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Abstract
The high mortality rate of breast cancer is mainly caused by the metastatic ability 
of cancer cells, resistance to chemotherapy and radiotherapy, and tumor 
regression capacity. In recent years, it has been shown that the presence of breast 
cancer stem cells is closely associated with the migration and metastatic ability of 
cancer cells, as well as with their resistance to chemotherapy and radiotherapy. 
The tumor microenvironment is one of the main molecular factors involved in 
cancer and metastatic processes development, in this sense it is interesting to 
study the role of platelets, one of the main communicator cells in the human body 
which are activated by the signals they receive from the microenvironment and 
can generate more than one response. Platelets can ingest and release RNA, 
proteins, cytokines and growth factors. After the platelets interact with the tumor 
microenvironment, they are called "tumor-educated platelets." Tumor-educated 
platelets transport material from the tumor microenvironment to sites adjacent to 
the tumor, thus helping to create microenvironments conducive for the 
development of primary and metastatic tumors. It has been observed that the 
clone capable of carrying out the metastatic process is a cancer cell with stem cell 
characteristics. Cancer stem cells go through a series of processes, including 
epithelial-mesenchymal transition, intravasation into blood vessels, movement 
through blood vessels, extravasation at the site of the establishment of a metastatic 
focus, and site colonization. Tumor-educated platelets support all these processes.
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Core Tip: Cancer is a complex disease with several unknown mechanisms. The main 
aim of this work is to highlight the key role of platelets as communicator cells and their 
crucial role in cancer progression and second metastatic foci. This review focuses on 
the role of platelets in the tumor microenvironment as well as the interaction of 
molecules from platelets and breast cancer stem cells involved in cancer.
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INTRODUCTION
Cancer is a multifactorial disease associated with a broad spectrum of molecular 
alterations inside the cells and the cellular microenvironment[1]. Cancer progresses 
mainly due to (1) uncontrolled cellular division; (2) alterations in the mechanisms that 
regulate cell death; (3) epithelial-mesenchymal-transition; (4) intravasation of tumor 
cells into the circulatory system; (5) cell migration to distant sites; (6) extravasation of 
tumor cells to initiate new foci; and (7) metastatic tumor development[2].

Breast cancer (BC) is a complex disease characterized by high cellular heterogeneity 
that comprises[3] a tumor microenvironment[4] and a stem cell niche[3]. BC is the leading 
cause of cancer death in women worldwide[5]. The lymphatic system is the main 
system involved in breast tissue drainage[6]. In BC, this is of high relevance due to its 
role in tumor cell dissemination and subsequent metastatic tumor development. The 
flow rate through the lymphatic system is 100 to 500 times greater than through blood 
vessels, and its shear force is lower due to the higher dilation capacity of lymphatic 
vessels; this means that metastatic cells traveling through the lymphatic system are 
much more likely to succeed in colonizing a second microenvironment[7].

BC is one of the most studied cancers; however, several molecular processes 
associated with BC are still unknown. There are various risk factors associated with BC 
development, such as estrogen production by menopause, or by nulliparity, a 
sedentary lifestyle, alcoholism, obesity, ionizing radiation, hormonal therapy, age, sex, 
family history, among others[8,9]. According to a report by The Global Cancer 
Observatory (a division of the World Health Organization), in 2018, there were 
2088849 incident cases of BC and 626679 deaths worldwide[5].

Despite the tremendous histological diversity of breast tumors, a molecular 
classification system has been developed based on the expression of progesterone 
receptors (PR), estrogen receptors (ER), and the epidermal growth factor-2 (HER2)[10]. 
This classification system divides BC tumors into luminal-A, positive for ER and 
positive for PR, but negative for HER2; Luminal B, ER-positive, PR-negative, and 
HER2-positive; HER2, ER-negative, PR-negative, but HER2-positive. Triple-negative 
(TNBC) or basal-like, ER-negative, PR-negative, and HER2-negative[10].

PR and ER are expressed in the membrane of tumor cells and depend on their 
ligands to proliferate[11]. HER2+ tumor cells have many copies of the HER2 gene and 
high levels of the HER2 protein, which probably play a role in the accelerated growth 
of tumors[12]. Breast tumors classified as triple-negative are common in Black and 
Latino ethnic groups and are found more frequently in younger women[13].

The treatment and prognosis of a patient are closely related to the molecular 
subtype of BC present[10]. It has been reported that the subtype with the best prognosis 
is luminal A, while the one with the worst prognosis is triple-negative[14].

Breast cancer has a highly complex biological and molecular behavior as each cell 
subtype sends different signals to the tumor microenvironment, in this sense, each 
signal contributes in a different way to cancer cell differentiation, tumor growth rate 
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and metastasis development. Also, BC stem cells and platelets are two crucial players 
that participate in BC malignancy and metastasis development, transferring signals 
and regulation factors through the whole process.

