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A clinically applicable deep-learning model for
detecting intracranial aneurysm in computed
tomography angiography images
Zhao Shi 1,10, Chongchang Miao2,10, U. Joseph Schoepf3, Rock H. Savage3, Danielle M. Dargis3,

Chengwei Pan 4,10, Xue Chai5,10, Xiu Li Li6,10, Shuang Xia7,10, Xin Zhang8,10, Yan Gu2, Yonggang Zhang2,

Bin Hu1, Wenda Xu1, Changsheng Zhou1, Song Luo1, Hao Wang6, Li Mao 6, Kongming Liang6, Lili Wen8,

Longjiang Zhou8, Yizhou Yu 6, Guang Ming Lu 1✉ & Long Jiang Zhang 1,9✉

Intracranial aneurysm is a common life-threatening disease. Computed tomography angio-

graphy is recommended as the standard diagnosis tool; yet, interpretation can be time-

consuming and challenging. We present a specific deep-learning-based model trained on

1,177 digital subtraction angiography verified bone-removal computed tomography angio-

graphy cases. The model has good tolerance to image quality and is tested with different

manufacturers. Simulated real-world studies are conducted in consecutive internal and

external cohorts, in which it achieves an improved patient-level sensitivity and lesion-level

sensitivity compared to that of radiologists and expert neurosurgeons. A specific cohort of

suspected acute ischemic stroke is employed and it is found that 99.0% predicted-negative

cases can be trusted with high confidence, leading to a potential reduction in human work-

load. A prospective study is warranted to determine whether the algorithm could improve

patients’ care in comparison to clinicians’ assessment.
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Intracranial aneurysms (IAs) are relatively common life-
threatening diseases with a prevalence of 3.2% in the general
population1 and account for 85% in the spontaneous sub-

arachnoid hemorrhage (SAH) patients2. IAs are increasingly
being detected owing to the widespread application of advanced
imaging techniques. Although aneurysmal SAH accounts for
5–10% of all strokes in the United States3, it may cause sig-
nificantly high mortality4, and the survivors may suffer from
long-term neuropsychological effects and decreased quality of
life5. Early diagnosis of underlying IAs can both influence clinical
management and guide prognosis in intracerebral hemorrhage
patients6,7. For patients with spontaneous SAH, timely and
accurate identification of IAs is critical for immediate interven-
tion or surgical management, whereas for patients without IAs,
reliable exclusion of IAs is also important for specialized
management8.

Computed tomography angiography (CTA) is a noninvasive,
convenient, and reliable modality to detect IAs9. American Heart
Association/American Stroke Association guidelines have
recommended CTA as a useful tool for detection and follow-up of
unruptured IAs (Class I; Level B)10 and the work-up of aneur-
ysmal SAH (Class IIb; Level C)4. However, CTA interpretation is
time-consuming and requires subspecialty training. The existing
challenges also include inter-observer variability and high false-
negative (FN) rates11–13. The diagnostic accuracy is dependent on
several factors including aneurysm size, diversity of technological
specifications (16- versus 64-detector rows), image acquisition
protocols, image quality, image postprocessing algorithms, and
variations in radiologists’ level of experience. These factors result
in a mean sensitivity in the range of 28–97.8% in detecting
IAs9,13,14. The recently published guideline of acute ischemic
stroke (AIS) has also strongly recommended CTA use (Class I;
level A) in selecting candidates for mechanical thrombectomy
after illness onset15. Consequently, the workload of radiologists to
detect or exclude IAs is rapidly increasing in the non-SAH set-
ting, where excluding IAs on CTAs remains a challenging task.
Given all the preconditions mentioned above, it is a timely and
urgent need to have high-performance computer assisted diag-
nosis (CAD) tools to add in detection, increase efficiency, and
reduce disagreement among observers which may potentially
improve clinical care of patients.

MR angiography (MRA) or CTA-based CAD programs have
been devised to automatically detect IAs. The conventional-style
CAD systems were based on pre-supplied characteristics or
imaging features, such as vessel curvature, thresholding, or a
region-growing algorithm16,17. In addition, their performances in
the real-world and their generalization have not been fully
investigated. Nowadays, deep learning (DL) has shown significant
potential in accurately detecting lesions on medical imaging
and has reached, or perhaps surpassed, an expert-level of diag-
nosis18–20,21. DL is a machine learning technique that directly
learns the most predictive features from a large data set of labeled
images20,21. Explorations on DL combined with MRA have
reported decent results for IAs detection22,23. CTA-based CAD
systems for automatically detecting IAs have been rarely reported,
and only two recently published studies can be found in this field,
to the best of our knowledge24,25. Notably, these models were
trained with a small sample size, without an outside reference
standard, and were not tested in different scenarios; thus, they
were not adequate to be applied in real-world clinical settings and
may fall into the “Artificial intelligence (AI) chasm”, which can be
described as divide between developing a scientifically sound
algorithm and its use in any meaningful real-world applications26.
It is necessary and imperative to develop a robust and reliable AI
tool for IAs in the clinical real-world setting. The experiments
presented in this article will endeavor to resolve these problems.

