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When estimating causal effects, careful handling of missing data is needed to avoid bias. Complete-case
analysis is commonly used in epidemiologic analyses. Previous work has shown that covariate-stratified effect
estimates from complete-case analysis are unbiased when missingness is independent of the outcome condi-
tional on the exposure and covariates. Here, we assess the bias of complete-case analysis for adjusted marginal
effects when confounding is present under various causal structures of missing data. We show that estimation of
the marginal risk difference requires an unbiased estimate of the unconditional joint distribution of confounders
and any other covariates required for conditional independence of missingness and outcome. The dependence
of missing data on these covariates must be considered to obtain a valid estimate of the covariate distribution. If
none of these covariates are effect-measure modifiers on the absolute scale, however, the marginal risk difference
will equal the stratified risk differences and the complete-case analysis will be unbiased when the stratified effect
estimates are unbiased. Estimation of unbiased marginal effects in complete-case analysis therefore requires
close consideration of causal structure and effect-measure modification.

complete-case analysis; conditional estimates; epidemiologic methods; heterogeneity; marginal estimates;
missing data; risk differences

Abbreviations: CCA, complete-case analysis; DAG, directed acyclic graph; RD, risk difference.

When estimating causal effects, careful handling of miss-
ing data is needed to avoid bias. Complete-case analysis
(CCA), also known as listwise deletion (1), uses only the
data records without missing values for any variable needed
for analysis. CCA is the default method of several commonly
used statistical packages, including SAS (SAS Institute, Inc.,
Cary, North Carolina) and many R packages (R Foundation
for Statistical Computing, Vienna, Austria), and it is fre-
quently used in epidemiologic analyses. Before conducting
CCA, it is important to understand whether it will yield a
valid estimate of the effect that the study aims to measure.

Missing data are often classified by the dependency of the
missingness on measured and unmeasured data (2, 3). Data
are “missing completely at random” when the probability
of missingness is independent of all measured and unmea-
sured data. Data are “missing at random” when the miss-
ingness is independent of the unmeasured data conditional

on measured data and are “missing not at random” when
missingness is dependent on the unmeasured data. It is well
accepted that CCA is valid when data are missing completely
at random (2, 3). CCA may also be valid under some
circumstances when data are missing at random and missing
not at random; this is because the validity depends on the
association of the outcome and missingness as generated
by the underlying causal structure (1, 3–11). Specifically,
when the outcome (Y) is independent of missingness (R = 1
for completely observed) conditional on exposure (X) and
measured covariates (Z), then E[Y|X = x, Z = z, R = 1] =
E[Y|X = x, Z = z] and CCA is expected to be valid. The
parameters of the conditional mean function E[Y|X = x,
Z = z] can be estimated in a number of ways, including
regression analysis. However, in such a regression analysis
the model specification may have important implications.
This is critical, as many findings in the literature regarding

1583 Am J Epidemiol. 2020;189(12):1583–1589



1584 Ross et al.

the potential bias of CCA apply to stratum-specific (or strat-
ified) effects (such as those obtained from a saturated regres-
sion model) but not necessarily (for example) those obtained
from a main-effects regression model. For example, under
heterogeneity, the conditions of Daniel et al. (8) ensure that
E[Y|X = x, Z = z, R = 1] = E[Y|X = x, Z = z] but will not
in general ensure that the association between X and Y (β1 in
the following) estimated with a main-effects model E[Y|X =
x, Z = z, R = 1] = β0 + β1x + β2z equals the association
between X and Y unconditional on R. While it is standard
to refer to all effects estimated from a regression model as
“conditional,” this term does not distinguish between the
stratified conditional estimates and a conditional estimate (a
weighted average) from the main-effects model. Therefore,
to avoid this ambiguity, we will in general specifically use
the term stratified or stratum-specific.

Previous work examining the validity of CCA has focused
on estimating stratified effects and has largely ignored esti-
mation of an adjusted marginal effect (i.e., an effect stan-
dardized to the covariate distribution of the study sample
before any missing data). Marginal effects arguably inform
public health and policy more readily than stratified effects
and are the effects typically estimated by randomized tri-
als (12). Closely related, simulations assessing the validity
of CCA have rarely considered effect-measure modifica-
tion (4–7, 10, 11), the presence of which would produce a
marginal effect that is different from the stratified effects
regardless of effect-measure collapsibility (13).