BREAST CANCER STEM CELLS 
Breast cancer stem cells (BCSCs), also called breast cancer-initiating cells, are a 
subpopulation of cells within the tumor that can self-renew and produce different 
tumor cell lines by asymmetric division. The BCSC population is responsible for 
developing and maintaining the tumor mass through the expression of survival 
factors, proliferation and migration[3,10]. BCSCs are regulated through interactions with 
growth factors and cytokines produced by mesenchymal stem cells (MSCs), cancer-
associated fibroblasts (CAFs), tumor-associated macrophages (TAMs) and the 
extracellular matrix (ECM)[15]. These interactions help stimulate CSC self-renewal, 
induce angiogenesis and promote invasion by tumor cells and their migration towards 
new tumor foci.

BCSCs have unique characteristics, including an unlimited capacity for self-renewal, 
resistance to chemotherapy, the ability to induce the formation of new blood vessels to 
feed the tumor[3,15] and due to their plasticity, the ability to transition between two 
states reversibly (epithelial-mesenchymal transition, EMT), which allows them to 
migrate through the lymphatic and blood systems and establish metastatic foci in 
distant tissues with the help of platelets[3,16].

Two main models explaining tumor origin have been described: (1) The stochastic 
or clonal evolution classic model does not contemplate CSCs existence; in this model, 
each cell can induce tumor development throughout mutations. The model assumes 
that cancer cell clones produced by genomic abnormalities randomly accumulated 
could explain heterogeneity[3,17]; and (2) The tumorigenesis model considers CSC 
existence and postulates that cancer arises from stem cells with unlimited self-renewal 
capacity. According to this model, cancer originates from poorly differentiated cells 
with epigenetic mutations and unlimited replication capacity[3,18].

BCSCs can be distinguished from other tumor cells by the presence of cell surface 
markers EpCAM+, CD24-/Low, and CD44+[16,19]. EpCAM, or epithelial cell adhesion 
molecule, is a transmembrane glycoprotein that participates in intracellular signaling, 
proliferation, differentiation, and tumorigenic and metastatic processes[20]. CD44 
regulates cell-cell and cell-ECM interactions through hyaluronic acid. It participates in 
cell adhesion, proliferation, survival, and differentiation[21]. CD44 plays an essential 
role in cancer development as it is responsible for maintaining the multipotentiality of 
BCSCs[21]. CD24 is a sialoprotein that participates in adhesion, proliferation, and 
metastasis; its upregulation inhibits the activity of BCSCs[22].

CD49f and ALDH1 are other cell surface markers found in BCSCs that are 
associated with chemoresistance; therefore, their presence is associated with a poor 
prognosis and reduced patient survival. CD49f, also known as α6-integrin, binds to 
laminin and facilitates the adhesion of epithelial cells to the ECM. ALDH1 is a 
cytosolic isoenzyme that catalyzes the oxidation of retinol to retinoic acid[23].

Li et al[3] indicated that all mammary tumor subtypes are produced by luminal stem 
cells. According to these authors, the different mammary tumor subtypes have a single 
origin that, due to different epigenetic and oncogenic events, are dispersed into the 
different known BC subtypes.

Different cell surface markers have been observed in BCSCs depending on the cells' 
EMT state[16,24]. EMT is a process characterized by the loss of apicobasal polarity, loss of 
intracellular junctions and ECM junctions, and changes in the cytoskeleton[16,25] that 
make BCSCs, which have epithelial morphology, acquire a mesenchymal phenotype 
that allows travel through the blood or lymphatic vessels to reach distant sites and 
create metastatic foci. The phenotype of BCSCs in the EMT state is CD24-CD44+ E-
cadherin- EpCAM- Vimentin+ ALDH+. BCSCs that are in the mesenchymal-epithelial 
transition (MET) state have a phenotype E-cadherin+ EpCAM+and Vimentin-[19,24,26]. The 
transition between these states is induced by several factors contained in the tumor 
microenvironment[16,24]. The inflammatory immune response and hypoxia[27], for 
example, are EMT inducers in BCSCs. Transforming growth factor β (TGF-β) induces 
EMT by downregulating epithelial proteins such as E-cadherin and upregulating 
factors like Twist and Snail, which induce the mesenchymal state[28-31]. TGF-β also 
supports BCSC functions via Wnt[32] and FAK[33] and promotes the expression of 
vimentin[26].

Labelle et al[25] reported that BC cells exposed to platelets treatment developed a 
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mesenchymal phenotype; additionally, when these cells were also subjected to 
treatment with TGFβ, their invasive and metastatic capacity increased. These results 
indicate that platelets and TGFβ act synergistically and can produce cells with 
characteristics of BCSCs[25].

In 2014, Asiedu et al[34] showed that AXL upregulation by a member of the TAM 
family (Tyro3, Axl, Mer; tyrosine kinase receptors) increases the tumorigenic capacity, 
invasion, and metastasis of BC cells, while AXL downregulation reverses EMT in 
BCSCs and restores chemosensitivity. AXL regulates several signal transduction 
pathways, including NF-k β, STAT, Akt, and MAPK. Asideu et al[34] demonstrated that 
AXL is constitutively activated in BCSCs and that it induces EMT by regulating E-
cadherin, N-cadherin, Snail, and Slug expression.

It has been shown that BCSC activity is also regulated by signals from the Notch, 
Hedgehog, Wnt/ β-catenin, p53, and TGF-β pathways[16,32], helping to maintain cell 
survival and proliferation and, in this way, contributing to the growth of breast 
tumors.

