
were clipped at ground level. The vegetation was dried in paper bags 
at 50°C for at least 48 h and weighed immediately after removal 
from the oven. We calculated the biomass of each species and the 
total biomass for the multispecies plots, which was converted to a 
dry weight of grams per square meter.

Vegetation collected early in the season from some multispecies 
plots in blocks A, B, C, and F was not dried sufficiently before its 
biomass was measured. Biomass measurements in these plots were 
biased upward in the preliminary analyses, so multispecies plots 
that were affected are excluded from all biomass analyses.

Vegetation cover

Vegetation cover was evaluated using two methods: cover of only 
planted species (“planted cover”) and cover of all species (“to-
tal cover”). The planted cover was estimated by observers in the 
field (29 August 2017 to 1 September 2017) for all plots, using 

the midpoints of 14 cover classes (producing 0%, 0.5%, 3%, 7.5%, 
15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, 92.5%, 97%, and 99.5% 
classes). Subsequently, two different observers estimated the total 
cover by examining the RGB orthomosaic. Each independently as-
sessed the total percentage of each plot covered by vegetation, and 
their estimates were then averaged.

Spectral imagery

All spectral band and VI orthomosaics (Table 1) were processed 
as rasters using the raster package (Hijmans and van Etten, 2012) 
in R (R Core Team, 2019). The outer 0.25 m of each plot was 
removed to avoid counting turf species encroaching from the 
paths, which were also excluded from the manual field-based 
productivity estimates. For each of the seven rasters, all pixels 
within the resulting 1.5 × 1.5-m squares were averaged. These 
values represent all vegetation in the plot at the time when the 
aerial images were taken, but  because only the biomass of the 
planted species was measured after being collected later in the 
growing season, we used a correction factor to adjust the ortho-
mosaics for a more consistent comparison. The adjustment was 
used to correct for weeds that were present in the drone images 
but whose biomass was not measured, as well as growth that oc-
curred between the photo capture and biomass measurement. 
For details on the correction, see Appendix S1. This procedure 
produced 14 spectral values for each plot, representing the raw 
and corrected values from each of the seven rasters.

Estimation of vegetation volume

The vegetation volume of each plot was estimated using a veg-
etation height model (VHM) produced by subtracting a digital 

FIGURE 1. An NDVI map of the experimental prairie with blocks labeled. The thin lines mark blocks, and the thick line separates the superblocks. 
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terrain model (DTM) from a digital surface model (DSM). The 
DSM and DTM were built in Agisoft Photoscan using all points 
in the dense cloud and only ground-level points, respectively. 
The DSM does not distinguish vegetation height from changes in 
ground level, so plants on higher ground appear taller, whereas 
the DTM interpolates the ground level below the vegetation from 
ground-level points. Subtracting the DTM from the DSM pro-
duced a VHM containing the height of vegetation after correcting 
for ground level. We then calculated the vegetation volume as the 
average height of the plot multiplied by the length and width of 
the plot. To minimize the effects of very slight variations in plot 
size, the resulting volume was then standardized to a 1.5 × 1.5-m 
plot. Standardizing in this way has the effect of transforming vol-
ume estimates into average vegetation heights, as estimated in 
the VHM. In either case, the estimate is fundamentally differ-
ent from cover estimates (which estimate the area covered by a 
shadow cast by the vegetation) or the VIs (based on reflectance 
of discrete spectra).

Predicting productivity using models

We used a linear regression to estimate how well the remote sensing 
metrics predict biomass and cover using base R (R Core Team, 2019) 
and the lme4 package (Bates et al., 2015). We also use the MuMIn 
(Barton, 2009), lmer4Test (Kuznetsova et al., 2017), and qpcR 
(Spiess, 2018) packages to evaluate the models. Each model predict-
ing biomass uses covariates from three groups: (1) a VI or single 
band, (2) total or planted cover, and (3) photogrammetry-modeled 
volume (hereafter, “volume”). Because the remote sensing metrics 
were calculated based on all the vegetation in each plot, we modeled 
total cover, not planted cover, using (1) a VI or single band and (2) 
volume. Covariates and responses were scaled to unit variance and 
a mean of zero prior to model fitting. Each combination of variables 
was run as a multiple linear regression and a mixed-effects model 
using block as a random effect. All regressions were fitted using all 
plots, only monoculture plots, and only multispecies plots. For the 
multispecies plots, we modeled total biomass and cover, not parti-
tioned by species. While there is an expected collinearity between 
VIs, cover, and volume, all are maintained as covariates in the mod-
els to estimate partial correlation coefficients. Although a case can 
be made for eliminating predictors that covary to a great extent, the 
retention of the relatively small number of covariates in this study 
is key to assessing whether there is variance in the biomass left to 
explain after the other potential predictors have been factored out 
(Legendre and Legendre, 1998).

To test whether the presence of non-photosynthetic flowers that 
could alter VI values (Shen et al., 2010) affects the model fit, linear 
regressions were also conducted using only plots that did not have 
open flowers at the time of photo capture. We ran models on all 
nonflowering plots and on only nonflowering monoculture plots; 
there were only three nonflowering multispecies plots, so we did not 
run separate models on them.

