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In observational studies using routinely collected data, a variable with a high level of missingness or misclassi-
fication may determine whether an observation is included in the analysis. In settings where inclusion criteria are
assessed after imputation, the popular multiple-imputation variance estimator proposed by Rubin (“Rubin’s rules”
(RR)) is biased due to incompatibility between imputation and analysis models. While alternative approaches
exist, most analysts are not familiar with them. Using partially validated data from a human immunodeficiency
virus cohort, we illustrate the calculation of an imputation variance estimator proposed by Robins and Wang
(RW) in a scenario where the study exclusion criteria are based on a variable that must be imputed. In this
motivating example, the corresponding imputation variance estimate for the log odds was 29% smaller using the
RW estimator than using the RR estimator. We further compared these 2 variance estimators with a simulation
study which showed that coverage probabilities of 95% confidence intervals based on the RR estimator were
too high and became worse as more observations were imputed and more subjects were excluded from the
analysis. The RW imputation variance estimator performed much better and should be employed when there
is incompatibility between imputation and analysis models. We provide analysis code to aid future analysts in

implementing this method.

exclusion criteria; imputation variance; inclusion criteria; multiple imputation; uncongeniality

Abbreviations: ADE, AIDS-defining event; AIDS, acquired immunodeficiency syndrome; ART, antiretroviral therapy; HIV, human
immunodeficiency virus; MI, multiple imputation; RR, Rubin’s rules; RW, Robins and Wang.

Multiple imputation (MI) is a common tool used to ac-
count for missing data and measurement error (1). While
increasingly popular due to the availability of statistical
software packages containing imputation functions, MI and
calculation of the corresponding imputation variance estima-
tor still involve several assumptions that require careful con-
sideration. Notably, a popular imputation variance estimator,
originally proposed by Rubin (1) and often called “Rubin’s
rules” (RR), has been shown to be biased when the impu-
tation model is misspecified or if there is incompatibility
between the imputation model and the analysis model (2).

Incompatibility between imputation and analysis mod-
els, sometimes referred to as uncongeniality (3, 4), is an
important consideration for many practical data analyses.
Uncongeniality occurs when the assumptions of the imputa-
tion model are discordant with those of the analysis model.

A practical example is subgroup analyses, where the analysis
model allows for the association to differ based on group
status yet no distinction is made between groups when
imputing missing values.

Studies that incorporate data from large observational data
sets, such as those derived from electronic health records,
typically require several data processing steps prior to per-
forming analyses. These types of data are prone to errors,
often across multiple variables. These errors may lead to
misclassification of whether subjects should be included in
the study. For example, a study may only include patients
who started using a particular medication or who had a
particular clinical diagnosis, whereas data on medication use
and clinical diagnoses extracted from the electronic health
records may have errors. With error-prone data, it is often
advisable to validate a subsample of the data to quantify error
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rates and to identify systemic data collection issues. Once
a subsample has been validated, one can employ MI tech-
niques to address the data errors (5-7). Specifically, records
that have undergone data validation can be thought of as
having complete data, whereas data are partially missing and
must be imputed for those records that were not validated.
MI is an excellent analysis choice in these settings because
it is capable of addressing complicated error structures,
including errors in which records are actually included in
the study. Inclusion/exclusion status can be imputed. An
important implication, however, is that records included in
the imputation model may be excluded from the analysis
model, resulting in uncongeniality between imputation and
analysis models. Therefore, the RR variance estimator is
biased.

An alternative imputation variance estimator, proposed by
Robins and Wang (RW) (2), does obtain unbiased variance
estimates in settings with misspecification or incompatibil-
ity. Unlike Rubin’s approach, the RW variance estimator is
based on components derived directly from both the imputa-
tion and analysis models. This ensures a proper accounting
of the information from the imputation procedure, which
is essential for unbiased variance estimation if the analysis
model assumptions are different from those in the imputation
model. While this RW imputation variance is fairly well
known among statisticians conducting methods research in
missing data, it has been rarely implemented (8, 9) and
seems to be unknown by most analysts. Compared with
Rubin’s variance estimator, the RW estimator is complex
and requires additional calculations by both the imputer
and the analyst. In their original manuscript, Robins and
Wang wrote that they “hope that, in the future, software
developers will create packages” (2, p. 117) with which to
implement their approach. Hughes et al. (8) implemented
the RW approach for some simple scenarios and showed
via simulations that the RW estimator outperformed the RR
estimator with moderate sample sizes. Although their paper
was helpful in clarifying the RW estimator, they provided
no software code for their analyses or simulations. Twenty
years after RW’s publication, no existing software packages
implement the RW estimator, and to our knowledge, there is
only 1 example with publicly available code (9).