In this paper, our objective is to assess the statistical
consistency of CCA for marginal effect measures under
various causal structures of missingness. We specifically
focus on estimation of the marginal risk difference (RD) in
scenarios where stratified effect estimates are unbiased.

FRAMEWORK FOR DISCUSSION

Suppose that we have enrolled participants in a study
(our study sample) with the objective of estimating the
causal effect of binary exposure X on binary outcome Y
in a target population from which our study sample was
randomly selected (14). An individual causal effect can be
expressed as Y1

i − Y0
i , where subjects are indexed by i and

Yx is the outcome that would have occurred if the subject
had, possibly counter to fact, experienced exposure at level
x (15). We assume that the subjects are independent and
identically distributed, and for notational simplicity we drop
the subject-level index, i, hereafter. The sample average
causal effect is Pr(Y1 = 1) − Pr(Y0 = 1) (15).

In the complete data, the effect of X on Y is confounded
by a single binary variable Z (see the causal directed acyclic
graph (DAG) in Figure 1) (16). We assume that accounting
for Z is sufficient to achieve conditional exchangeability
between exposure groups (15). We further assume positivity
(all subjects in either stratum of Z have nonzero probabilities
of being exposed and unexposed) (17), causal consistency
(the observed outcome under exposure X = x is equal to the
potential outcome Yx) (18), and no measurement error (19).

We will estimate the RD nonparametrically using a stan-
dardization approach that is equivalent to nonparametric
g-computation (i.e., the g-formula; see Hernán and Robins

Figure 1. Direct acyclic graph without missing data. X, exposure; Y,
outcome; Z, confounder.

(15), part 2, pp. 23–27). This estimator provides a clear illus-
tration of how bias can arise in CCA. Under the previously
stated identification conditions, the average causal effect of
X on Y can be expressed in terms of observable quantities,
specifically

RD =
∑

z

Pr(Y = 1|X = 1, Z = z) Pr(Z = z)

−
∑

z

Pr(Y = 1|X = 0, Z = z) Pr(Z = z)

= [Pr(Y = 1|X = 1, Z = 0) Pr(Z = 0)

+ Pr(Y = 1|X = 1, Z = 1) Pr(Z = 1)]

− [Pr(Y = 1|X = 0, Z = 0) Pr(Z = 0)

+ Pr(Y = 1|X = 0, Z = 1) Pr(Z = 1)]

= [Pr(Y = 1|X = 1, Z = 0) Pr(Z = 0)

− Pr(Y = 1|X = 0, Z = 0) Pr(Z = 0)]

+ [Pr(Y = 1|X = 1, Z = 1) Pr(Z = 1)

− Pr(Y = 1|X = 0, Z = 1) Pr(Z = 1)]

= Pr(Z = 0) × RDZ=0 + Pr(Z = 1) × RDZ=1.

To obtain the standardized marginal RD in our study
sample, we can apply this standardization formula to the
observed data from our study. Table 1 shows a general form
of the Z-stratified 2 × 2 tables from the study sample. In the
table, A0 is the number of exposed (X = 1) subjects with
the outcome (Y = 1) without confounder Z (Z = 0) and
A1 is the number of exposed subjects with the outcome with
confounder Z (Z = 1). Applying the notation from Table 1
to our standardization formula, we obtain

R̂D = P̂r(Z = 0) × R̂DZ=0 + P̂r(Z = 1) × R̂DZ=1

=
(

N0

N0 + N1

)(
A0

A0 + B0
− C0

C0 + D0

)

+
(

N1

N0 + N1

)(
A1

A1 + B1
− C1

C1 + D1

)
. (1)

We observe that the marginal RD can be expressed as the
weighted average of the stratum-specific RDs. Specifically,
each stratum-specific RD is weighted by the proportion of
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Table 1. Stratified 2 × 2 Tables From the Full Study Samplea

X Y = 1 Y = 0 Total

Z = 0

X = 1 A0 B0 A0 + B0

X = 0 C0 D0 C0 + D0

Total A0 + C0 B0 + D0 N0

Z = 1

X = 1 A1 B1 A1 + B1

X = 0 C1 D1 C1 + D1

Total A1 + C1 B1 + D1 N1

a X, exposure; Y, outcome; Z, confounder.