We used R2 to evaluate the model fit and Akaike’s information 
criterion (AIC) to estimate the predictive value of the models 
(Sober, 2002). The AIC weight (AICw) of each model was calcu-
lated as its relative likelihood as a proportion of the summed rel-
ative likelihoods of all models evaluated (following Burnham and 
Anderson, 2002, 2004). We then quantified the importance of each 
covariate by summing the AICw of all models in which the covari-
ate was used (Burnham and Anderson, 2002) to obtain a cumulative 

AICw for each covariate across all models. A high cumulative AICw 
for a covariate indicates that the covariate is present in models that 
carry higher predictive weight. Unlike the AIC, the absolute value 
of the cumulative AICw is meaningful: a cumulative AICw near 1.0 
implies that the covariate has high predictive weight relative to the 
population of models evaluated. In evaluating the support for in-
dividual models, we also report ΔAIC, the difference between the 
AIC of the best model evaluated for that test and the model being 
reported. While there are no hard rules about ΔAIC values, models 
with ΔAIC < 2 are generally considered to be practically indistin-
guishable in evidentiary support from the best model considered 
and thus to contribute significantly to our understanding of vari-
ance in the system we are studying, while those with ΔAIC > 10 
have “essentially no support” (Burnham and Anderson, 2004).

Trait data

Quantitative and qualitative trait data for each species were gath-
ered from published sources (Iverson et al., 1999; Amatangelo et al., 
2014; Sonnier et al., 2014; Ash et al., 2015; Hipp et al., 2018; Clark 
et al., 2019) or collected as described in Appendix S1, using the spe-
cies classification described by Bai et al. (2012). Nitrogen fixation 
and root types (adventitious, primary, bulb, corm, fibrous, rhizome, 
stolon, and tuber) were coded as binary traits. Quantitative traits 
included the genome size, petiole length, leaf length, leaf width, leaf 
thickness, vegetative height, seed mass, leaf dry-matter content, spe-
cific leaf area, leaf nitrogen content, leaf carbon content, leaf phos-
phorus content, stem dry-matter content, and circularity.

Phylogenetic and trait analyses

To assess how trait evolution shapes the phylogenetic structure of 
species-level productivity estimates in the monoculture plots, a 
phylogeny synthesized from published phylogenies and taxonomic 
knowledge of unsampled species (a “synthesis phylogeny” sensu 
Li et al., 2019; Fig. 2) was developed using Zanne et al. (2014) as 
a framework, followed by the pruning and splicing of taxa of in-
terest in this study, as detailed by Hipp et al. (2018). We estimated 
the phylogenetic signal in species’ traits, biomass, and corrected 
VI measures from monoculture plots (see methods above) using 
Blomberg’s K (Blomberg et al., 2003) and Pagel’s λ (Pagel, 1999) 
in geiger version 2.0.6.2 (Harmon et al., 2008). The correlation 
(Pearson’s r) of plant traits with NDVI was plotted against their cor-
relation with biomass, and the point size was scaled by the phylo-
genetic heritability to explore how the phylogenetic heritability of 
traits correlates with their influence on productivity. We then used 
Mantel tests of pairwise species comparisons of NDVI and phyloge-
netic distance, closely mirroring analyses conducted by Schweiger 
et al. (2018) that assessed the plant-level correlation between the 
species’ mean spectral profiles and phylogenetic distance, to evalu-
ate whether VIs at the plot level (from our study) show comparable 
phylogenetic heritability to the hyperspectral data at the plant level 
(from Schweiger et al., 2018).

We used non-metric multidimensional scaling (Kruskal, 1964) 
to visualize individual species positions in the trait and productiv-
ity space, using monoMDS in the R package vegan (Oksanen et al., 
2019) on a Gower’s distance matrix estimated from seven functional 
traits (stem dry-matter content, leaf dry-matter content, leaf circu-
larity, vegetative height, leaf carbon content, leaf length, leaf thick-
ness) along with biomass, NDVI, and GNDVI. The productivity 
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FIGURE 2. A 127-species phylogeny with corresponding biomass measurements and spectra mapped. Trait and productivity metrics are all rescaled 
from 0 (white) to 1 (black); raw measurements can be found in the data sets provided in GitHub (https://github.com/lanescher/prairie-remote-sensing-2020/
tree/master/DATA). Colored branches indicate dominant plant families. GRE, green; RED, red; REG, red edge; NIR, near infrared; NDVI, normalized differ-
ence vegetation index; GNDVI, green normalized difference vegetation index; GDVI2, generalized difference vegetation index. 

https://github.com/lanescher/prairie-remote-sensing-2020/tree/master/DATA
https://github.com/lanescher/prairie-remote-sensing-2020/tree/master/DATA
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response and trait variables were fit to the ordination in vegan using 
the envfit function.

The reader may note that we did not estimate partitioned biodi-
versity effects (sensu Loreau and Hector, 2001). The biomass sam-
pling size in the monocultures (0.25 m2) in our study did not equal 
the sampling size in the multispecies plots (1 m2), and multispecies 
plot samples consequently included a greater proportion of plot 
edges than the monocultures. As the null expectation that diversity 
effects will equal zero is not met in the current sample, we leave 
these analyses to future studies.

RESULTS

Soil types

The first two axes of the soil principal component analysis ex-
plained 49.2% and 19.6% of the variance, respectively (available as 
Supplement 3 on GitHub and Zenodo [Scher et al., 2020], see Data 
Availability statement). The depth of the A horizon was responsible 
for 48.06% of the variance observed on the first axis and 23.88% of 
the second axis. Soils differ significantly among blocks, primarily 
distinguishing block A (μ = 38.5 ± 0.6 cm [SEM]) from blocks B–F 
(μ = 26.2 ± 0.2 cm; Kruskal–Wallis test, k = 172.44, P = 2.19 × 10−35; 
Fig. 1). Block type was consequently retained as a random effect in 
biomass and cover regressions to account for differences in soil.