Incompatibility between imputation and analysis mod-
els is an important consideration that should no longer be
overlooked by analysts. While we do provide an overview
of technical details regarding the RW (as well as Rubin’s)
imputation variance estimator in Web Appendix 1 (available
at https://academic.oup.com/aje), the goals of this paper
are 1) to highlight an interesting and increasingly com-
mon setting in which inclusion/exclusion is based on error-
prone variables, 2) to illustrate how MI can be used to
address uncertainty in study eligibility, 3) to demonstrate
the bias of the commonly used RR variance estimator with
uncongeniality in this setting, and 4) to illustrate and make
the RW variance estimator more accessible. Using data
from a human immunodeficiency virus (HIV) cohort, we
provide a motivating example in which exclusion criteria
are implemented after missing data have been imputed and
compare the corresponding RR and RW imputation variance
estimates. We also present findings from simulations with
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varying levels of incompatibility between the imputation and
analysis models due to exclusion criteria as well as different
amounts of missingness. Finally, we share all relevant statis-
tical code needed for facilitating future implementation.

MOTIVATING EXAMPLE

To illustrate the implications of uncongeniality due to
multiply imputing misclassified inclusion criteria, we first
present a motivating example using data from a cohort of
HIV patients who received care at the Vanderbilt Compre-
hensive Care Clinic (Nashville, Tennessee) between 1998
and 2010. Data from this cohort have been described pre-
viously (10). Approval for this data analysis was obtained
from the institutional review board of Vanderbilt University.

We were interested in assessing the association between
CD4 cell count at enrollment (baseline) and subsequent
outcomes during the first year among patients who initi-
ated antiretroviral therapy (ART) at enrollment. A patient
was classified as having a poor outcome if they died, had
an acquired immunodeficiency syndrome (AIDS)-defining
event (ADE), or were lost to follow-up during the first
12 months after enrollment. For this study, patients were
excluded from analyses if they did not have an ART dis-
pensation within the first month after enrollment, if they did
not initiate care at the clinic (defined as having less than 3
months of follow-up), or if they enrolled at the clinic less
than 12 months before the data freeze date.

Two key analysis variables, corresponding to ART dispen-
sation and occurrence of ADEs, were error-prone. Follow-
up time and death status were not error-prone. Of the 4,217
patients in the original cohort, 3,526 initiated care and
enrolled in treatment at least 12 months before the study
freeze date. Since follow-up time did not contain errors, we
used only these 3,526 patients for subsequent analyses.

Data validation by chart review was performed for key
variables for all records in the data set that had been extracted
from the electronic health records. As a result, 2 data sets
were available: an unvalidated data set containing records
completed prior to the chart review and a validated data set
containing records for the same patients completed follow-
ing the chart review. The validated data were considered
to be correct (i.e., the “gold standard”). For this example,
we pretended that validated data were available for only a
randomly selected subset of records (n = 1,000; 28%); values
for the remaining records (n = 2,526; 72%) were considered
missing (i.e., masked) and needed to be imputed.

Using both unvalidated and validated data for the 1,000
validated patient records, we constructed a sequence of
conditional regression models to impute the true values of
the 2 error-prone variables (any ART dispensation in the first
month and any ADE within 12 months) conditional on the
unvalidated values of these same variables and 3 additional
covariates (calendar year of enrollment, baseline CD4 cell
count, and baseline log viral load). Specifically, we fitted
a logistic regression model for any ART dispensation con-
ditional on the unvalidated ART dispensation variable, the
unvalidated ADE variable, and the 3 additional covariates.
We also fitted a logistic regression model for ADE within
12 months conditional on the unvalidated ADE variable, the
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unvalidated ART dispensation variable, the validated ART
dispensation variable, and the 3 additional covariates. There
were no missing elements for calendar year of enrollment,
baseline CD4 cell count, or baseline log viral load.

We then multiply imputed (m = 50 imputation replica-
tions) the true ART dispensation and ADE indicators based
on these models for the 2,526 records with masked vali-
dation data. Following each imputation replication, exclu-
sion criteria were assessed to establish an analysis data set
wherein all included patients had an ART dispensation in
the first month. We then fitted a logistic regression model
with a composite outcome of loss to follow-up, ADE, or
death within 1 year of enrollment and the calendar year of
enrollment, baseline CD4 count, and baseline log viral load
as covariates of interest. The association between baseline
CD4 count and subsequent poor outcomes was estimated
as the mean of parameter estimates across the 50 impu-
tation replications. The corresponding imputation variance
estimate was calculated in 2 ways: using Rubin’s rules and
using the approach proposed by Robins and Wang.

Across 50 imputations, the average number of patients
who met study inclusion criteria was 1,012 (29%), ranging
from 968 to 1,072 subjects. The estimated log odds of a poor
outcome were lower by 0.113 for every 100-unit increase
in CD4 cell count. The corresponding imputation variance
estimate for the log odds was 29% smaller using the RW
estimator (0.046) relative to the RR estimator (0.065). When
calculating confidence intervals corresponding to the odds
ratio (odds ratio = 0.89), the RW-based 95% confidence
interval (0.82, 0.98) was narrower than the RR-based 95%
confidence interval (0.79, 1.01).