TUMOR MICROENVIRONMENT
The tumor microenvironment (TME) is constituted by the ECM, CAFs, MSC, TAMs, 
and inflammatory cells (ICs)[35]. The TME is also constituted by soluble active 
biomolecules such as cytokines, growth factors, ligands, membrane-anchored 
molecules, secretion proteins and RNAs (miRNAs, lncRNAs)[28,36] (Figure 1). 

All the interactions that dictate the behavior of the tumor take place in the TME. 
This behavior can include a reversion to healthy tissue states or progression to the 
most advanced and deadly stages of the disease. Some of the interactions in the TME 
that promote cancer development, such as angiogenesis and metastasis, are discussed 
below.

The ECM provides attachment sites to normal and tumor stem cells, allowing them 
to interact with signals from other cells or from the TME that plays a role in their 
maintenance and regulation. It is through the ECM that CSCs that have experienced 
EMT can exit to points distant from the primary tumor[24]. It has been reported that in 
BC, the ECM increases its rigidity, which promotes TAZ protein activation[36], one of 
the main effectors of the Hippo pathway, responsible for controlling organ size by 
regulating cell proliferation, apoptosis and stem cell renewal[37].

MSCs regulate BCSCs through the loops of cytokines IL-6 and CXCL7; IL-6 is 
produced by MSCs and other immune cells present in the TME[38]. The interaction 
between IL-6 and the ILR 6/gp130 receptor present in BC cells induces CXCL7 
production. In turn, CXCL7 induces IL-6, IL-8, CXCL6 and CXCL5 secretion, all of 
them with the ability to stimulate the self-renewal of BCSCs, which leads to tumor 
growth, metastasis and chemotherapy resistance[39].

TAMs are also part of the TME; they accumulate in hypoxic microenvironments and 
are the main orchestrators of an inflammatory TME. They promote cancer cell 
proliferation, invasion, and metastasis, stimulating angiogenesis and inhibiting the T-
cell-mediated antitumor immune response. Furthermore, they play a crucial role in the 
regulation of EMT[40].

TAMs secrete TNF-alpha[41], which induces EMT through the NF-κβ pathway[42], and 
also induce an increased expression of Slug, Snail, and Twist[40]. Furthermore, TAMs 
indirectly increase the self-renewal capacity of BCSCs by maintaining constant 
communication with TGF-β[40].

To support tumor angiogenesis, TAMs produce angiogenesis-modulating 
enzymes[43] such as the metalloproteinases MMP-2, MMP-7, MMP-9, MMP12, and 
cyclooxygenase 2[43,44]. They also release cytokines (CXCL12, CCL2, CXCL8, CXCL1, 
CXCL3, and CCL5) that play a crucial role in different processes associated with cancer 
development[45].

Micro-RNAs (miRNAs) are also associated with the TME. These molecules are small 
non-coding RNAs that participate in various cellular functions, are found in large 
numbers in the TME, and are essential for the maintenance, development, and 
progression of cancer[36]. They are also critical regulators of the signaling pathways 
associated with cell stemness. The presence of oncogenic miRNAs in the TME is partly 
explained by their increase during specific transcription and by their release by tumor-
educated platelets[46,47].

Several miRNA clusters, such as miR-183, miR-221–222, let-7, miR-142, and miR-
214, play a role in the maintenance of BCSCs[47]. Others, such as let-7, miR-7, miR-10, 
and miR-15a, have been associated with BCSC chemoresistance ability[48]. EMT and 
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Figure 1 Tumor microenvironment in breast cancer. The figure describes the microenvironment present in cancer development. The tumor grows in an 
allowable microenvironment delimited by an extracellular matrix and inside there is a series of biomolecules such as cytokines, chemokines, miRNAs, growth factors. 
Furthermore, different cell types, such as breast cancer stem cells, platelets, tumor-associated macrophages, mesenchymal stem cells, and cancer-associated 
fibroblasts, contribute to the optimal conditions for cancer development. Biomolecules and cells, all orchestrate to promote tumor growth, angiogenesis, epithelial-
mesenchymal transition, and metastasis. Created by Biorender.com. BCSC: Breast cancer stem cells; MSC: Mesenchymal stem cell; ECM: Extracellular matrix; TAM: 
Tumor-associated macrophage; CAF: Cancer-associated fibroblast. Created with Biorender.com

MET transitions are also regulated by miRNAs clusters, including mir-9, mir-100, mir-
221, and mir-155 as EMT inducers, while mir-200, mir-205, and mir-93 induce MET[49].
 MiR-939 induces the EMT process by reducing E-cadherin and Claudin expression[50].

The p53 protein depletion in tumor cells reduces miR-200c expression[51], induces 
EMT development, and provides stem cell-like properties. The p53 activation reduces 
the expression of Snail and other EMT-inducing transcription factors through the 
upregulation of the miR-34 family[52].