the population with that value of Z. Therefore, in order
to obtain the equivalent RD from CCA, we must obtain
valid estimates of both the stratum-specific RDs and the
distribution of Z from the study sample. One important
exception to this is that if the 2 stratum-specific RDs are
identical (homogenous on the absolute scale), then we do not
need the distribution of Z, because any weighted average of
the two will yield the correct marginal RD; that is, RDZ=0 =
RDZ=1 = RD. Therefore, the distribution of Z will not affect
the marginal RD when Z is not an effect-measure modifier.
However, because Z is a cause of Y (Figure 1), when there is
a nonnull effect of X on Y and of Z on Y , there will be effect-
measure modification by Z on at least 1 scale (either absolute
or relative) (14). For example, if the RD for the effect of X
on Y is the same regardless of the value of Z, the risk ratio
will be different by the value of Z (though we may lack the
statistical power to detect this in real data). Thus, even if
the distribution of Z in the study sample is not needed to
obtain a valid marginal RD, the distribution will generally
be required to obtain a valid risk ratio (and vice versa).

MISSING DATA AND COMPLETE-CASE ANALYSIS

Now we introduce missing data to the DAG by including
an additional node, R, which is an indicator of missingness
(Figure 2). We use R = 1 to indicate participants for whom
the full data are observed and R = 0 for participants with
missing data on at least 1 variable among the exposure,
outcome, or confounder. CCA is an analysis conditional on
(restricted to) R = 1, which is depicted in Figure 2 by a box
around R.

Figure 2. Causal diagram for data missing completely at random.
R, missing-data indicator; X, exposure; Y, outcome; Z, confounder.

As outlined above, to validly estimate the marginal RD,
CCA must provide valid estimates of both 1) the stratum-
specific RDs and 2) the distribution of Z from the study
sample. First, the stratum-specific RDs conditional on R = 1
will equal the stratum-specific RDs in the study sample
(unconditional on R),

Pr(Y = 1|X = 1, Z = z, R = 1)

− Pr(Y = 1|X = 0, Z = z, R = 1)

= Pr(Y = 1|X = 1, Z = z) − Pr(Y = 1|X = 0, Z = z) ,

when R is independent of Y conditional on Z and X. This
condition has been previously described in the literature
(1, 3–11) and in the Introduction above. Second, the dis-
tribution of confounder Z conditional on R = 1 will equal
the distribution in the study sample, Pr(Z = z|R = 1) =
Pr(Z = z), when R is independent of Z. In the remainder of
this paper, we pay particular attention to this condition. This
condition is sufficient; however, it is not necessary when Z
does not modify the effect of X on Y on the scale of interest
(homogeneity).

Data missing completely at random

Figure 2 depicts the causal structure in which data are
missing completely at random, since R is independent of
other nodes on the DAG. If the probability that we observe
complete data (R = 1) is f and we conduct a CCA, we obtain
new stratified 2 × 2 tables (Table 2). Using these new data
tables and formula 1 above, the marginal RD estimate is

(
fN0

fN0 + fN1

)(
fA0

fA0 + fB0
− fC0

fC0 + fD0

)

+
(

fN1

fN0 + fN1

)(
fA1

fA1 + fB1
− fC1

fC1 + fD1

)
.

We observe that f cancels out in the stratum-specific RDs,

fA0/(fA0 + fB0) − fC0/(fC0 + gD0)

= A0/(A0 + B0) − C0/(C0 + D0),

and the distribution of Z, fN0/( fN0 + fN1) = N0/( N0 +N1).
These equalities hold because in Figure 2 R is independent
of Y and Z, respectively. Because the stratum-specific RDs
and the distribution of Z are identifiable, the marginal RD
obtained from CCA is a valid estimate of the marginal RD
in the study sample.

Missingness caused by a confounder

Figure 3 depicts confounder Z as the cause of missing-
ness. In these simple DAGs, the causal structure does not dic-
tate which data elements are missing. Confounder Z causes
R, but R represents missing data for any data element, so the
DAG does not distinguish between data that are missing at
random and data that are missing not at random. In Figure 3,
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Table 2. Stratified 2 × 2 Tables From a Complete-Case Analysis
in Which Data Are Missing Completely at Randoma,b

X Y = 1 Y = 0 Total

Z = 0

X = 1 fA0 fB0 fA0 + fB0

X = 0 fC0 fD0 fC0 + fD0

Total fA0 + fC0 fB0 + fD0 fN0

Z = 1

X = 1 fA1 fB1 fA1 + fB1

X = 0 fC1 fD1 fC1 + fD1

Total fA1 + fC1 fB1 + fD1 fN1

a The table ref lects the structure of missingness shown in Figure 2.
b f, probability that complete data are observed; X, exposure; Y,

outcome; Z, confounder.

data are missing at random if only exposure or outcome data
were missing; data are missing not at random if confounder
data were missing.