Biomass

The biomass of the monoculture plots ranged from 0 to 3977 g per 
4-m2 plot, with a mean of 399.0 g and a standard error of 29.1 g 
(Table 2, Fig. 3). There was no effect of soil blocking on the biomass 
(Kruskal–Wallis test, k = 6.15, P = 0.292). We did not analyze these 
patterns in the multispecies plots, because the multispecies plots that 
were measured incorrectly were concentrated in a few blocks, the 
removal of which might introduce bias from block conditions. We 
do, however, show summaries of correctly measured multispecies 
plots in Fig. 3. All biomass measurements for the monoculture and 
multispecies plots are listed in Supplements 4 and 5 (available on 
GitHub and Zenodo, see Data Availability statement), respectively.

Vegetation cover

The planted cover ranged from 0% to 99.5%, with a mean of 62.8% 
(Table 2, Fig. 3). The planted cover was significantly higher in the 
multispecies plots (74.0% ± 1.48% [SEM]) than the monoculture 

plots (62.8% ± 1.87%; two-sided Mann–Whitney test: w = 11,005, 
P = 0.003). There was no effect of the block type on the planted 
cover (Kruskal–Wallis test, k = 6.34, P = 0.275).

The total cover ranged from 0% to 100%, with a mean of 74.1% 
and standard error of 1.4%. There was no effect of diversity on the 
total cover (μMonoculture = 74.0 ± 1.8, μMultispecies = 83.7 ± 1.1; two-sided 
Mann–Whitney test: w = 10,176, P = 0.143), but there was a signifi-
cant block effect (Kruskal–Wallis test, k = 18.33, P = 0.003).

Vegetation indices

The 598 photo sets were used to build multispectral orthomosaics at 
a resolution of 1.15 cm/pix (Fig. 1). A 2-m scale bar measured 1.99 
m in the orthomosaic, indicating that the scaling of the orthomosaic 
had a precision of >99%. The mean GDVI2 (0.85 ± 0.01) was higher 
than NDVI (0.65 ± 0.01) and GNDVI (0.66 ± 0.01; Table 2; Kruskal–
Wallis test: k = 355.78, P < 0.0001). Furthermore, NDVI, GNDVI, 
and GDVI2 were all significantly higher in the multispecies plots 
(μNDVI = 0.72 ± 0.01, μGNDVI = 0.70 ± 0.01, μGDVI2 = 0.92 ± 0.01) than in 
the monoculture plots (μNDVI = 0.65 ± 0.01, μGNDVI = 0.67 ± 0.01, μG-

DVI2 = 0.86 ± 0.01; two-sided Mann–Whitney test, NDVI: w = 11,279, 
P = 0.003; GNDVI: w = 11,379, P = 0.002; GDVI2: w = 10,999, 
P = 0.009, Fig. 3) and varied among blocks (Kruskal–Wallis test, 
NDVI: k = 12.73, P = 0.026; GNDVI: k = 17.47, P = 0.004; GDVI2: 
k = 13.55, P = 0.019).

Volume

The mean volume across all plots was 0.96 m3 and ranged from 
–0.31 m3 to 3.55 m3. The 17 negative volume estimates suggest there 
was little vegetation within those plots and that the ground may 
slope. The volume was higher in multispecies plots (1.29 ± 0.08 m3) 
than in monoculture plots (0.87 ± 0.05 m3; Table 2; Kruskal–Wallis 
test: w = 12,705, P < 0.0001) and varied among blocks (two-sided 
Mann–Whitney test, k = 15.74, P = 0.008).

Evaluation of biomass models

We evaluated models predicting biomass with combinations of 
covariates from three groups (a VI or single band, total or planted 
cover, volume), for a total of 89 models with between one and 
three covariates each. Including block as a random effect resulted 
in negligible improvement in model likelihood and consequently 
the AIC increased (poorer model fit) for all models (available as 
Supplements 6–8 on GitHub and Zenodo, see Data Availability 
statement). We therefore only discuss models without block as a 

TABLE 2. Summary statistics for the productivity proxies measured.

All Monocultures Multispecies

Productivity proxies Mean Min, max Mean Min, max Mean Min, max
Plot type P 

value Block P value

Biomass 410.88 0.00, 3977.62 398.97 0.00, 3977.62 479.62 78.80, 981.00 0.0016 0.4001
Planted cover 62.81 0.00, 99.50 62.77 0.00, 99.50 73.98 45.00, 97.00 0.003 0.2748
Total cover 74.14 0.00, 100.00 74 0.00, 100.00 83.68 47.50, 100.00 0.143 0.0026
NDVI 0.65 0.08, 0.88 0.65 0.08, 0.88 0.72 0.34, 0.85 0.0025 0.026
GNDVI 0.66 0.39, 0.82 0.67 0.39, 0.82 0.7 0.49, 0.79 0.0015 0.0037
GDVI2 0.85 0.15, 0.99 0.86 0.15, 0.99 0.92 0.53, 0.98 0.0086 0.0187
VOL 0.96 −0.31, 3.55 0.87 −0.31, 3.55 1.29 0.06, 2.73 0.0000 0.0076