The miRNAs found in the TME can come from platelets or platelet microparticles 
(PMPs). PMPs are the most abundant microparticles in the blood and contain, in 
addition to miRNAs[53], several EMT-promoting factors, including basic fibroblast 
growth factor (bFGF), fibroblast growth factor (FGF)[54], platelet-derived growth factor 
(PDGF)[55], hepatocyte growth factor (HGF)[56], TGF-β[57], vascular endothelial growth 
factor (VEGF)[58] and brain-derived neurotrophic factor/tropomyosin-related 
kinase (BDNF/TRK)[59].

TGF-β secreted by PMPs allows the overexpression of miR-183, which decreases the 
expression of DAP12, a receptor of natural killer cells (NKs) that plays a crucial role in 
membrane potential stabilization and signal transduction in these cells. The result is an 
increase in the survival of migratory cancer cells within blood vessels[60].

The transcription factor NF-kB participates in the regulation of metastasis and the 
induction of EMT. The activation of NF-κB is associated with a change of the TGFβ 
factor from a tumor-inhibiting role to a prometastatic role. The direct contact of 
platelet-derived TGFβ with tumor cells activates the TGFβ/Smad and NF-κB 
pathways in cancer cells, promoting EMT, and increasing metastasis in vivo[25,57].

It has been widely reported that a chronic inflammatory microenvironment 
promotes tumor development[4]. These inflammatory microenvironments are usually 
enriched with several lipid mediators such as platelet-activating factor (PAF)[61], 
prostaglandin (PG)[62] and lysophosphatidic acid (LPA)[63], all of which are secreted by 
platelets, by different types of immune cells during inflammation and by BC cells after 
stimulation with growth factors. These lipid mediators play an essential role in platelet 
aggregation and neo-angiogenesis[61-63]. The PAF has been shown to play an essential 
role in the onset and progression of BC and plays a predominant role in neo-
angiogenesis[61]. Ward et al[64] reported that LPA release by the GPCR CD97 complex 
activates platelets and improves the permeability of tumor cells within blood vessels, 
which results in a higher capacity for invasiveness[64].
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ROLE OF PLATELETS IN CANCER PROGRESSION AND METASTASIS
Platelets were discovered by the Italian physician Giulio Bizzozero in 1882. In 1906, JH 
Wright described them as anuclear cell fragments derived from megakaryocytes[65].

Platelets are widely known as the most critical first response factor in (1) 
coagulation, vasoconstriction, and inflammation, facilitating sterilization, tissue repair, 
and resolution; (2) they are the first to detect, phagocytize and react to pathogens in 
the circulation; (3) they maintain vascular integrity by hemostasis; (4) heal wounds; 
and (5) initiate and coordinate intravascular immune responses during infections and 
cancer[66,67].

The secretome of platelets is made up of more than 300 biomolecules, mainly in 
dense granules, alpha granules, and lysosomes. The presence of these biomolecules in 
the granules may be explained by the endocytosis and biosynthesis processes that take 
place in the megakaryocyte from which platelets originate[68].

One of the properties of platelets as first responder cells is the ability to actively 
migrate through any inflamed or leaking vessel wall, in response to a variety of 
stimuli, in order to aid in wound sterilization and tissue regeneration[66] (Figure 2).

Platelet morphology changes according to the state they are in. When they are in a 
resting state, platelets assume a discoid shape that maximizes interactions with flat 
surfaces[69,70]. In this state, platelets travel out of blood vessels and, after coming into 
contact with external microenvironmental factors, become activated, and their 
cytoskeleton undergoes a series of changes that result in the development of filopodia, 
which enlarge the cell contact surface and allows platelets to provide a highly rapid 
response to tissue injuries[70].

There are two ways by which platelets manage to disseminate the information they 
collect from the various microenvironments in which they are present. The first is by 
shedding membrane-enclosed cell fragments or microvesicles such as PMPs. These are 
also known as platelet-derived microvesicles (PMVs), which range in size from 100 to 
1000 nm or others such as exosome-like microvesicular bodies range in size from 
40–100 nm, that carry a wide variety of biomolecules such as miRNAs, growth factors 
and cytokines, among others. The second way by which platelets disseminate 
information is membrane fusion[71].

The platelet content is enriched by the various microenvironments through which 
they circulate. When circulating through the TME, platelets incorporate tumor-
associated molecules, including molecules from TMAs or CSC niches that can support 
the growth of the original tumor or help establish secondary metastatic foci. These 
platelets are called "tumor-educated platelets" (TEPs)[72].

The molecules secreted by platelets include nitric oxide (NO), a bioactive compound 
that modulates angiogenesis, the immune response and neural regulation[73]. It is 
synthesized by nitric oxide synthase (NOS2) during the oxidation of L-arginine and 
has been shown to decrease the apoptosis of human lung carcinoma cells. In BC, NOS2 
is a biomarker of disease progression and prognosis. NOS2 also mediates angiogenesis 
and the immune response in the TME, which are critical factors in cancer 
development[73,74].

In 2016, Banskota et al[75] demonstrated that serotonin is also released by platelets, 
inducing the production of reactive oxygen species (ROS) derived from NADPH 
oxidase (NOX) in tumor cells[75]. ROS production occurs as a result of alterations in the 
functions of mitochondria, associated with the development and progression of 
various diseases, including cancer[76]. In cancer, ROS production promotes the 
activation of the epidermal growth factor receptor (EGFR), which has been identified 
as a tumorigenesis driver and tumor resistance biomarker[77]. EGFR is capable of 
inhibiting anoikis, a form of programmed cell death caused by the detachment of cells 
from the ECM through activation of the extracellular signal-related kinases (ERK) 
pathway[78], which is associated with cell proliferation, migration, apoptosis, 
differentiation and senescence.

