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Abstract

New approach methodologies (NAMs) in chemical safety evaluation are being explored to address 

the current public health implications of human environmental exposures to chemicals with 

limited or no data for assessment. For over a decade since a push toward “Toxicity in the 21st 

Century,” the field has focused on massive data generation efforts to inform computational 

approaches for preliminary hazard identification, adverse outcome pathways that link molecular 

initiating events and key events to apical outcomes, and high-throughput approaches to risk-based 

ratios of bioactivity and exposure to inform relative priority and safety assessment. Projects like 

the interagency Tox21 and the US EPA’s ToxCast program have generated dose-response 

information on thousands of chemicals, identified and aggregated information from legacy 

systems, and created tools for access and analysis. The resulting information has been used to 

develop computational models as viable options for regulatory applications. This progress has 

introduced challenges in data management that are new, but not unique, to toxicology. Some of the 

key questions require critical thinking and solutions to promote semantic interoperability, 

including: (1) identification of bioactivity information from NAMs that might be related to a 

biological process; (2) identification of legacy hazard information that might be related to a key 

event or apical outcomes of interest; and, (3) integration of these NAM and traditional data for 

computational modeling and prediction of complex apical outcomes such as carcinogenesis. This 

work reviews a number of toxicology-related efforts specifically related to bioactivity and 

toxicological data interoperability based on the goals established by Findable, Accessible, 

Interoperable, and Reusable (FAIR) Data Principles. These efforts are essential to enable better 
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integration of NAM and traditional toxicology information to support data-driven toxicology 

applications.
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I. Introduction

Toxicology is in a period of rapid change and growth to meet the challenge of safety 

assessment for tens of thousands of chemicals that have potential human exposures yet lack 

sufficient data for hazard identification.1–4 After over a decade since the publication of the 

seminal National Research Council report, Toxicity Testing in the 21st Century: A Vision 
and a Strategy5 that called for advancements in the field of toxicology using new approach 

methodologies (NAMs) for hazard,6,7 substantial progress has been made. Important 

contributions to this reformation have initially been driven by projects including, among 

others, the interagency collaboration for Toxicity Testing in the 21st Century (Tox21)8,9 and 

the US Environmental Protection Agency (EPA) Toxicity Forecaster (ToxCast) program.10,11 

These data generation efforts have produced sizeable amounts of dose-response data for 

chemical interactions with biological targets,2,9,12 and further motivated development of 

aggregated digital resources of legacy toxicity information13,14 and software for access and 

analysis.15–20

A state has been reached in which volumes of data can be generated, but full utilization of 

this information to find innovative scientific solutions absolutely necessitates taking the time 

to adopt improved data management practices to connect the appropriate data to a biological 

target and to understand the methodology employed. Data interoperability is a salient and 

critical need to address if computational toxicology is to succeed in supporting modern 

chemical safety evaluation and research in public health and toxicology. Indeed, in 

alignment with the amended Toxic Substances Control Act (TSCA),4 the EPA is required to 

develop a risk-based method for chemical prioritization, and in doing so, to use NAMs in 

lieu of traditional methods when practicable. Thus, data interoperability for toxicology will 

help meet regulatory assessment needs for diverse data from both NAM and traditional 

approaches. Herein we review the state of data interoperability for toxicology applications.

Many fit-for-purpose applications have been developed to understand how to use NAM data. 

One issue with development of these applications and data models is that information is 

siloed, which prevents easy integration and exchange of data (i.e. interoperability) creating 

problems like inconsistent versioning, lack of provenance, and unnecessary duplication. 

Ultimately the consequence of the lack of data interoperability is that progress in 

understanding biological and toxicological effects of chemical exposures is hampered 

despite an abundance of information. Indeed, data interoperability is an issue across all kinds 

of data that inform chemical safety evaluation; herein we consider toxicology or hazard 

information, recognizing that the issue of data interoperability to connect all of the 

information needed for chemical safety evaluation is immense. To fully leverage the 
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resulting information from NAMs for toxicology and public health questions, efforts must be 

applied to enable connections between data sources.6 Overcoming the high opportunity cost 

of enabling interoperability of various toxicology-relevant data streams will help realize the 

following goals: rapid and reproducible associations between NAM-based information and 

outcomes of interest for development of computational models,21–29 hypothesis generation 

aimed at increased mechanistic knowledge,30–35 and systematic literature reviews,36 all of 

which support efficient and state-of-the-art screening level chemical safety evaluations.37

Interoperability refers to “the ability of data or tools from non-cooperating resources to 

integrate or work together with minimal effort.”38 Data interoperability can be accomplished 

through numerous means like development and adherence to controlled vocabularies (CVs), 

standardized chemical nomenclature, and compliance with formatting standards for 

exchange of data. Computational efforts in toxicology to generate and analyze large amounts 

of data are relatively new, so CVs and formatting standards are not widely used and 

accepted. Of course, data interoperability challenges are not unique to toxicology and, in 

fact, are one of the key challenges facing each industry from finance to social media to 

public health and biomedicine.38–44

As an example of how interoperability promotes greater consumption of data for biological 

learning, platforms from companies like Affymetrix were developed to rapidly and 

affordably capture and analyze transcriptomic data. The application of Affymetrix platforms 

and other microarray technologies in a clinical setting was aided by standardization efforts 