In this example, the imputation model included all pa-
tients meeting follow-up criteria, whereas the analysis model
required that the patients also started ART in the first month.
Furthermore, the number of patients meeting inclusion cri-
teria varied across imputation replications. Therefore, the
imputation and analysis models were fitted to different pop-
ulations and were incompatible; hence, the variance esti-
mated using Rubin’s rules was not consistent for the true
variance. The inflated standard error seen with the RR esti-
mator cannot be corrected using a robust-variance estimator
of RR; such an approach yielded a very similar, slightly
smaller, standard error (0.064) to that seen with standard
RR. However, the performance of these variance estimators
cannot be fully evaluated, since the true association between
CD4 count and poor outcomes was unknown. Below we use
simulations to evaluate whether the RR variance estimators
result in confidence intervals that are too conservative (i.e.,
with coverage probabilities much higher than their nominal
levels) and whether they can be corrected using the RW
variance estimator.

SIMULATION

We further assessed the relative performance of the impu-
tation variance estimators by establishing scenarios where
both the percentage of missing data and the percentage of
observations excluded from the analysis data set varied.
Suppose we had a data set containing 4,000 electronic health
records with 4 key variables: 2 continuous, correlated vari-

ables, x; and xp; a continuous variable, A*; and a binary
variable, D*. For this simulation, 2 of these variables (A*
and D*) were error-prone versions of the actual variables of
interest, A and D. Our goal was to estimate the association
between a predictor variable A and a binary outcome D in
a subset of subjects with values of A greater than some
threshold.

To generate data for this simulation, x| and x, were drawn
from a bivariate normal distribution with mean 0, variance
1, and covariance —0.25; A* was drawn from a normal
distribution with mean 1 and variance 1; and D* was drawn
from a Bernoulli distribution with the logit probability of
success equal to —3 + 0.5 A*. A was drawn from a normal
distribution with mean equal to — x; + 0.5x2 +0.9A4* 4+ 0.5
D* and variance 2. Finally, D was drawn from a Bernoulli
distribution with the logit probability of success equal to
—55 —2x1 +x + 5 D* + 0.5 A. The mean difference
between A and A* was approximately 0.06 with variance 2.5.
The percentage of subjects with discordant D and D* was
approximately 11%; 7% of subjects had an event (D = 1)
that was misclassified as a nonevent (D* = 1). Note that
we assumed that there were no data errors for the other 2
variables, x; and x;. Note also that we sampled A and D
conditional on their error-prone counterparts, A* and D*,
for ease of properly specifying the imputation model. For
a given inclusion threshold, the true value of the association
between the predictor variable A and the binary outcome D
was approximated by calculating a large sample estimate
from a logistic regression model based on 5,000,000 vali-
dated records.

A subset of 1,000 subjects was randomly selected to
represent an audited cohort with (A, D) known; for the
remaining 3,000 subjects, (A, D) were treated as missing. A*,
D*, x1, and x, were treated as known for all 4,000 subjects.

In this setting, we used a chained equations (i.e., sequen-
tial regression) approach to multiply impute missing values
of A and D by first fitting a linear regression model for A
conditional on A*, D*, x1, and x; and then a logistic regres-
sion model for D conditional on A*, D*, x1, xp, and A using
the subset of 1,000 audited records. For each imputation, the
imputer accounted for both parameter uncertainty and ran-
dom noise in the imputations. We used 50 MI replications.

Suppose our goal was to estimate the association between
A and D in the subset of subjects with A > 2. Using the
imputed data set, we first excluded subjects with A < 2; we
refer to this reduced data set as the analysis data set. Using
this analysis data set, we fitted a logistic regression analysis
model to estimate the association between A and D. Since
the imputations were generated using observations from all
subjects while the analysis model was based on just those
with an imputed value of A > 2, there was incompatibility
between the imputation model and the analysis model.

When we repeated the simulation for this example 2,500
times, the mean RW standard error estimate (0.0861) was
smaller than the mean RR standard error estimate (0.1152).
For comparison, the empirical standard error estimate (i.e.,
the standard deviation of the 2,500 estimates) was 0.0827.
The imputation variance estimator proposed by RW yielded
95% confidence intervals with coverage closer to 95%, 0.957
versus 0.997 for the RR estimator. These findings suggest a
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Figure 1. Coverage estimates for 95% Wald confidence intervals calculated using either Rubin’s rules (1) (A) or Robins and Wang (2) (B)
variance estimators for different combinations of validation-subsample sizes and analysis-data-set sizes. Plots were generated for combinations
of 8 validation-subsample sizes (n = 500, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, and 4,000) and 10 different inclusion thresholds (A > {—oo,
-1, -0.5,0, 0.5, 1, 1.5, 2, 2.5, 3}). For each inclusion threshold, we calculated the average data-set size of the corresponding analysis data set

that was generated.

large discrepancy between the RW and RR variance estima-
tors when the percentage of missing (unvalidated) observa-
tions is high (75%) and a small proportion of observations
are included in the analysis model (28%).