Note: GDVI2 = generalized difference vegetation index; GNDVI = green normalized difference vegetation index; NDVI = normalized difference vegetation index; VOL = vegetation volume.
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random effect. Moreover, the rank order of models based on AIC 
using plots with and without flowers was similar to that of models 
using only plots without flowers (available as Supplement 9 on 
GitHub and Zenodo, see Data Availability statement), so we do 
not discuss the results of the analyses conducted solely on plots 
without flowers. Models predicting the biomass of monoculture 
(Table 3 and Supplement 10 [available on GitHub and Zenodo, 
see Data Availability statement]) and multispecies plots (Table 4 
and Supplement 11 [available on GitHub and Zenodo, see Data 
Availability statement]) separately produced very different re-
sults. Because of the difference in the number of monoculture 
plots (n = 254) and multispecies plots (n = 72) used here, the 
models evaluating all plot types together (see Supplement 12 on 

GitHub and Zenodo, see Data Availability statement) were domi-
nated by the monoculture plots, and were almost identical to the 
models of monoculture plots alone. We therefore report the re-
sults for monoculture and multispecies plots separately.

Planted cover (30/89 models; cumulative AICw = 0.999) and 
volume (45/89 models; cumulative AICw = 0.999) held by far the 
most predictive power, followed distantly by GDVI2 (6/89 models; 
cumulative AICw = 0.252). The cumulative AICw of all other pre-
dictors was less than 0.104. The best model for predicting biomass 
in monoculture plots used GDVI2, volume, and planted cover as 
predictors, and accounts for 46% of the variation in biomass. All 
models incorporating planted cover and volume account for ap-
proximately 45% of the variation in biomass and have ΔAIC values 

FIGURE 3. Boxplots of biomass (A, B), planted cover (C, D), NDVI (E, F), and volume (G, H), separated by plot type (A, C, E, G) and block (B, D, F, H). 
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<4.6. All models without both planted cover and volume have 
ΔAIC > 26.57 and R2 < 0.42. The best model for predicting mono-
culture plots using only metrics from remote sensing imagery is 
similar to the best overall, but uses total cover, estimated by a visual 
inspection of aerial imagery, instead of planted cover, estimated by 
a visual inspection at ground level (R2 = 0.38, P < 2.2 × 10−16).

The most important predictors of multispecies plots were vol-
ume (45/89 models, AICw = 0.999), total cover (30/89 models, 
AICw = 0.217), and planted cover (30/89 models, AICw = 0.215). 
Models incorporating volume have ΔAIC < 4.62 and account for at 
least 47% of the variance in biomass, whereas models that do not 
include volume have ΔAIC > 16.9 and account for less than 23% of 
the variance in biomass. The best model for predicting multispecies 
plots using only remotely sensed variables uses the red edge band, 
total cover, and volume (R2 = 0.50).

Across all models, the residuals were nonlinear and heteroske-
dastic, suggesting the covariates we used did not account for all the 
variation in the response.

Cover models

We evaluated models predicting cover with combinations of co-
variates produced by selecting one variable from each of two 

groups (VI or single band and volume), for a total of 15 models 
with one or two covariates each. Models including all plots were 
dominated by monocultures (see Supplement 13 on GitHub and 
Zenodo, see Data Availability statement), and models predicting 
including and excluding flowers were very similar (see Supplement 
14 on GitHub and Zenodo, see Data Availability statement). Similar 
to the models predicting biomass, including block as a random ef-
fect increased the AIC in all models (see Supplements 15–17 on 
GitHub and Zenodo, see Data Availability statement).

The best model for predicting cover in monoculture plots uses 
GDVI2 and volume and accounts for 67% of the variance in biomass. 
The AIC and R2 scores are similar for models using only a VI and 
models using the same VI with volume (ΔAIC < 2), except in the case 
of GDVI2, for which the model using volume is better (ΔAIC = 10.3). 
The ΔAIC is >105.99 for the models using single bands instead of VIs 
(Table 5). Volume (8/15 models) and GDVI2 (2/15 models) are the 
most important covariates for predicting cover in monoculture plots 
(cumulative AICw = 0.999 and 0.994, respectively), with the AICw of 
all other covariates less than 1.5 × 10−6.

All multispecies-plot models (Table 6) have lower R2 values than 
models predicting monoculture cover. The best model for multispe-
cies plots uses only GNDVI and accounts for 29% of the variation in 
cover. Volume (8/15 models), GNDVI (2/15 models), and red edge 

TABLE 3. Models of biomass in monoculture plots. Only models using planted cover and those using uncorrected VIs are shown, as well as models mentioned in the 
text. See Supplement 10 (available on GitHub and Zenodo, see Data Availability statement) for all models.