(i.e. to support interoperability) for mass distribution of kits as well as standard reporting of 

results, which subsequently led to development of tool suites that could consume and 

analyze the information.45 The adherence to data formatting standards allowed for 

aggregation into a single resource called the Gene Expression Omnibus (GEO), which 

allows data access for the research community.46,47

For toxicology, the lack of consensus on how the vast amount of concentration-response data 

collected from myriad heterogeneous in vitro platforms can be applied to regulatory 

toxicology applications has clarified the need for implementation of data management 

strategies that maximize interoperability. For instance, “big data” is being generated via 

whole-genome sequencing,48 high-content imaging,49,50 and high-throughput bioactivity 

screening,9,11 and how these data are formatted, processed, analyzed, stored, and accessed 

are dissimilar, between data types and data generators. These dissimilarities create an 

additional obstacle for data integration to answer applied questions. Building consensus on 

reporting standards, both for assay design principles and observed effects, would contribute 

to progress in the use of these data for regulatory applications.

Good data management practices are embodied by the FAIR data principles, defined as 

Findability, Accessibility, Interoperability, and Reusability.38 These principles were defined 

to guide existing and future endeavors in scientific research as technology advances and data 

are generated to support knowledge discovery. Without proper data interoperability, progress 

in other areas will remain limited. Strategies to promote greater data sharing and 

interoperability in support of public health research goals are the subject of ongoing 

development. In 2013, an Executive Order, “Making Open and Machine Readable the New 
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Default for Government Information,” (M13–13) was signed to institutionalize an open data 

policy including data management practices that make information accessible and readable 

by both machines and humans. The U.S. government is developing a Federal Data Strategy 

(https://strategy.data.gov/) that sets forth the mission principles and practices that reflect 

consideration of the Fair Information Practice and Principles.51 Federal agencies are also 

required to make federally-funded data publicly available via the Enterprise Data Inventory,
52 but the formatting and interoperability of these datasets are not currently controlled. The 

FAIR data principles are further echoed in the National Institutes of Health (NIH) Strategic 

Plan for Data Science, with emphasis on infrastructure development and support for good 

data management practices as a crucial effort for continued success.53 One of the first steps 

outlined in NIH’s approach is to update the current NIH infrastructure by connecting related 

systems for increased data interoperability. The answer to the overall challenge of achieving 

interoperability is simple to describe but difficult to implement, not only due to mountains of 

legacy data trapped in antiquated or difficult to process formats, but also due to ongoing 

rapid data generation efforts with lack of standardization, creating data “silos.” Clearly the 

NIH has identified data interoperability as a key measure needed to achieve near and long-

term goals for health-related research, but the broader field of toxicology needs more 

examination of how it could be achieved in order to build and resource effective strategies.54

The objective of this review is to provide the needed introduction to the current data 

landscape in toxicology, including some specific examples that demonstrate a need for 

increased data interoperability for computational toxicology. As part of this review, research 

needs and key questions relevant to data interoperability in the public health and toxicology 

fields are highlighted.

II. Current data landscape in toxicology

Toxicology is a diverse and applied field where health-related information from models of 

animal and/or human toxicity inform chemical safety assessment for human and ecological 

health. Decisions made based on toxicity data can not only dramatically affect human health 

and the environment, but also have major economic implications. Thus, any changes to the 

existing paradigms for data collection, evaluation, and analysis due to advances in 

technology and science often come under intense scrutiny. However, NAM-based data 

generation is proceeding, and numerous ongoing efforts intend to demonstrate how this 

information may be used to answer regulatory toxicology questions.21–23,55–60 In this 

section, examples of data interoperability needs for both traditional and NAM-based toxicity 

information are reviewed. Table 1 provides a list of all applications, tools, and resources 

mentioned in this review, but is not necessarily an exhaustive listing of all resources 

available for computational toxicology.

First, in vivo models for toxicology continue to inform chemical safety assessment, whether 

it be directly for previously studied chemicals, or indirectly as source information for read-

across, predictive modeling, or benchmarking the success of NAM approaches for prediction 

of specific effects. Much of the available traditional toxicology data for human health safety 

evaluations has been collected through animal experimentation to identify doses that do not 

cause adverse health effects, e.g. a no observable adverse effect level (NOAEL) in in vivo 
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studies. This information is captured in both physical and digital text documents. Many of 

these documents are used for regulatory purposes and are not computationally accessible, 

e.g. the data are available for capture in text or PDF or in database formats that are not easily 

integrated. Additionally, many regulatory study reports are not public due to confidential 

business information (CBI) issues, and only summary reports are made available. There is 

always loss of detail in creating these summaries through a manual procedure and the 

possibility of loss of fidelity.