Along with ATP[67,79], platelets release other metabolites, such as thromboxane A2 
(TxA2), 12-HETE[80] and serotonin[65], which, by regulating the permeability of blood 
vessels, allow TEPs and other cells with a migratory phenotype to move through blood 
vessels and colonize secondary metastatic foci[72,79]. In 2013, Schumacher et al[81]

 demonstrated that TEPs release adenine nucleotides (ATP) from their dense granules, 
which act on the P2Y2 receptors of endothelial cells, disrupting the adhesive junctions 
of endothelial cells and opening the endothelial barrier of blood vessels, which allows 
tumor cells to exit the bloodstream and travel to new metastatic foci[81].

The platelet's role in coagulation has been widely studied. Tissue Factor (TF), also 
called platelet tissue factor, is a transmembrane glycoprotein that binds to the 
coagulation serine protease factor VII/VIIa (FVII/VIIa) and is activated when a blood 
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Figure 2 The role of platelets in wound biology. The response by platelets depends on the recognition of extracellular matrix receptors[1]. These receptors 
can be proteoglycans, laminin, vitronectin, and various collagen isoforms.

vessel is injured, triggering the coagulation cascade (extrinsic pathway). Fibroblasts 
typically express TF on blood vessel walls[82]. Its presence promotes thrombin 
production and platelet activation, which has been associated with cancer, 
contributing to the survival of cancer cells and metastasis[83]. In 2015, Orellana et al[84] 
showed that exposure to platelets increases TF expression in cancer cells[83]. As cancer 
cells can also express TF on their cell membrane, they can activate the coagulation 
cascade, which leads to the production of thrombin and the activation of platelets[83,84]. 
Thrombin is a crucial mediator of the metastatic process participating in both 
angiogenesis and cell migration and is capable of inhibiting apoptosis and inducing 
the proliferation and differentiation of vascular progenitor cells[85].

It has been reported that endothelial cells stimulated by thrombin induce 
morphology changes related to an EMT phenotype, which, as discussed, is associated 
with the loss of adhesive cell-cell junctions and migration to blood vessels[86].

Platelets also express multiple receptors on their surface that are activated according 
to signals they receive from the microenvironment. These receptors can generate 
different responses, including hemostasis, thrombosis, inflammation and tissue 
remodeling, but also the promotion of cancer cell survival and metastasis[67,72]. Mice 
that have been depleted of platelets or have a deficiency in granule content do not 
develop metastasis[87]. Other studies have shown that the proteins released by platelets 
influence the degree of malignancy of breast tumor cells, contributing to the 
generation of a more aggressive and metastatic phenotype[88].

Once CSCs acquire the migratory phenotype through EMT and are ready to start 
moving to sites distant from the primary tumor, they must be protected by platelets 
from shear forces and the first line of defense of the immune system in blood, NK 
cells[89,90] (Figure 3). Migratory cells activate platelets through different mechanisms, in 
an exacerbated manner, which explains hypercoagulation and the increased risk of 
thrombosis in cancer patients[66,68].

The chemokines and cytokines that stimulate cell migration, CXCL1, CXCL4, 
CXCL5, CXCL7, CXCL8 and CXCL12, play an essential role in the platelet response to 
tissue injury, but also play a key role in angiogenesis and the metastatic process of 
BC[91]. CXCL4, also known as platelet factor 4 (PF4), is produced by megakaryocytes 
and stored in platelet α granules during platelet formation. The primary function of 
this chemokine is to contribute to coagulation but, being an angiostatic factor, it also 
plays a decisive role in the development of cancer by inhibiting cell migration[91,92].

Johnson et al[93]  looked for a relationship between the biomolecules secreted by 
platelets and some type of secretome in BC cells that could make them prometastatic. 
They found that platelet-secreted biomolecules in the TME induced the release of 
CCL2, angiogenin, interferon-gamma, IL-6, granulocyte-macrophage colony-
stimulating factor and CXCL1 in BC cells. They also found that IL-8 or CXCL8, the 
most studied proinflammatory chemokine secreted by metastasis-promoting tumor 
cells, increases its expression 50-fold in BC cell lines[93]. This cytokine is known to be 
released in response to platelet activation and aggregation[43]. IL-8 interacts with the 
CXCR1 and CXCR2 membrane receptors, which are highly expressed in BC cells; in 
fact, their expression is associated with angiogenic and metastatic processes, as well as 
with the regulation of BCSC expansion. Blocking CXCR1 and CXCR2 receptors have 
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Figure 3 Breast cancer metastasis. Metastatic foci are the product of a series of events and in all these steps, they are accompanied by platelets. Breast 
cancer stem cell (BCSC) receives stimuli from the tumor microenvironment, including platelets, to allow the cellular transition epithelial-mesenchymal transition. Once 
the BCSC has achieved cell transformation and has broken the intercellular junctions and the extracellular matrix, it passes through the bloodstream or lymphatic 
system, always accompanied by platelets to avoid anoikis, shear forces and natural killer cells. The tumor educated platelets prepare the second metastatic niche. 
Created by Biorender.com. EMT: Epithelial-mesenchymal transition; TAM: Tumor-associated macrophage; CAF: Cancer-associated fibroblast; ECM: Extracellular 
matrix. Created with Biorender.com