VI used Cover used VI Cover Volume R2 AIC ∆AIC

GDVI2 Planted −0.14, P = 0.0351 0.49, P < 0.0001 0.36, P < 0.0001 0.461 591.37 0
NDVI Planted −0.11, P = 0.0997 0.47, P < 0.0001 0.37, P < 0.0001 0.457 593.14 1.77
GNDVI Planted −0.11, P = 0.1502 0.47, P < 0.0001 0.37, P < 0.0001 0.456 593.79 2.42
— Planted — 0.43, P < 0.0001 0.33, P < 0.0001 0.451 593.9 2.53
REG Planted −0.09, P = 0.2236 0.46, P < 0.0001 0.37, P < 0.0001 0.454 594.39 3.02
NIR Planted −0.09, P = 0.2552 0.46, P < 0.0001 0.38, P < 0.0001 0.454 594.58 3.21
RED Planted 0.05, P = 0.4077 0.44, P < 0.0001 0.34, P < 0.0001 0.452 595.2 3.83
GRE Planted −0.02, P = 0.6753 0.43, P < 0.0001 0.33, P < 0.0001 0.451 595.72 4.35
NIR Planted 0.15, P = 0.0257 0.53, P < 0.0001 — 0.395 617.94 26.57
REG Planted 0.11, P = 0.0985 0.56, P < 0.0001 — 0.39 620.22 28.85
— Planted — 0.62, P < 0.0001 — 0.383 620.99 29.62
GNDVI Planted 0.07, P = 0.3183 0.58, P < 0.0001 — 0.385 621.98 30.61
GDVI2 Planted −0.04, P = 0.5205 0.65, P < 0.0001 — 0.384 622.57 31.2
NDVI Planted 0.03, P = 0.6771 0.61, P < 0.0001 — 0.383 622.81 31.44
GRE Planted 0.01, P = 0.7781 0.62, P < 0.0001 — 0.383 622.91 31.54
RED Planted 0.01, P = 0.8138 0.63, P < 0.0001 — 0.383 622.93 31.56
GDVI2 Total −0.16, P = 0.0626 0.33, P = 1e-04 0.50, P < 0.0001 0.384 635.55 44.18
GNDVI — 0.14, P = 0.0443 — 0.50, P < 0.0001 0.353 645.99 54.62
NIR — 0.13, P = 0.0880 — 0.49, P < 0.0001 0.35 647.14 55.77
REG — 0.11, P = 0.1202 — 0.52, P < 0.0001 0.349 647.64 56.27
NDVI — 0.10, P = 0.1272 — 0.54, P < 0.0001 0.349 647.73 56.36
— — — — 0.60, P < 0.0001 0.343 648.09 56.72
GDVI2 — 0.08, P = 0.1890 — 0.55, P < 0.0001 0.347 648.34 56.97
RED — −0.06, P = 0.2922 — 0.58, P < 0.0001 0.346 648.96 57.59
GRE — −0.04, P = 0.4989 — 0.60, P < 0.0001 0.344 649.63 58.26
NIR — 0.50, P < 0.0001 — — 0.248 682.11 90.74
REG — 0.46, P < 0.0001 — — 0.216 692.91 101.54
GNDVI — 0.46, P < 0.0001 — — 0.215 693.21 101.84
NDVI — 0.42, P < 0.0001 — — 0.173 706.41 115.04
GDVI2 — 0.37, P < 0.0001 — — 0.135 717.85 126.48
RED — −0.24, P = 1e-04 — — 0.058 739.42 148.05
GRE — 0.03, P = 0.6113 — — 0.001 754.38 163.01

Note: — = no covariate was used; AIC = Akaike’s information criterion; ∆AIC = the difference between the AIC of the best model evaluated for that test and the model being reported; GDVI2 
= generalized difference vegetation index; GNDVI = green normalized difference vegetation index; GRE = green; NDVI = normalized difference vegetation index; NIR = near infrared; REG = 
red edge; VI = vegetation index.
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(2/15 models) are the most important predictors of cover in multi-
species plots (AICw = 0.384, 0.358, and 0.232, respectively).

Phylogenetic signal of functional traits correlated with biomass 
and NDVI

Traits exhibit high variation in phylogenetic heritability (see 
Supplement 18 on GitHub and Zenodo, see Data Availability state-
ment), but overall the multivariate trait space is moderately pre-
dicted by phylogeny, with plants largely intermixed in trait space by 
family, although the Fabaceae and Poaceae stand out as distinct (Fig. 
4). Stem dry-matter content and vegetative height, two of the traits 
most strongly correlated with productivity, show low phylogenetic 
heritability (stem dry-matter content: λ < 0.00001, K = 0.00263; 
vegetative height: λ < 0.00001, K = 0.00651) (Fig. 5, Supplement 
18 [available on GitHub and Zenodo, see Data Availability state-
ment]). Leaf thickness and circularity are also strongly correlated 
with biomass and have moderate estimates of phylogenetic herita-
bility (λ = 0.43687 and 0.33924, respectively). Seed mass is weakly 
positively correlated with productivity and has moderate phylo-
genetic heritability (λ = 0.0771). The three traits with particularly 
strong phylogenetic heritability (genome size, λ = 0.88188; leaf ni-
trogen content, λ = 0.80715; leaf length, λ = 0.5112; and leaf width, 

λ = 0.40038) were weakly correlated with biomass and NDVI (Fig. 
5). All measures of Blomberg’s K were significantly less than 1, sug-
gesting that the variance for each trait measured is relatively high 
within the sampled clades vs. among clades. Genome size, leaf 
nitrogen content, and specific leaf area had the highest measures 
(K = 0.02821, 0.01307, and 0.01013, respectively).

The correlation between the pairwise VI dissimilarity and phy-
logenetic distance was not statistically significant (see Supplement 
19 on GitHub and Zenodo, see Data Availability statement), but 
biomass was significantly correlated with phylogeny using the same 
Mantel tests (r = 0.4476, P < 0.001). Our pairwise species-level VIs 
were also not significantly correlated with the pairwise VIs de-
scribed by Schweiger et al. (2018) (r = 0.0089, P = 0.468), likely be-
cause our VIs were collected at the plot level instead of the leaf level 
and thus less closely tied to individual species.