In addition to regulatory documents, the existing information can be found in various 

formats scattered across different digital systems (Table 1) such as the Integrated Risk 

Information System (IRIS),61 PubMed,62 Regulations.gov (https://www.regulations.gov), 

Chemical Effects of Biological Systems (CEBS),63 eChemPortal,64 Provisional Peer-

Reviewed Toxicity Value (PPRTV),65 Carcinogenic Potency Database (CPDB),66 Toxicity 

Reference Database (ToxRefDB),13 ChemView,67 eChemPortal,68 the European Chemicals 

Agency (ECHA),69 ECOTOX,70 and the Hazard Evaluation Support System Integrated 

Platform (HESS).71 The multitude of database resources for in vivo study information, with 

different designs and applications, for existing in vivo toxicity data exemplifies the lack of 

interoperability that promotes duplication of information and challenges in data provenance. 

A more specific obstacle is identification of duplicate studies; for instance, it is difficult to 

identify identical National Toxicology Program (NTP) reports in the multiple databases that 

collect this information: CEBS,63 ToxRefDB,13 CPDB,66 HESS71 and literature 

compilations.72 These resources are databases that have extracted data from animal toxicity 

studies, including those conducted by NTP; however, the source documents are available as 

either full reports from various online locations or broken up as separate publications that 

can be found across different scientific journals.

Because of source document management that was initiated without understanding of the 

future database needs (i.e. lack of versioning and unique identifiers), the age of some of the 

studies, as well as differences in how entities like a “study” and a “record” are defined 

across resources, it is extremely difficult to identify the overlap among the resources. These 

issues primarily encompass the legacy or historical data problems the field faces, but 

extensive efforts are underway to increase data interoperability to mitigate such issues. 

Addressing these challenges is critical as the field is rapidly changing because the success of 

NAMs often depends on the use of legacy information as a reference or benchmark to 

evaluate NAM success. Further, increases in data interoperability for legacy data may 

improve the capacity for data sharing and use across regulatory agencies.

An example of an early implementation of a public repository that integrated information on 

a by-chemical basis from both in vitro bioassays and in vivo toxicology data from myriad 

public sources was the Aggregated Computational Toxicology Resource, or ACToR14 

(Figure 1A) developed within the EPA Office of Research and Development’s National 

Center for Computational Toxicology (NCCT). ACToR initially provided the extracted 

hazard information and access to two prominent projects within NCCT, ToxCast and 

ToxRefDB, through a single web application and subsequently began developing 

Representational State Transfer (RESTful) web services73 for increased availability of the 

resources. ToxCast and ToxRefDB, among others, progressed the field forward because of 
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the sheer amount of information made available to explore computational modeling 

approaches to examine chemical hazard.13,21–23,25,74,75 With the progress made through 

ToxCast and Tox21, other projects grew into defined research areas or domains including 

exposure3,76 that spawned the development of different databases, applications, and software 

packages to meet these important research needs (Figure 1B). The CompTox Chemicals 

Dashboard surfaces information from several databases and a long list of datasets, with 

additional links out to other resources such as the adverse outcome pathway Wiki (AOP-

wiki) among numerous others.17 The research landscape, and the means to overcome siloed 

data resources, continues to evolve in real-time, within the EPA Office of Research and 

Development, and outside of it. Other efforts to generate NAM-based data in consortium-

based projects, like SEURAT77 and EUToxRisk,78 will also generate repositories of public 

data and information for integration and use in screening level chemical safety assessment, 

highlighting the need for reporting standards across consortia and geography.

Integration efforts for these data streams that promote public accessibility have themselves 

been somewhat siloed endeavors that have led to duplication of information across databases 

and difficulty in managing this information with time and resources spent on “data 

cleaning,” version control, and quality assurance measures. Centralized user interfaces for 

accessing both NAMs and traditional data, including the CompTox Chemicals Dashboard,17 

NCATS BioPlanet,18 National Library of Medicine (NLM) PubChem,79 ToxNet,80 

Comparative Toxicogenomics Database,35 ECHA,69 eChemPortal,68 ChemView,67 and NTP 

Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) 

Integrated Chemical Environment (ICE),20 have all led to increased access to data. 

PubChem, the largest resource of downloadable bioassay information,79 contains 

crowdsourced bioassay data, and deposition of information is generalized in order to store 

heterogenous data in the single resource. PubChem allows adherence to standards, 

specifically the Bioassay Ontology (BAO),81,82 but this standard is not strictly enforced. 

Using the streamlined data model in PubChem, some information on assays and results may 

not be well-captured. Based on the rapid growth of these user interfaces, and their 

capabilities, it is clear that tools are needed to help data stakeholders better integrate and 

organize this information, either by chemical or by biological aspects. As the development 

of these tools continues, standards are essential to enable integration across data repositories 

and these centralized user interfaces.