Considering Figure 3, if the probability that we observe
complete data (R = 1) is f for subjects with Z = 0 and g for
subjects with Z = 1 and we conduct a CCA, we would obtain
new stratified 2 × 2 tables (Table 3). Using these tables and
formula 1, the marginal RD estimate is

(
fN0

fN0 + gN1

)(
fA0

fA0 + fB0
− fC0

fC0 + fD0

)

+
(

gN1

fN0 + gN1

) (
gA1

gA1 + gB1
− gC1

gC1 + gD1

)
.

We observe that f and g cancel out of the stratum-specific
RDs:

fA0/( fA0 + fB0) − fC0/( fC0 + fD0)

= A0/(A0 + B0) − C0/(C0 + D0)

and

gA1/(gA1 + gB1) − gC1/(gC1 + gD1)

= A1/(A1 + B1) − C1/(C1 + D1).

This equality holds because in Figure 3, R is independent
of Y conditional on Z (R ← [Z] → Y). However, the es-
timated distribution of Z is no longer a valid estimate of
the unconditional distribution of Z in the study sample:
fN0/( fN0 +gN1) �= N0/( N0 +N1). In Figure 3, we observe
that R is not independent of Z because there is a path from
Z to R and therefore Pr(Z = z|R = 1) �= Pr(Z = z).

Since the estimate of the Z distribution from CCA is not
valid, the marginal RD will not be a valid estimate of the
marginal RD in the study sample, except when the effect of
X on Y is homogeneous across strata of Z on the absolute
scale. If the RD is homogeneous by Z, we would likely not be

Figure 3. Causal diagram for missingness caused by a confounder.
R, missing-data indicator; X, exposure; Y, outcome; Z, confounder.

able to obtain the valid marginal risk ratio, however, because
the risk ratio will not be homogeneous (unless there is a null
effect of X on Y in both strata of Z). If Z data are not missing
and are therefore available in the full data, we can apply the
fully observed study sample distribution of Z to the stratum-
specific estimates from CCA to recover the valid marginal
RD. If Z data are missing, we may be able to recover the
distribution of Z by multiple imputation or weighting (20).

If there were not an arrow from Z to X, Z would not
be a confounder and we would no longer need to control
for Z to remove confounding. However, in such a case,
conditioning on Z might still be required to block the path
between R and Y (the first condition discussed above) in
order to obtain unbiased stratified effect estimates. Here, Z
is sometimes called an auxiliary variable (21), a variable that
is not a confounder but is nonetheless necessary for con-
ditional independence of missingness and outcome. When
we condition on Z, we will need a valid estimate of the
distribution of Z to estimate the marginal effect. Therefore,
the unconditional independence of Z and R also applies to
auxiliary variables.

Missingness caused by exposure

Figure 4A depicts exposure as the cause of missingness.
If the probability that we observe the complete data (R = 1)

Table 3. Stratified 2 × 2 Tables From a Complete-Case Analysis
in Which Missing Data Are Caused by a Confoundera,b

X Y = 1 Y = 0 Total

Z = 0

X = 1 fA0 fB0 fA0 + fB0

X = 0 fC0 fD0 fC0 + fD0

Total fA0 + fC0 fB0 + fD0 fN0

Z = 1

X = 1 gA1 gB1 gA1 + gB1

X = 0 gC1 gD1 gC1 + gD1

Total gA1 + gC1 gB1 + gD1 gN1

a The table ref lects the structure of missingness shown in Figure 3.
b f, probability that complete data are observed when Z = 0;

g, probability that complete data are observed when Z = 1; X,
exposure; Y, outcome; Z, confounder.
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Table 4. Stratified 2 × 2 Tables From a Complete-Case Analysis
in Which Missing Data Are Caused by Exposurea,b

X Y = 1 Y = 0 Total

Z = 0

X = 1 fA0 fB0 fA0 + fB0

X = 0 gC0 gD0 gC0 + gD0

Total fA0 + gC0 fB0 + gD0 fA0 + fB0 +
gC0 + gD0

Z = 1

X = 1 fA1 fB1 fA1 + fB1

X = 0 gC1 gD1 gC1 + gD1

Total fA1 + gC1 fB1 + gD1 fA1 + fB1 +
gC1 + gD1

a The table ref lects the structure of missingness shown in
Figure 4A.