DISCUSSION

Predictive ability depends on vegetation diversity

Our study demonstrates that the predictive ability of all remote 
sensing metrics varies depending on diversity, but indicates that the 

TABLE 4. Models of biomass in multispecies plots. Only models using planted cover and those using uncorrected VIs are shown. See Supplement 11 (available on 
GitHub and Zenodo, see Data Availability statement) for all models.

VI used Cover used VI Cover Volume R2 AIC ∆AIC

REG — −0.26, P = 0.1203 — 0.67, P < 0.0001 0.498 46.52 0
— — — — 0.55, P < 0.0001 0.468 47.14 0.62
GRE — −0.12, P = 0.2221 — 0.56, P < 0.0001 0.487 47.52 1
NIR — −0.18, P = 0.2333 — 0.64, P < 0.0001 0.486 47.6 1.08
REG Total −0.30, P = 0.1014 0.11, P = 0.5656 0.66, P < 0.0001 0.502 48.15 1.63
RED — −0.12, P = 0.4167 — 0.52, P < 0.0001 0.476 48.43 1.91
REG Planted −0.27, P = 0.1239 0.03, P = 0.8134 0.67, P < 0.0001 0.499 48.46 1.94
GDVI2 — −0.09, P = 0.6474 — 0.57, P < 0.0001 0.47 48.92 2.4
— Planted — −0.03, P = 0.8335 0.55, P < 0.0001 0.468 49.09 2.57
NDVI — −0.02, P = 0.9047 — 0.55, P < 0.0001 0.468 49.13 2.61
GNDVI — −0.02, P = 0.9171 — 0.56, P = 1e-04 0.468 49.13 2.61
GRE Planted −0.12, P = 0.2343 0.01, P = 0.9497 0.55, P < 0.0001 0.487 49.52 3
NIR Planted −0.19, P = 0.2429 0.02, P = 0.8837 0.64, P < 0.0001 0.486 49.58 3.06
RED Planted −0.13, P = 0.4029 −0.04, P = 0.7525 0.54, P < 0.0001 0.477 50.32 3.8
GDVI2 Planted −0.08, P = 0.6652 −0.02, P = 0.8714 0.58, P < 0.0001 0.471 50.89 4.37
NDVI Planted −0.01, P = 0.9333 −0.03, P = 0.8493 0.56, P < 0.0001 0.468 51.09 4.57
GNDVI Planted −0.02, P = 0.9311 −0.03, P = 0.8415 0.56, P = 2e-04 0.468 51.09 4.57
GNDVI — 0.56, P = 0.0010 — — 0.229 63.45 16.93
GNDVI Planted 0.52, P = 0.0043 0.12, P = 0.4476 — 0.24 64.82 18.3
NDVI — 0.45, P = 0.0068 — — 0.162 67.1 20.58
NDVI Planted 0.39, P = 0.0264 0.14, P = 0.3947 — 0.177 68.31 21.79
NIR — 0.36, P = 0.0159 — — 0.131 68.7 22.18
REG — 0.36, P = 0.0313 — — 0.106 69.96 23.44
NIR Planted 0.30, P = 0.0723 0.13, p = 0.4762 — 0.142 70.15 23.63
GDVI2 — 0.44, P = 0.0375 — — 0.099 70.28 23.76
GDVI2 Planted 0.36, P = 0.0984 0.20, P = 0.2262 — 0.131 70.69 24.17
REG Planted 0.28, P = 0.1289 0.15, P = 0.3901 — 0.122 71.16 24.64
RED Planted −0.29, P = 0.1315 0.23, P = 0.1659 — 0.121 71.19 24.67
RED — −0.35, P = 0.0655 — — 0.078 71.27 24.75
— Planted — 0.28, P = 0.0818 — 0.07 71.66 25.14
GRE Planted −0.12, P = 0.3611 0.32, P = 0.0578 — 0.089 72.75 26.23
GRE — −0.06, P = 0.6590 — — 0.005 74.66 28.14

Note: — = no covariate was used; AIC = Akaike’s information criterion; ∆AIC = the difference between the AIC of the best model evaluated for that test and the model being reported; GDVI2 
= generalized difference vegetation index; GNDVI = green normalized difference vegetation index; GRE = green; NDVI = normalized difference vegetation index; NIR = near infrared; REG = 
red edge; VI = vegetation index.
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drone-based quantification of vegetation volume is a useful esti-
mator in both monoculture and multispecies plots, explaining 34% 
and 47% of the variation in biomass, respectively. Of the predictors 
we tested for biomass, we found that volume is the most important 
for multispecies plots (cumulative AICw = 0.999) and second-most 
important (after planted cover) for monoculture plots (cumula-
tive AICw = 0.999). Only one combination of covariates (volume 
and red edge) estimates biomass in multispecies plots better than 
volume alone (R2 = 0.50, ΔAIC = 0.62). Conversely, volume is less 
effective at predicting biomass in monoculture plots than 58/89 
combinations of covariates based on ΔAIC (volume and total or 
planted cover with or without any VI or single band; planted cover 
with or without any VI or single band; planted cover alone; volume 
and corrected or uncorrected NDVI, GNDVI, red edge, or near-in-
frared, or corrected green or red), which explain up to 46% of the 
variation in biomass (see Supplement 10 on GitHub and Zenodo, 
see Data Availability statement). This finding is particularly inter-
esting because the variance in biomass among monoculture plots 
is higher than the variance among multispecies plots (Fig. 3). This 
is what we would expect, as the monoculture plots contain the ex-
tremes of growth form whereas multispecies plots are weighted 
averages of these extremes; consequently, it is hard to see how the 
variance of mixture plot variance could not be less than the variance 
of the monoculture plot variance.