III. Examples of standardization and mapping of vocabularies

As previously stated, development and adherence to formatting standards and CVs increases 

interoperability, especially for legacy information systems or new data streams without 

existing standards. The ToxRefDB has recently been updated13 and provides an example of 

how in vivo toxicity information can be modernized for easier integration. ToxRefDB is a 

large publicly available digital resource aggregating results from animal toxicity studies that 

was initially created for retrospective analysis and as a reference to validate both ToxCast 

bioactivities and computational models.28,29 The impetus for the recent update was to collect 

dose-response information that was not originally extracted from the studies. However, 

endeavors to increase interoperability were also undertaken. The studies in ToxRefDB span 

decades where the language for reporting adverse events is inconsistent from either 
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subjective expert preferences or updates as knowledge about pathology has advanced. The 

terminology in ToxRefDB was standardized for a ToxRefDB-specific CV. The CV was 

mapped to concepts in the Unified Medical Language System (UMLS), which is a resource 

managed by the National Library of Medicine integrating over 150 biomedical vocabularies.
83 By mapping to a standard that is already integrated, interoperability is achieved with any 

other resource that is also mapped to the same standard.

Other in vivo toxicology resources utilize CVs; CEBS also captures information from 

animal toxicity studies and the adverse event reporting for histopathology results adheres to 

a CV called the International Harmonization of Nomenclature and Diagnostic Criteria 

(INHAND) and is accounted for in NTP’s Nonneoplastic Lesion Atlas (NLA).84 A 

limitation of INHAND is that it is not currently mapped to any other resources, and thus 

additional mapping will be needed to further interoperability efforts. Another user of 

INHAND is the eTox consortium,85 which is a group of pharmaceutical companies that have 

compiled animal studies into a single resource. Continuing efforts of eTox include increased 

interoperability though CV development and mapping.86 Another resource that collects 

animal toxicity information is the Health Assessment Workspace Collaborative (HAWC).87 

EPA has forked the HAWC project and has been actively developing a CV for data captured 

within HAWC for use in literature-based assessment products, with the next step to map this 

CV to other resources to enable interoperability.88 Finally, another resource that collects 

information on in vivo toxicity studies is the International Uniform Chemical Information 

Database (IUCLID).89 Like HAWC, IUCLID has a limited CV available as a “picklist,”90 

but still lacks granularity for adverse events. IUCLID is the primary tool used by the 

European Chemicals Agency (ECHA) to collect and evaluate chemicals for regulatory 

applications. IUCLID stands out from the previously mentioned applications because it 

adheres to data formatting standards developed in conjunction with the Organisation for 

Economic Co-operation and Development (OECD) called OECD Harmonized Templates 

(OHTs). IUCLID can consume any data formatted according to OHTs, making it an 

attractive database and data reporting standard for regulatory agencies around the world. 

Both HAWC and IUCLID have been developed for chemical-centric regulatory applications; 

therefore, aggregation of information has also been primarily chemical-centric rather than 

adverse effect-centric. However, moving forward with research endeavors investigating 

NAMs and to answer questions about reproducibility in animal toxicity studies, adverse 

event reporting should move toward adoption of CVs and formatting standards to fully 

support interoperability.

A massive amount of information is readily available from each of the information systems 

above, yet interoperability is still lacking primarily due to lack of CVs and data formatting 

standards. The progress made in ToxRefDB with CV development and mapping was a 

manual effort; however, automatic mapping is possible. Several tools like National Center 

for Biomedical Ontologies (NCBO) Bioportal Annotator and UMLS MetaMap are available 

to map text to respective CVs using Natural Language Processing (NLP) techniques. 

Without definitions or full text input, these methods are limited to string comparisons, which 

are not always very accurate. For example, the ToxRefDB term “pathology microscopic” 

was manually mapped to the UMLS term “Histopathology Result.” When using the 

BioPortal Annotator, the UMLS terms that are mapped to “pathology microscopic” are 
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“Pathology” and “Microscopic”, which, even together, do not represent “pathology 

microscopic” as well as “Histopathology Result.” In many cases, manually mapping terms 

may be the best option because of the accuracy, but automatic mapping pipelines, such as 

machine learning based methods trained to make appropriate associations, should be 

investigated further to facilitate rapid advancement of in vivo toxicity data interoperability.

IV. Modern chemical safety evaluation requires a framework to link 

relevant information

To enable modern chemical safety evaluation, a collection of information must be 

considered and integrated, including: (1) information on chemicals or substances; (2) 

information on phenotypes and toxicity associated with chemical bioactivity; and, (3) 

information on testing methodologies, assay principles, and intended targets. Once these 

linkages are made, the evidence available to associate a chemical or substance with a 

phenotype of interest may help inform safety evaluation.

A very basic issue with interoperability for toxicology that not only cuts across every data 

stream, but also is often overlooked, is chemical identity. Chemicals can be identified by 

their name, a chemical Abstracts Registry number (CASRN), or a chemical structure. All 

three of these identifiers are subject to variability and errors. It is well known that chemicals 

can be named in multiple ways, so name is not unique. CASRN can change over time. 