an antitumor effect[94].
Platelet inactivation in the TME has been shown to inhibit the Akt pathway, which 

usually induces IL8 production. When the production of IL-8 decreases, the metastatic 
capacity of BC cells decreases[67]. IL-8 positively regulates the AKT pathway, 
generat ing a  much more metastat ic  and aggressive BC phenotype[67]. 
Consecutively, AKT induces SOX2 overexpression in CSCs, one of the main 
transcription factors involved in stem cell self-renewal[95].

It has been reported that aspirin can induce platelet inhibition[64,67]. A study by 
Johnson et al[93] showed that administering aspirin to BC patients significantly 
decreased IL8 levels and the platelet count. Aspirin intake was also associated with a 
decrease in tumor invasion compared to patients who did not receive aspirin[67]. 
Rothwell et al[96] concluded that people who consume aspirin daily are less likely to be 
diagnosed with cancer and show a higher probability of survival if they develop 
malignancy[96].

CCL5, also known as RANTES, is another chemokine associated with the 
progression and metastasis of BC promoted by platelets. Several authors have shown 
that platelets store and release large amounts of this chemokine, which is associated 
with disease progression and metastatic processes in patients with BC[44].

CXCR2 and its ligands are also involved in cancer development by promoting 
tumor angiogenesis and chemoresistance[95]. It has been reported that the expression of 
CXCR2 ligands increases in the supernatants of BC cells treated with chemotherapy 
and that BCSCs are enriched during doxorubicin and paclitaxel chemotherapy, 
showing more significant metastatic potential than primary tumor cells[97].

Cells from metastatic BC are rich in CXCR4 and CCR7 receptors and it has been 
observed that the sites where secondary metastatic foci are more likely to develop are 
those sites rich in ligands for CXCR4 and CCR7[98].

CXCR4 also interacts with CXCL12, a chemokine produced by stromal cells whose 
leading role is to trigger platelet migration into extravascular spaces, which promotes 
the polymerization of actin in the cytoskeleton of cancer cells, thereby causing a 
rearrangement of the pseudopodia of BC cells, which in turn induces chemotactic and 
invasive responses[99].

PAR1-PR and PAR4-PR (molecules found inside platelets) are other platelet-
secreted molecules that play a crucial role in the TME and the development of cancer, 
angiogenesis and metastasis[66,78]. Their expression increases BC cell proliferation in 
vitro and, together, in vivo, promote MDA-MB-231 growth implanted in mice[66]. PAR1-
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PR is a proangiogenic factor that stimulates platelet activation and induces the release 
of SDF-1 and VEGF by promoting the growth of BC cells, more efficiently[78] than 
PAR4-PR, an antiangiogenic factor that promotes the release of PF4 and endostatin but 
limits the release of SDF-1 and VEGF[78].

VEGF, another factor released by platelets[100], promotes cancer cell proliferation 
mainly through the cooperative signaling of VEGFR2 and integrin activation by VEGF, 
via the PI3K/PKC signaling pathway[101]. Breast cancer patients submitted to several 
treatments showed platelet phenotype changes. Platelets were activated by ADP 
receptors, thrombin and collagen from patients with BC, which led to a significant 
increase in the secretion of VEGF, TSP1 and TGF-β1, compared to resting platelets. The 
response, however, differed depending on the platelet agonist. For example, the ADP 
agonist was a much weaker inducer of protein release than agonists attacking collagen 
and thrombin receptors. The study demonstrated the effects of specific stimulation of 
platelet receptor pathways on the release of VEGF, TSP1 and TGF-β1 in BC patients[102].

In 2015, Orellana et al[83] studied the association between platelets and ovarian cancer 
stem cells. They showed that platelets promoted the formation of ovarian cancer 
spheres that express cancer stem cell surface markers, such as CD44. In addition, the 
authors showed, through an experiment with a Boyden camera, where cancer cells 
were placed on top and platelets on the bottom, that microparticles from platelets and 
exosomes in the proximity of tumor cells promoted the migration of these cells, 
probably because the molecules inside platelets, such as PDGF and TGFβ, can serve as 
chemoattractants[83].

Platelets have been reported to induce activation by dephosphorylation and 
subsequent entry into cell nuclei, of RhoA-(myosin phosphatase targeting subunit 1), 
MYPT1-protein phosphatase (PP1)-mediated and the Yes-associated protein 1 (YAP1), 
which confer resistance to anoikis[103]. It has also been shown that platelets with a low 
expression level of apoptosis signal-regulating kinase 1 (Ask1), which activates the 
phosphorylation of AKT, JNK and p38, are associated with a decrease in metastasis[104].