To better compare the performance of the 2 variance
estimators, we expanded the simulation to include different
validation subsample sizes (n = 500, 1,000, 1,500, 2,000,
2,500, 3,000, 3,500, and 4,000) as well as different inclusion
thresholds (A > {—o0, —1, —0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3}).
For each inclusion threshold, we calculated the average size
of the corresponding analysis data set that remained after
subjects were excluded. The average size of the analysis
data set varied from 524 to 4,000. For each simulation, we
calculated 95% Wald confidence intervals using the RW and
RR imputation variance estimators.

Coverage estimates for 95% confidence intervals based on
2,500 simulations using both the RR (Figure 1A) and RW
(Figure 1B) estimators for all 80 combinations of validation
subsample sizes and inclusion thresholds are provided in
Web Tables 1 and 2. The Monte Carlo simulation error,
estimated using a bootstrap method (11), was 0.5% or lower
for coverage estimates.
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The coverage probability was higher for confidence inter-
vals calculated using Rubin’s imputation variance estimator
as more subjects were excluded from the analysis data set
and more observations were imputed. Coverage was very
high (i.e., > 99%) for a substantial number of simulations,
demonstrating that confidence intervals constructed using
the RR estimator in these settings were much too wide.

Annotated R code with which to simulate data, perform
MI, obtain parameter estimates, and calculate imputation
variance estimates using both the RR and RW estimators is
provided in Web Appendices 2 and 3. All of our analyses
were performed using R, version 3.4.1 (R Foundation for
Statistical Computing, Vienna, Austria).

DISCUSSION

As the popularity of MI grows, it is important that ana-
lysts are familiar with and able to carry out best practices
regarding variance calculations. We have highlighted a key
situation—an analysis data set smaller than the imputation
data set due to exclusion based on an imputed value—where
the standard variance estimation based on RR was biased.
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This bias was substantial, resulting in very conservative
confidence intervals.

There are many settings where uncongeniality between
imputation and analysis models will result in biased vari-
ance estimates using the RR estimator. In general, uncon-
geniality is most concerning when the imputation model is
less saturated than the analysis model (4). For example, as
Hughes et al. (8) highlighted, the unnecessary inclusion of
an interaction variable in the analysis model that was omitted
from the imputation model will result in biased variance
estimates. In this article, we focused on the setting where
the subjects included in the analysis model were different
from those in the imputation model. We chose this example
because it clearly illustrates the problem with the RR esti-
mator. Misclassification of inclusion status is common (but
often overlooked) when using routinely collected data for
research, and MI is being increasingly used to account for
measurement error and misclassification (5-7).

For ease of presentation, several simplifications were
made in our motivating HIV example. These included focus-
ing on a composite endpoint and requiring the possibility
of at least 1 year of follow-up. While these simplifications
allowed us to focus on a simple scenario, we acknowledge
that inferences regarding this particular analysis may have
limited clinical relevance. Additionally, in our motivating
example, the RW-based 95% confidence interval did not
include 1, whereas the RR-based 95% confidence interval
overlapped with 1. Of course, such discordance in statistical
significance will not always occur when implementing these
2 imputation variance estimators. However, this example
illustrates that it is possible. Finally, we used a chained equa-
tions (i.e., sequential regression) approach for imputation;
while the conditional regression models specified in both
the motivating example and the simulations were compatible
with a joint distribution, in some cases there can be stability
and convergence issues with this approach (12), and results
may be biased if imputation models are poorly specified (4).

We are aware of at least 1 other method, arising from
the survey sampling literature, for estimating the variance
of the MI estimator when there is uncongeniality (13); this
approach is also complex and has been rarely implemented
in practice. It is clear that the complexity of RW’s variance
estimator (and other similar approaches) has historically
served as a barrier to implementation. To allow others to
reproduce our work and apply it to their specific settings,
we have included our statistical software code and have
provided additional details on how to calculate the RW
variance estimator.

While hopefully a useful tool, the provided R code re-
quires some modification for implementations involving the
imputation of more than 2 variables or using imputation
models other than logistic or linear regression. We encour-
age researchers to build on the existing code provided here to
create functions generalizable to more settings. We are aware
of at least 1 research group that has proposed constructing
an R package for calculating RW imputation variance esti-
mates, but to our knowledge the work was never finished
(14). Creating software that generalized the RW estimator
would be a challenging but worthy endeavor.
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