Chemical structures can be represented in several forms (SMILES, MOLFILE, INCHI), and 

may not accurately reflect the exact chemical tested (e.g. stereochemistry may be lost in 

SMILES representation). Further, study records may not clearly state the chemical that was 

tested (e.g. which salt form, what purity level). Therefore, it is important to annotate, as far 

as possible, the actual chemical tested in a study (in vitro or in vivo) to allow combined use 

of data across studies. The EPA DSSTox project has developed a standard for performing 

this mapping, but it is in general a manual process.17,91

Linking chemical exposure to disease or toxicity remains a challenge in part because risk 

assessment is chemical centric. In contrast, the development and progression of disease or 

toxicity in humans is due to a multitude of factors including exposure to many chemicals at 

different life stages all coupled with genetic predisposition. Consequently, many biological 

investigations are not focused on causation by one chemical, and epidemiology studies may 

not easily provide support for causation of a single chemical as these studies associate 

populations with many exposures to biological outcomes.92 Thus, biological interpretation 

of in vitro screening information for use in safety evaluations is dependent upon modeling 

the connections linking chemical activity in an assay to an effect on a biological target, and 

then linkage of this target to the disease or toxicity associated with perturbation of that 

biological target. Efforts to increase data interoperability for bioactivity, toxicity, or 

phenotype and testing methodology, assay principle, or intended target would enable more 

inferences from disease or toxicity back to chemical exposure.

Recognizing this need, the adverse outcome pathway (AOP) framework has been proposed 

as one method to aggregate relevant information and define how measurable perturbations in 

response to environmental stressors lead to an adverse outcome (AO), or an event of 
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regulatory concern.93–96 An AOP is defined as “an analytical construct that describes a 

sequential chain of causally linked events at different levels of biological organization that 

lead to an adverse health or ecotoxicological effect”.97 An AOP is mapped as a linear 

progression of a series of key events (KEs) linked together by qualitative or quantitative key 

event relationships (KERs) across biological levels of organization, beginning with a 

specialized KE known as a molecular initiating event (MIE) and culminating with another 

specialized KE known as an adverse outcome (AO). For the purposes of understanding 

chemical toxicity, the linear AOPs are combined to form AOP networks to account for the 

complexity inherent in a biological system98–100.

As shown in Figure 2, the AOP framework connects information on phenotypes and toxicity 

with information on the intended target from some biological measurement of perturbation; 

each KE is associated with an event, event component, and biological target, detected by a 

biological measurement that suggests a biological explanation based on the testing 

methodology and assay principle employed.101,102 AOP networks provide a framework for 

integrating bioactivity measurements from both NAMs and traditional toxicology assays in 

such a way that they may be used to predict adverse outcomes.103–108

An example of an ongoing effort to promote interoperability between AOPs and NAM 

information is the AOP-DB.101 The AOP-DB consumes AOP descriptions from the AOP-

Wiki and annotates the key events from each AOP with gene and protein identifiers based on 

the ontological terms assigned to each key event. These identifiers are then used to connect 

AOPs from the AOP-Wiki to information about chemicals, biological pathways, diseases, 

genetics, and toxicity assays that may be relevant for each AOP. Currently, these data are 

used to provide links between the EPA CompTox Chemicals Dashboard and the AOP-Wiki.
109 These data have also been incorporated into workflows developed by the OpenRiskNet 

consortium.110,111

Current strategies for linkage of macromolecular and cellular changes with adverse 

outcomes to leverage NAM data for safety evaluation include extensive literature review and 

predictive modeling.21–23,36 One issue with using the AOP framework is that only a small 

fraction of the adverse effects used in regulatory toxicology decision making are the types of 

specific outcomes modeled in currently available AOPs. Expert evaluation of the literature is 

labor intensive and slow, and the lack of well-developed AOPs limits predictive modeling, 

which raises the following questions: (1) how can more AOPs be developed via rapid 

linkage of MIE or KE related information from NAM-based and traditional toxicology 

screening methods?; (2) how can hypotheses be generated to suggest more potential MIE to 

AO associations?; and, (3) how can development of putative AOPs be prioritized based on 

potential utility for chemical safety evaluation?

To address these persistent questions, data-driven approaches have shown promise,34,100,112 

but they are restricted to toxicity information that is available through large datasets or data 

aggregators such as CTD. AI methods under consideration to support systematic review 

efforts could unlock information buried in the scientific literature113, and adaptations of 

literature mining tools used for chemical searches114 are being considered as well. 

Additional tools are needed to make the NAM and traditional information more accessible, 
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and further, existing information from disparate resources need to be leveraged to support 

the discovery of novel MIE to AO relationships.