Another protein secreted by platelets that plays an essential role in the metastatic 
process of BC is acid sphingomyelinase (Asm), which induces ceramide production, 
which activates integrin 51, which in turn promotes metastasis[105]. Ferroni et al[106] 
demonstrated that cancer-associated oxidative stress contributes to persistent platelet 
activation.

In TNBC, the most aggressive form of BC with the poorest outcome, there are 
molecules related to self-renewal signaling pathways that are highly activated in 
TNBC relative to non-TNBC, these include SRC, PTK7, CX26, USP2, and PLK1[107].

On the other hand, Jansson et al[108] reported that the platelet-derived growth factor 
(PDGF) has higher expression in the TNBC subtype and the prognosis of these patients 
is even worse. Also Camorani et al[109] considered PDGFRß as "a reliable biomarker of 
TNBCs subgroup with invasive and stem-like phenotype[109]." In this sense, several 
PDGF receptor kinase inhibitors have been developed, including Imatinib, Sunitinib, 
Sorafenib, Pazopanib, and Nilotinib. In addition, monoclonal antibodies directed 
against PDGF or PDGFR have been developed, such as MC-3G3 specific to PDGFRα, 
and IMC-2C5 directed against PDGFRβ to delay tumoral growth[110].

Experimental evidence indicates that platelets can exacerbate the cancer metastasis 
process in several ways; (1) promoting extravasation; (2) improving tumor cell 
survival in the circulatory system; (3), increasing tumor cell arrest in the vasculature 
system; and (4) stimulating tumor proliferation and angiogenesis at secondary sites[111].

ROLE OF PLATELETS IN CANCER CELL PROTECTION
When cells metastasize, only a small group of them manage to survive and initiate 
metastatic foci. Platelets play an essential role in cancer cell survival, by protecting 
anoikis. When cancer cells travel throughout the bloodstream, platelets induce 
thrombus formation to protect them from dangerous shear forces and NK 
cells[71,91,111,112]. Anoikis is an apoptotic process induced by cell detachment from the 
ECM that constitutes the main barrier against the metastatic process[112]. As discussed 
above, one of the main characteristics of cells with a migratory EMT phenotype is the 
loss of cell-cell and cell-ECM junctions, which allows them to enter the blood or 
lymphatic vessels and colonize distant sites as part of the metastatic process[16,24]. A 
characteristic of cancer cells that has been fully identified is their ability to survive 
without anchorage, travel to distant sites through the blood system and initiate 
secondary tumors[16]. Several studies have analyzed the role of signaling pathways in 
anoikis. For example, PI3K-AKT is one of the main pathways involved in promoting 
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resistance to anoikis via the growth factor IGF-1, which is found in the TME and plays 
an essential role in tumor development and growth, as well as in the prevention of 
apoptosis through its ligand IGFR1[113].

In 2002, Zeng et al[77] showed that the cytokine HGF, which promotes cell 
proliferation, migration and invasion, can inhibit anoikis and improve the survival of 
head and neck tumor cells through activation of the ERK pathway[77].

In 2004, Douma et al[114] demonstrated the role of the neurotrophic tyrosine kinase 
receptor TrkB as a direct suppressor of caspases in anoikis. TrkB prevents cell death, 
allowing them to survive and proliferate as suspended spheroid cell aggregates[114].

A large number of adhesion molecules embedded in the cell membrane of platelets 
and platelet-derived microparticles promote adhesion between different cells; 
platelet/platelet, platelet/blood vessel endothelium and platelet/cancer cell. The 
cellular adhesion aids the formation of a thrombus around cancer cells that have 
entered blood vessels and thereby helping them evade both anoikis and the immune 
response[115]. The adhesion molecules of platelets include integrins (αIIbβ3, α2β1, α5β1, 
α6β1, αLβ2, αvβ3, P-selectin), membrane glycoproteins (GPIb/V/IX and PSGL-1) and 
immunoglobulin superfamily proteins (platelet-endothelial cell adhesion molecule-1, 
PECAM-1)[115,116].

Both platelets and endothelial cells have been shown to express P-selectin, which 
aids the dissemination of tumor cells. P-selectin can be found in the alpha granules of 
platelets. When platelets are activated, P-selectin is translocated to the surface and 
regulates the binding between platelets and endothelial cells through the formation of 
glucan structures[117]. It has been shown that a decrease in P-selectin, which weakens 
the junctions between platelets and tumor cells, is associated with a reduction in tumor 
size, a reduction of metastatic foci and an increased survival rate in mice with BC[118]. 
P-selectin is known to play an essential role in the evasion of NK cells by BCSCs in 
blood vessels. Platelets aggregate around a tumor cell when the PSGL-1 ligands on 
platelets recognize P-selectin, allowing tumor cells to evade the immune response[119].

ROLE OF PLATELETS IN ANGIOGENESIS DEVELOPMENT
As neo-angiogenesis produces leaky blood vessels during the early progression of 
cancer, it is no surprise that platelets are among the first cells to be involved in this 
process. Their ability to extravasate, activate and release proangiogenic, 
chemoattractant and immunomodulatory compounds can potentially promote cancer 
progression and metastasis.

Neo-angiogenesis is regulated by several pro- and antiangiogenic factors, mainly 
VEGF[120], FGF[103], EGF[121], HIF-1[122] and TGF[123], but many other angiogenic cytokines 
such as factors PDGF[103,120], NGF[124] and SCF[125] participate in this process.