b f, probability that complete data are observed when X = 1;
g, probability that complete data are observed when X = 0; X,
exposure; Y, outcome; Z, confounder.

is f for subjects with exposure X = 1 and g for subjects
with exposure X = 0 and we conduct a CCA, we obtain
new stratified 2 × 2 tables (Table 4). Using these tables and
formula 1, the marginal RD is

(
fA0 + fB0 + gC0 + gD0

fA0 + fB0 + gC0 + gD0 + fA1 + fB1 + gC1 + gD1

)

×
(

fA0

fA0 + fB0
− gC0

gC0 + gD0

)

+
(

fA1 + fB1 + gC1 + gD1

fA0 + fB0 + gC0 + gD0 + fA1 + fB1 + gC1 + gD1

)

×
(

fA1

fA1 + fB1
− gC1

gC1 + gD1

)
.

Again, f and g cancel out of the stratum-specific RDs: fA0/
(fA0 + fB0) − gC0/(gC0 + gD0) = A0/(A0 + B0) −
C0/(C0 + D0). This equality holds because in Figure 4A,
R is independent of Y conditional on X. Conditioning on
X blocks both paths from R to Y(R ← [X] → Y and
R ← [X] ← Z → Y)). We must also condition on Z
because it is a confounder. The estimate of the distribution
of Z, however, is biased,

(fA0 + fB0 + gC0 + gD0)/( fA0 + fB0 + gC0 + gD0

+ fA1 + fB1 + gC1 + gD1) �= (A0 + B0 + C0 + D0)/

( A0 + B0 + C0 + D0 + A1 + B1 + C1 + D1),

because there is an open path from Z to R : Z → X → R.
Analysis generally would condition on X; one might expect
that conditioning on X would block this path, but this is not

Figure 4. Causal diagrams for missingness associated with expo-
sure. A) Exposure causes missingness; B) exposure and missing-
ness have a common cause. R, missing-data indicator; U, common
cause of exposure and missingness; X, exposure; Y, outcome; Z,
confounder.

sufficient. We need to recover the unconditional distribution
of Z, not the distribution of Z conditional on X. Therefore,
similar to the previous example (Figure 3), the marginal RD
from CCA will not be a valid estimate of the marginal RD
in the study sample, except in the case of homogeneity over
Z on the absolute scale.

To gain further understanding of how we can use the
causal diagram to determine whether the distribution of Z
is altered in CCA, we examine a new DAG (Figure 4B). A
new node U, which is a common cause of X and R, is added.
Under this causal structure, the distribution of Z in CCA is
unbiased because X is now a collider on the path from Z to
R, and thus the path is not open (see Hernán and Robins (15),
part 1, p. 75). In summary, if there is an open path between
a variable and a missingness indicator, then, in general, the
distribution of that variable (here Z) in CCA will not be a
valid estimate of the distribution in the study sample.

DISCUSSION

Epidemiology is the study of population health (22, 23),
and thus estimation of population-level effects (i.e., marginal
effects) is often a primary aim. Here we have shown that
conclusions drawn about the validity of stratified effects
from CCA in previous work (1, 3–11) may not hold for
the estimation of marginal effects and that effect-measure
modification plays an important role in validity.

Stratified effect estimates from CCA are consistent when
missingness is independent of the outcome conditional on
exposure and covariates. If the aim is to estimate effects
stratified by confounders and auxiliary variables (21)
required for conditional independence of missingness and
the outcome, then this condition may be sufficient to conduct
CCA. If, however, the aim is to estimate a marginal effect,
a valid estimate of the distribution of the covariates (con-
founders and auxiliary variables) that are effect modifiers is
needed. In the causal structures we examined, when miss-
ingness was unconditionally independent of the confounder,
the estimate of the confounder distribution in CCA was valid
and thus so was the marginal RD. When missingness was
associated with the confounder, the confounder distribution
estimate was not valid in CCA and the marginal RD estimate
was biased, except when the effect was homogeneous over
the confounder on the absolute scale. Note that the marginal
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risks (as opposed to contrasts in risks) will be biased when
the distribution of confounders and auxiliary variables is
biased, regardless of modification. While our illustration
uses standardization, estimation via inverse probability
weighting would be expected to behave similarly.