V. AOPs & Systematic Reviews

Systematic reviews may leverage existing AOPs as well as be useful for populating or 

support of new or existing AOPs using information mined from the literature. Systematic 

review methods have been successfully leveraged to increase transparency and rigor by 

introducing strategies that limit bias and random error115 while identifying the best available 

evidence relevant to a literature-based chemical assessment116,117 (Figure 3). Rigorous 

systematic reviews rely on the identification of all relevant information for a research 

question to ensure that the best available information is found, assessed, and synthesized. 

However, identifying all relevant information (i.e. maximizing recall) is a semantic 

challenge because it requires a priori knowledge of what kind of information is available and 

how and where it is managed in order to find it. Linguistic inconsistencies resulting from 

different communities using different vocabularies to describe common study characteristics, 

concepts, relationships, and words related to a science question must be considered when 

developing a search string to capture all potentially relevant studies. For literature search 

engines, recall is not always maximized, so “all-encompassing” search strings are built in a 

broad literature search step, potentially leading to the capture of non-relevant information.
118 This “excess” information increases the time and resources needed to screen all retrieved 

literature at the title/abstract and full text levels [based on a populations, exposures, 

comparators, and outcomes (PECO) criteria] and can constrain scaling systematic reviews to 

a handful, rather than thousands, of chemicals in the exposure domain. However, depending 

on the need for a timely decision, rapid systematic reviews and artificial intelligence 

applications and tools can be deployed.113,115

For more rapid reviews, studies can be “tagged” and inventoried (e.g., by study type, data 

type, chemical, outcome, population, data source) using an evidence mapping approach119 to 

prioritize literature for full text review, study evaluation, data extraction, and evidence 

integration in support of hazard identification and toxicity value derivation (Figure 3). For 

included studies of acceptable or higher quality these tags can be made to capture more 

granular study characteristics (such as summary findings, experimental methods, exposure 

route, and study population) that can then be used to make decisions such as where to focus 

research capacity, whether to broaden or narrow the scope of an assessment or focus on 

studies evaluating an outcome of regulatory concern.

Data interoperability via use of CVs to describe study characteristics would support 

integration of the information collected during a systematic review and/or evidence map into 

a flexible conceptual framework for aggregation and curation of literature-based 

information. Information gathered during a systematic review and/or evidence map could 

also be managed using ontology concepts adopted by the AOP community for automatic 

integration into a structured data format for AOPs.120 Evidence derived using systematic 

review methods and mapped to existing AOP content could help ground KEs and KERs, 

since the evidence synthesized using systematic review methods should be unbiased with 

respect to capturing what exists in the literature. Similarly, information extracted during a 
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systematic review could be used in data-driven approaches to computationally predict KE 

and KER.34,100,112 This structured information can provide support for identifying AOPs 

that may be relevant to chemical safety evaluation, but that might have otherwise been 

missed using an expert-only guided approach.

AOP development and knowledge discovery to inform chemical safety evaluation for 

toxicology necessitate improvements to the FAIR data landscape, thus enabling integration 

of data that were previously siloed. To use NAMs (e.g. high-throughput transcriptomics, 

high-throughput screening, and high-content imaging data) more effectively in chemical 

safety evaluations, better linkages of these data to MIEs, KEs, and AOs of interest for 

regulatory toxicology are needed. A potential challenge in using AOPs for regulatory 

toxicology is that frequent determinants of adversity from in vivo testing are non-specific 

outcomes such as weight loss.121 Predicting these non-specific outcomes with NAMs may 

require multiple approaches, including mapping these endpoints to AOPs such that these 

non-specific indicators are put into context with more mechanistic events and/or the use of 

NAMs to model a threshold for systemic toxicity more generically. Identification of 

chemical bioactivity that may relate to AOs of regulatory interest requires NAM reporting 

standardization and improved computational accessibility of existing in vivo toxicity data. 

With this standardization, an AOP or AOP-like framework may be more useful and 

comprehensively populated using bioinformatic tools, including systematic review among 

others.

VI. Putative gene-outcome relationships for complex phenotypes

One of the most prominent challenges for adopting NAMs for chemical risk assessment is 

understanding how results can be applied to complex, multiple-etiology adverse outcomes 

like cancer. One approach from Kleinstreuer et al. (2013)25 attempted to use odds ratios 

between in vitro bioactivity in ToxCast assay and cancer-related phenotypes in rodents, as 

documented in ToxRefDB, to develop chemical cancer hazard scores. Subsequently, the 

biological plausibility of links between ToxCast assays and ToxRefDB cancer outcomes was 

manually assessed by a literature review. The limitations of this approach were made clear in 

Cox et al. (2016)122 stating that small changes to the dataset used in the cancer model 

dramatically changed the resultant associations between in vitro bioactivity and cancer-

related phenotypes in rodents. This model instability could be the result of false positives i.e. 

the chemical bioactivity observed in ToxCast is not related to the cancer outcome observed 

in ToxRefDB. The approach could be improved if each ToxCast assay, which are linked to 

gene target(s), could be evaluated for relevance to cancer AOPs. Indeed, this type of 

approach was taken by the International Agency for Research on Cancer (IARC)123,124 

where each ToxCast assay was reviewed and binned into the ten key characteristics of 

carcinogens (TKCC).125 A toxicological priority index (ToxPi) was calculated for each 

chemical based on the bioactivities of each assay in each TKCC. Further, Becker et al 

(2017)126 used the IARC binning of ToxCast assays and cancer designations by USEPA 

Office of Pesticides Program (OPP) Cancer Assessment Review Committee (CARC) as 

descriptors for machine learning models to classify chemicals as carcinogens, and ultimately 

concluded that ToxCast could not classify chemicals as carcinogens. Associating in vitro 
screening data with cancer-related outcomes continues to be an active area of research that 
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may be transformed by generation of data that includes more of the genome, like high-

throughput transcriptomic data.