Volume may explain more of the variance in multispecies bio-
mass than monoculture biomass if high-diversity plots have greater 
vertical niche partitioning and thus show a tighter correlation be-
tween volume and biomass due to a more complete filling of the 
volume estimated by photogrammetry. Vertical niche partitioning 
may result in more efficient space filling in the multispecies plots: 
species with different growth forms may exploit vertical layers more 

efficiently, mirroring canopy packing in diverse forests (Jucker 
et al., 2015). In monocultures, individuals of the same species are 
more likely to occupy the same level, leading to empty space under 
the highest vegetation layer. Because volume is estimated from the 
outermost layer of vegetation only, empty space will result in lower 
measured biomass but will have no effect on estimated volume. 
Therefore, monocultures will likely have a looser relationship be-
tween biomass and volume. Because of the limitations of our sam-
pling that make it impossible to tease apart complementarity from 
selection effects in the multispecies plots (see discussion above), 
we cannot directly test the hypothesis here. To further investigate 
this relationship, LiDAR metrics that identify the density of vege-
tation at different heights could be useful, as would future analyses 
in which monoculture biomass and multispecies plot biomass were 
measured in the same way.

Surprisingly, although NDVI is one of the most commonly used 
VIs (Pettorelli et al., 2005), it was not the best VI predictor of bio-
mass or vegetation cover in either plot type in our experimental 
prairie. Based on AICw, GDVI2 was more important in predicting 
both biomass and cover (cumulative AICw = 0.252 and 0.999, re-
spectively) than NDVI (cumulative AICw = 0.104 and 1.43 × 10−6, 
respectively) in monoculture plots. In multispecies plots, red edge 
was the most important spectral predictor of biomass (cumula-
tive AICw = 0.160) and GNDVI was the most important spectral 
predictor of cover (cumulative AICw = 0.385); by contrast, NDVI 
was the least important spectral predictor of biomass (cumulative 
AICw = 0.042) and the third-most important spectral predictor of 
cover (cumulative AICw = 0.152). The difference in the best spectral 
predictors of biomass is likely related to the difference in vegeta-
tion density between monoculture and multispecies plots: GDVI2 
is more dynamic for less-dense vegetation (Wu, 2014), whereas red 

TABLE 5. Models of total cover in monoculture plots.

VI used VI Volume R2 AIC ∆AIC

GDVI2 0.72, P < 0.0001 0.16, 
P = 5e-04

0.661 483.05 0

GDVI2 0.80, P < 0.0001 — 0.644 493.35 10.3
NDVI 0.73, P < 0.0001 0.10,  

P = 0.0497
0.622 510.61 27.56

NDVI 0.79, P < 0.0001 — 0.616 512.52 29.47
GNDVI 0.78, P < 0.0001 — 0.607 518.76 35.71
GNDVI 0.76, P < 0.0001 0.04,  

P = 0.4758
0.607 520.24 37.19

NIR 0.69, P < 0.0001 — 0.481 589.04 105.99
NIR 0.67, P < 0.0001 0.03,  

P = 0.6723
0.481 590.86 107.81

REG 0.58, P < 0.0001 0.13,  
P = 0.0481

0.463 599.7 116.65

REG 0.67, P < 0.0001 — 0.455 601.67 118.62
RED −0.43, P < 0.0001 0.40,  

P < 0.0001
0.45 605.63 122.58

RED −0.56, P < 0.0001 — 0.31 661.45 178.4
— — 0.55,  

P < 0.0001
0.287 669.88 186.83

GRE −0.04, P = 0.4078 0.55,  
P < 0.0001

0.289 671.18 188.13

GRE 0.02, P = 0.7886 — 0 755.59 272.54

Note: — = no covariate was used; AIC = Akaike’s information criterion; ∆AIC = the difference 
between the AIC of the best model evaluated for that test and the model being reported; 
GDVI2 = generalized difference vegetation index; GNDVI = green normalized difference 
vegetation index; GRE = green; NDVI = normalized difference vegetation index; NIR = near 
infrared; REG = red edge; VI = vegetation index.

TABLE 6. Models of total cover in multispecies plots.