We have focused on estimation of marginal effects, which
is a contrast of the weighted average of the covariate-
stratified risks weighted by the proportion of the population
in each stratum. In much of the applied epidemiologic liter-
ature, however, it is common practice to obtain a single esti-
mate of the effect of an exposure on an outcome from a main-
effects regression. This conditional estimate is a statistical
information-weighted average of the covariate-stratified
effects. When the covariate distribution is altered in CCA,
the statistical information provided by each stratum is also
likely to be altered. Our conclusions, therefore, are expected
to apply to these information-weighted average estimates
obtained from main-effects models. Technically, when there
is heterogeneity, a main-effects model is misspecified; how-
ever, it is common in practice to fit this model without check-
ing the homogeneity assumption in order to produce a single
effect estimate when stratified effects are not of interest.

Below we present a series of questions with responses to
aid discussion of these results.

Question 1. It is known that for collapsible effect measures,
stratified and marginal effects will be equal under homo-
geneity but will not be equal when there is effect-measure
modification ( 13 ). What do your results add? First, we
hope that our paper provides intuition for the relationship
between stratified and marginal effects to readers who may
not already have that foundation. Primarily, the work high-
lights that for equivalence of stratified and marginal effects
in CCA there must be, in general, homogeneity of the expo-
sure effect over the distribution of confounders and auxiliary
variables. When we include only records with complete data,
the distribution of modifiers that is necessary for the valid
estimation of a marginal effect may be altered. Our work
attempts to illustrate how to use DAGs to identify whether
the unconditional distribution of covariates will be biased in
CCA compared with the full study sample.

Question 2. Why have you not discussed the scenario in
which the outcome is a cause of missingness? When the
outcome causes missingness, stratified RDs and risk ratios
are biased (9). When stratified estimates are biased, it is
generally not possible to estimate a valid marginal effect.
The odds ratio estimate may be unbiased; however, this work
focuses on contrasts of risks. We refer readers to the paper
by Daniel et al. (8), which includes a visualization of the
collider bias produced when the outcome is a cause of
missingness.

Question 3. Is this a discussion of internal or external validity,
and how does it relate to generalizability or selection bias?
The independence of selection and effect modifiers has been
largely discussed in the context of generalizability (24, 25).
Generalizability is usually related to external validity asking,
Does the estimate obtained from the study sample general-
ize to an external or larger target population? Because the

aim of this work was to estimate a marginal effect in the
study sample (our study target), our question was one of
internal validity. The question of internal validity of CCA is
analogous to generalizability asking, for example, Does the
estimate obtained from the subset of records without missing
data “generalize” to the study sample?

The potential bias that arises in CCA when missingness
is dependent on modifiers may also be called selection bias
without colliders (26). When the missingness is a direct
or downstream effect of a modifier, then the missingness
indicator itself is a modifier (effect modification by proxy)
(27). It has been proposed that selection bias due to restrict-
ing analysis to 1 level of a modifier be called type 2 selec-
tion bias, whereas type 1 selection bias is conditioning on a
collider (28).

Question 4. Have these results been illustrated before in
prior work? Daniel et al.’s algorithm (8) uses causal dia-
grams to determine whether stratified risks obtained from
CCA are biased and includes a brief discussion of bias
in marginal risks when the distribution of covariates is
biased. Because work focuses on risk estimation, the poten-
tial impact of effect modification on the effect is not dis-
cussed. Causal diagrams specifically for missingness, m-
graphs, have been developed (29, 30). Because our con-
clusions are agnostic to which variables have missing data,
we have not used m-graphs. An algorithm for ascertaining
the “recoverability” of effects from an m-graph has been
published (31). This work builds on Bareinboim et al.’s (32)
conditions for recoverability from selection bias. The impor-
tance of the dependence of missingness on an effect modifier
in CCA has been illustrated in simulations by Choi et al.
(33). In scenarios with effect modification, CCA was biased
even when data missingness was conditionally independent
of the outcome. The authors explained that the CCA estimate
is valid for the full study sample only if the modifier and
missing-data indicator are unconditionally independent. Our
work attempts to explain this observation. Howe et al. (34)
have previously discussed these concepts related to loss to
follow-up and have called this selection bias. Additionally,
although the simulations are focused on estimation of the
odds ratio, Bartlett et al. (11) discussed these concepts under
the topic of model misspecification.

Question 5. What are the implications? Estimation of unbi-
ased marginal effects in CCA requires close consideration of
causal structure and effect-measure modification. However,
the amount of bias may not be meaningful. Further work is
needed to understand how the amount of missingness, the
strength of dependence of missingness on modifiers, and the
extent of modification influence this bias.
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