Thus, a challenge remains: what are the best strategies to establish biological links between 

gene targets and complex AOs, based on previous understanding of the etiology and 

progression of these outcomes? Expert knowledge is limited due to the reliance on low-

throughput manual literature review. The role that environmental chemical exposure(s) play 

in multiple-etiology outcomes like cancer are not well understood and may benefit from new 

information. Pathway analysis tools for associating gene-related data to biological processes 

relevant to carcinogenesis may be informative, but associations are from prior knowledge 

and are dependent on the specific pathway tool employed.127,128 Data-driven strategies for 

associating gene-target information with AO information may connect a wealth of gene 

information to cancer etiology or other complex phenotypes that may be difficult for an 

expert to identify. Novel, hypothetical associations between chemical exposure(s) and 

diseases may require bioinformatic tools and unsupervised approaches to putatively link 

chemical exposures with AOs.34,102,112 A persistent challenge with creating data driven 

models linking in vitro data with AOs is the relatively small data sets available, relative to 

the data variability.

An example of a bioinformatic resource to connect gene-target and AO information is the 

recently published Entity MeSH Co-occurrence Network (EMCON);32 EMCON can be used 

to identify genes that are linked to complex disorders like breast cancer. EMCON was also 

used as a data stream in Grashow et al. (2018)129 as part of a comprehensive gene 

prioritization framework to identify a breast cancer gene panel. The traditional approach to 

analyze gene expression results is gene set enrichment analysis (GSEA), where pathways or 

other concepts are identified from overrepresented differentially-expressed genes in 

reference gene sets that are primarily manually curated.130 Relevant gene sets for 

understanding links between chemical exposures and complex phenotypes are not readily 

available. Most gene sets are available through the Molecular Signatures Database 

(MSigDB)130–132 or other resources for GSEA like Enrichr.133,134 A commonly used 

resource that links genes to disease is Online Mendelian Inheritance in Man® (OMIM),135 

which links genetic variants to disease; however, variants that have been linked to complex 

phenotypes have primarily been identified in genome wide association studies (GWAS) and 

are not always easy to mechanistically characterize. A well-curated resource that houses 

linkages between chemical exposures and disease is the Comparative Toxicogenomics 

Database (CTD).35 CTD extracts chemical-gene, gene-disease, and chemical-disease 

interactions from literature and integrates gene-disease relationships primarily from OMIM. 

The chemical-disease links are inferred by looking for genes common to both chemical-gene 

interactions and gene-disease relationships.136 CTD is a high-quality resource, but 

dependent on manual curation, which is low-throughput. Manual curation efforts cannot 

keep pace with the rate of publication, which highlights a need for alternative methods for 

data extraction including text-mining tools such as named entity recognition (NER),137,138 

with EMCON providing just one example of a bioinformatic tool using NER to connect 

gene and AO information.
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To identify environmental exposures that could potentially influence susceptibility to a 

complex disease, more complex gene networks may be important to identify. Other manual 

literature curation efforts continue for gene and gene function information,139 proteins,
140,141 pathways,142–145 diseases,146 and chemicals.35,87,147 Aggregating these curated 

target-disease associations with chemical concentration-response information from NAMs 

targeting different levels of biological information could lead to rapid putative AOP 

development and development of robust computational models for chemical hazard.

VII. Conclusion

The current regulatory framework for toxicology is adapting to keep pace with modern 

chemical safety evaluation needs and the development of NAMs. However, a major obstacle 

to streamlining chemical safety evaluation and uptake of NAMs is data interoperability. 

Improving data interoperability will enable researchers to more comprehensively interrogate 

available data to better understand the existing knowledge landscape, thereby identifying 

data gaps, and perhaps identifying how environmental chemical exposure may influence 

complex AOs. Initial efforts in toxicology to promote interoperability demonstrate immense 

progress and promise, yet, for continued success, more work is needed in development and 

adherence to CVs and data formatting standards as well as implementing modern data 

infrastructures to support the large amounts of data and data analyses.