VI used VI Volume R2 AIC ∆AIC

GNDVI 0.46, P = 1e-04 — 0.293 29.89 0
REG 0.41, P = 3e-04 — 0.275 31.01 1.12
GNDVI 0.42, P = 0.0106 0.03,  

P = 0.7565
0.295 31.79 1.9

NIR 0.36, P = 4e-04 — 0.258 32.05 2.16
NDVI 0.41, P = 4e-04 — 0.257 32.07 2.18
REG 0.35, P = 0.0158 0.07,  

P = 0.5169
0.282 32.55 2.66

NDVI 0.32, P = 0.0198 0.10,  
P = 0.3165

0.275 32.98 3.09

RED −0.28, P = 0.0256 0.18,  
P = 0.0250

0.267 33.47 3.58

NIR 0.30, P = 0.0259 0.07,  
P = 0.4732

0.267 33.49 3.6

GDVI2 0.28, P = 0.0892 0.15,  
P = 0.1058

0.228 35.74 5.85

GDVI2 0.42, P = 0.0045 — 0.177 36.58 6.69
— — 0.24,  

P = 0.0052
0.171 36.88 6.99

RED −0.36, P = 0.0053 — 0.171 36.92 7.03
GRE 0.01, P = 0.9353 0.23,  

P = 0.0061
0.172 38.87 8.98

GRE 0.03, P = 0.7293 — 0.003 45.03 15.14

Note: — = no covariate was used; AIC = Akaike’s information criterion; ∆AIC = the difference 
between the AIC of the best model evaluated for that test and the model being reported; 
GDVI2 = generalized difference vegetation index; GNDVI = green normalized difference 
vegetation index; GRE = green; NDVI = normalized difference vegetation index; NIR = near 
infrared; REG = red edge; VI = vegetation index.
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edge is a good indicator of biomass at higher vegetation densities 
(Cao et al., 2016). Similarly, GDVI2 and GNDVI likely predict cover 
in monocultures and multispecies plots best because they are more 
sensitive to variation at low and high vegetation densities, respec-
tively (Gitelson et al., 1996; Wu, 2014). We expect that the patterns 
we describe here will be generalizable to other grassland commu-
nity types that are similar in diversity, density, and stratification.

Prairie productivity is driven by phylogenetically labile traits

The traits most strongly correlated with productivity in our 
study are also traits with low phylogenetic heritability (Fig. 5). 
Although traits evolving without constraint or selection are ex-
pected to track phylogeny (Felsenstein, 1985), natural selection 
dampens the effect of phylogenetic heritage on trait variation if 
it is uniform across taxa (e.g., in stabilizing selection) (Hansen, 
1997), and even more dramatically when there is convergence 
between clades in ecologically significant traits (e.g., Cavender-
Bares et al., 2004). Our results suggest that traits responsible for 
productivity—estimated in our study as biomass and VIs—are 
more variable within clades than between clades, either due to 
convergence, stabilizing selection, or pleiotropy on other selected 
traits. This is not true of all traits; in multivariate space, some 
plant families segregated based on functional traits (Fig. 4). This 

is expected if traits in general tend to track phylogeny; while indi-
vidual traits diverge even under neutral expectations, even a wide 
range of traits that all fail to track phylogeny closely may track it 
in aggregate (Givnish and Sytsma, 1997; Cadotte et al., 2017). The 
mint family (Lamiaceae) and sunflower family (Asteraceae) are 
particular exceptions in our study as they cover a relatively broad 
range of trait space, suggesting that trait variance within these 
lineages may be driving the observed patterns.

These results suggest that additional unmeasured traits as-
sociated with phylogeny may drive aboveground productivity. 
Alternatively, we may be observing a biodiversity effect (Duffy 
et al., 2017) that correlates with phylogeny, even if individual 
traits do not. Trait correlations with both productivity and phy-
logeny may be more complex than our metrics suggest; leaf dry 
matter content, for example, has been shown to be correlated 
with productivity (Smart et al., 2017), but is inconsistently cor-
related with productivity metrics in the current study and exhib-
its moderate phylogenetic conservatism (Fig. 5). Furthermore, 
we also assessed whether measures of productivity were cor-
related with traits that influence productivity, such as leaf carbon 
content. Although NDVI has been used as a predictive tool for 
measures of biomass and leaf nitrogen content (Cabrera-Bosquet 
et al., 2011), we did not find such a correlation with leaf carbon 
content, likely because the spectra involved in distinguishing the 

FIGURE 4. Non-metric multidimensional scaling ordination of all 127 species, given their functional traits. Point size shows biomass centered and 
scaled to have a mean of 0 and standard deviation of 1. 
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levels of carbon are different from those involved in detecting ni-
trogen levels.

Application of high-resolution imagery in ecological studies

Remote sensing metrics are often used to detect productiv-
ity (Wang et al., 2004), as well as species richness and diversity 
(Gould, 2000); however, few studies examine these three features 
together (Wang et al., 2016). Here, we find that these three fea-
tures are interrelated: vegetation diversity affects the relationship 
between remote sensing metrics and productivity. Specifically, 
these results suggest that when using metrics derived from im-
agery to estimate productivity, diversity needs to be considered. 
We focus on only two levels of diversity (monoculture and multi-
species), but future studies using more levels could examine this 
relationship in more detail.

Our finding that volume is more useful than NDVI in estimat-
ing biomass has two important implications: (1) a traditional cam-
era can capture adequate RGB images for volume reconstruction, 
reducing costs compared to techniques requiring a multispectral 
sensor; and (2) LiDAR approaches may prove even more accurate, 

given the informative vegetation structure data. The VIs, particu-
larly NDVI, have been the focus of most previous biomass estima-
tions (Das and Singh, 2012; Goswami et al., 2015), but our results 
support recent research suggesting that high-resolution volume 
data are also a good estimate of biomass (Wallace et al., 2017).

We demonstrate the use of high-resolution remote sensing im-
agery to address an ecological question. We find that volume is a 
good predictor of biomass regardless of diversity. Because structural 
metrics such as volume are the least expensive remote sensing proxy 
to obtain, this technique could be used much more widely than 
those requiring a multispectral sensor. Finally, we find that the re-
lationship between remote sensing proxies of productivity depends 
on the diversity of the vegetation. The variation in this relationship 
is likely due to differences in vegetation structure and warrants fur-
ther investigation.
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