In cancer, the angiogenesis process is promoted and regulated by the TME, 
including BCSCs. Two mechanisms explain the formation of new blood vessels in 
tumors. The first involves the transdifferentiation of cancer cells in a process called 
vasculogenic mimicry[126]. The second one involves the binding of neoplastic cells to the 
vessel wall through a process called mosaic vessel formation[127]. Both mechanisms 
depend on stimulating factors that promote the formation of new vessels. Feng et al[128] 
reported that the vesicle-associated membrane protein 8 (VAMP8), which can be found 
in platelet α-granules, is capable of attracting and recruiting bone marrow cells to 
hypoxic stress points in the tumor tissue, thus contributing to the formation of blood 
vessels within the tumor[128].

PLATELETS AND STEM CELLS INTERACTION
In mice, platelets help stem cells promote the proliferation of cells in injured tissues. 
They also help differentiate them through platelet-derived factors such as SDF-1, 
which not only regulates stem cell adhesion but also promotes the differentiation of 
CD34+ cells into the EPC under strong shear forces[129]. Healthy stem cells travel 
through the bloodstream, leaving it to reach injured tissue and initiating replication, 
differentiation and repair. Cancer stem cells, originating in the core of the tumor and 
having undergone a process of cell detachment and MET, allow them to invade distant 
tissues and go through the same type of processes as healthy stem cells. In both cases, 
platelets help stem cells survive and reach their target site, in one case, to repair 
injured tissue and in the other to colonize and form metastatic foci. Healthy stem cells 
have not been reported to activate the platelets that protect them, but several studies 
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have shown that cancer stem cells continuously activate platelets through various 
pathways.

Interestingly, bone marrow-derived mesenchymal stem cells (BM-MSCs) produce 
cytokines and exosomes, promoting tumor growth and metastasis of cancer cells. 
Recently, researchers reported that BM-MSCs presented transdifferentiation TGFß 
dependent into CAFs and perivascular-like cells after co-incubation with platelets 
which was associated with an overexpression of vimentin, fibroblast activation protein 
and a-smooth muscle actin. Transdifferentiated-BM-MSCs cell medium had an 
interesting effect on gastric cancer cells: they were able to metastasize to lung and 
increased their proliferation and migration toward cancer cells[130-132].

Recently, efforts to create new therapies have been focused on targets related to 
pathways involved in stemness of BC cells, many of which have already been 
reviewed in this work. These factors can be transported into platelets or they can be 
regulated by the platelet content released into the microenvironment. Some of the 
developed therapies are shown in Table 1. 

On the other hand, several clinical studies have suggested that treatment with 
anticoagulants (AC) or antiplatelets (AP) helps treat cancer by directly influencing 
platelet behavior and indirectly affecting tumor cell behavior. A large cohort study of 
patients showed that daily use of aspirin, the most commonly used antiplatelet agent 
was associated with a reduced incidence of malignancy[133], and this effect was evident 
in colorectal, prostate and breast cancer[134,135] and for others types of cancer there is still 
controversy.

Other antiplatelets in addition to aspirin have been studied, such as Dipyridamole 
and RA-233 in pancreatic cancer; Prasugrel in gastrointestinal cancer, Clopidogrel in 
the pancreatic cancer mouse model and hepatoma carcinoma, melanoma and breast 
cancer with promising results. It is clear that more studies are needed in order that 
personalized platelet-targeted therapies in cancer may be administered.

CONCLUSION
TEPs can be considered the perfect weapon of CSCs for tumor development and 
metastatic foci formation.

TEPs contribute to various levels of cancer progression when platelets have been 
activated by stimuli from TME or cancer cells, they secrete factors that strengthen the 
TME by promoting (1) the mobilization of tumor cells into blood vessels, to produce 
metastatic foci; (2) tumor growth; and (3) neo-angiogenesis to feed the tumor.

In order to be able to contribute to cancer mortality reduction, it is necessary to 
understand the interactions between platelets and BCSCs in the TME, and how they 
control cancer progression and metastatic secondary tumor development. This 
information could be useful in identifying new therapeutic targets or in the 
development of an accurate and straightforward diagnosis.
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Table 1 Therapeutic targets related to breast cancer stem cell pathways and platelet content

Breast cancer Target/Pathway Treatment Phase Drug name Ref.

BC CXCR4 - Plerixafor [136]

BC TGFß - Trabedersen [137]

BC DDL4/Notch I Demcizumab [138]

BC, TNBC Notch3 I AntiNotch3-ADC [139]

BC Wnt I Ipafricept [140]

BC PI3K I Alpelisib [141]

TNBC PI3K I Buparlisib [142]

MBC CXCR1 Ib Reparixin [143]

BC EpCAM II Adecatumumab [144]

TNBC Notch II Nirogacestat [145]

MTNBC JAK II Ruxolitinib [146]

MBC VEGF III Bevacizumab [147]

BC: Breast Cancer; TNBC: Triple-negative breast cancer; MBC: Metastatic breast cancer; MTNBC: Metastatic triple-negative breast cancer.
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