From here, both immediate and more long-term actions are required to meet a standard of 

data interoperability. Using CVs and data formatting standards for existing legacy 

toxicology data are critical first steps. Development and implementation of NAM data 

formatting standards in parallel will enable greater uptake of this information by various 

stakeholders. The complete implementation of chemical identity reporting standards, e.g. the 

use of DSSTox identifiers that link to unique substances, will cut across any kind of 

toxicology data integration. The development and use of more automated, computational 

bioinformatic tools to both identify and populate relationships like AOPs or exposure-

disease hypotheses are needed to leverage existing data. Increased support and development 

of research computing environments that enable easy integration of datasets, in a 

reproducible manner, continue to be developed. Ultimately, avoiding the generation of siloed 

data, e.g. unstructured data in PDF documents, would be supported by extension of the 

resources available to build complex data systems for sharing and extraction of data.

In this review, some of the possibilities enabled by increased efforts toward data 

interoperability are presented. Obstacles for further progress on data interoperability include 

the need for resources and the diversity of toxicology data stakeholders. Data 

interoperability in toxicology requires balancing the need for domain-specific details with 

the need to reduce complexity to enable broader use of the data. The needs of data scientists 

for available tools and datasets may differ from the needs of the public for data transparency 

and availability as well as the needs of regulatory toxicologists charged with making public 

health decisions. Thus, any data strategy and data interoperability solutions must provide a 

sufficient amount of detail for the many applications of toxicology data.
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Figure 1: A historical view of the evolving infrastructure to support modern chemical safety 
evaluation
Pictured is an abstract representation of the changing infrastructure that supports USEPA’s 

computational toxicology efforts, presented as an example of data interoperability needs as 

they have evolved. (A) Initially, information across relevant domains in toxicology were 

aggregated from external databases to a single database accessed through a single web 

application called ACToR. (B) With continued success in data generation projects like 

ToxCast, multiple products were developed. The dashed arrows represent indirect access to 

the needed information. Indirect access means that the underlying information was 

duplicated because each web application is supported by a separate database, which is 

consistent with silo-ing and reinforcing data inconsistency. Note that the ToxCast Dashboard 

and the EDSP21 Dashboard are being sunset in 2019, with their functionality merged into 

the CompTox Chemicals Dashboard. CPDat = Consumer Product Database; DSSTox = 

distributed structure-searchable toxicity database; EDSP21 = Endocrine Disruptor Screening 

Program for the 21st century; httk = high-throughput toxicokinetics; tcpl= ToxCast data 

pipeline.
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Figure 2: Integrating stressor and biological information into an Adverse Outcome Pathway 
workflow
Each key event (KE) in an AOP has information about a specific biological target and 

subsequent biological measurement, dependent on testing methodology and the assay 

principle, associated with a stressor. Key event relationships (KERs) provide evidence to 

support linkage of KEs. Combined, all components can be organized into a series of steps 

that begin with a molecular initiating event (MIE) and ending with an adverse outcome 

(AO).
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Figure 3: Workflow for literature based chemical assessments based on systematic review 
methodology
Iterations of literature-based chemical-centric systematic review methods ensure rigor and 

transparency while making use of the best available scientific information, requiring data 

interoperability to maximize unbiased data recall.
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Table 1:
Applications, tools, and resources relevant to computational toxicology.

This table is intended to collect the applications, tools, and/or resources available for hazard information, but 

is not necessarily an exhaustive list.

Application, tool, or resource name Homepage

Integrated Risk Information Systems (IRIS) https://www.epa.gov/iris

PubMed https://www.ncbi.nlm.nih.gov/pubmed/

Regulations.gov https://www.regulations.gov/

Chemical Effects in Biological Systems (CEBS) https://manticore.niehs.nih.gov/cebssearch

eChemPortal https://www.echemportal.org

Provisional Peer-Reviewed Toxicity Values (PPRTV) https://www.epa.gov/pprtv

Carcinogenic Potency Database (CPDB) https://toxnet.nlm.nih.gov/cpdb/

Toxicity Reference Database (ToxRefDB) https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data

Toxicity Forecaster (ToxCast) https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data

Toxicity Testing in the 21st Century (Tox21) https://ntp.niehs.nih.gov/results/tox21/

CompTox Chemicals Dashboard https://comptox.epa.gov/dashboard

NCATS BioPlanet https://tripod.nih.gov/bioplanet/

National Library of Medicine (NLM) PubChem https://pubchem.ncbi.nlm.nih.gov/

TOXNET https://toxnet.nlm.nih.gov/

Comparative Toxicogenomics Database (CTD) http://ctdbase.org/

NICEATM Integrated Chemical Environment (ICE) https://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/comptox/ct-ice/
ice.html

ECHA https://echa.europa.eu/information-on-chemicals/registered-substances

ECOTOX https://cfpub.epa.gov/ecotox/

ChemView https://chemview.epa.gov/chemview

NCATS Tox21 Data browser https://tripod.nih.gov/tox21/

AOP-Wiki https://aopwiki.org/

AOP-KB https://aopkb.oecd.org/

AOP-DB https://openrisknet.org/e-infrastructure/services/147/

OpenRiskNet https://openrisknet.org/
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