To properly address the shortcomings of current computa-
tional approaches in the context of IAs detection and to enable
clinical deployment, training and validation of models on large-
scale data sets representative of the wide variability of cases
encountered in the routine clinic is required. Therefore, we col-
lected 1177 digital subtraction head bone-removal CTA images,
which were based on a section-by-section subtraction to subtract
nonenhanced from enhanced CT data to facilitate the diagnosis of
aneurysms27, with/without SAH to derive a specific model for
automated detection of IAs. Furthermore, we aimed to ascertain
the capability and generalizability of the model using temporally
or spatially independent real-world CTA images from four hos-
pitals and to test the model in a simulated real-world routine
clinical setting. In order to guarantee the ground truth of IAs,
especially small ones, we only enrolled patients who underwent
cerebral digital subtraction angiography (DSA), which is the gold
standard for diagnosing IAs, to verify the results of CTA in the
training data set.

In this work, the specific model was an end-to-end 3D con-
volutional neural network (CNN) segmentation model (Fig. 1).
First, an encoder–decoder architecture was used for smooth and
gradual transitions from original images to segmentation mask
(Supplementary Fig. 1). Second, residual blocks28 were adopted to
allow for stable training for increasing depth of the network.
Third, a dual attention29 block was embedded to learn long-range
contextual information to get more reliable feature representa-
tions. The comprehensive analysis of the proposed model on the
effects of different factors and in real-world clinical scenarios is
conducted in eight cohorts in total (Table 1). The results
demonstrate that the model has a good tolerance to image quality
and different manufacturers had a slight impact on the perfor-
mance. The model has an improved patient-level sensitivity and
lesion-level sensitivity compared to that of radiologists and expert
neurosurgeons. Besides, we note that 99.0% predicted-negative
cases in AIS setting can be trusted with high confidence, which
leads to a potential reduction in human workload.

Results
Model development and primary validation. There were 16,975
consecutive digital subtraction head CTAs and 7035 cerebral
DSAs performed between 1 June 2009 and 31 March 2017 in
Jinling Hospital, among which 1875 patients underwent both
CTA and DSA. After quality-control evaluation and image
review, the final data set (Internal cohort 1) consisted of 1177
cases (316 slices/case): 869 patients with 1099 aneurysms and 308
non-aneurysm controls, including 257 patients without abnormal
findings and 51 patients with intracranial artery stenosis. The
cohort was split into training/tuning/testing sets. The training set
included 927 cases (744 cases with IAs and 183 non-aneurysm
controls); the tuning set consisted of 100 cases (50 cases with IAs
and 50 controls); the testing set had 150 cases with 50% of cases
having IAs (94 aneurysms totally) (Supplementary Fig. 2).

The DL algorithm was developed on the training set. After the
entire training procedure (see Methods), the model with the best
lesion-level sensitivity on the tuning set was cherry-picked.
Furthermore, the patient-level sensitivity and specificity of the
model under different false positives per case (FPs/case) were
analyzed (Supplementary Fig. 3), and the comprehensive optimal
threshold was determined to make the FPs/case to be 0.29/case so
that the model reached a high sensitivity of 97.3% with a
moderate specificity of 74.7% on the testing set. The lesion-level
sensitivity was 95.6% with a Dice ratio of 0.75. In all, four
aneurysms were missed in four patients, including two patients
with multiple IAs (one aneurysm was missed for each patient).
All of the missed aneurysms were small (<5 mm) and three were
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tiny IAs (<3 mm), which result in a 100% lesion-level sensitivity
for aneurysms ≥5 mm and 98.6% for those ≥3 mm. Two of the
missed aneurysms were located in the cerebellar artery (CA, one
in the right posterior inferior CA and the other in the left superior
CA), 1 was located in internal carotid artery (ICA) and posterior
communication artery (PCoA). For the remaining locations, the
model demonstrated 100% lesion-level sensitivity. The model
took a mean of 17.6 s (95% CI: 17.2–18.0 s) to process an
examination and output its segmentation map.

A completely independent internal validation data set (Internal
cohort 2) was applied to test the model, which contained 245
cases (145 aneurysms in 108 patients) who had undergone both
head CTA and DSA from 1 April 2017 to 31 December 2017 in
Jinling Hospital (Table 1 and Supplementary Table 1). The model
reached an accuracy, patient-level sensitivity, and specificity of
88.6%, 94.4%, and 83.9%, respectively, with a lesion-level

sensitivity of 84.1% and FPs/case of 0.26 (Table 2). In all, six
patients with IAs were misdiagnosed, and 23 aneurysms in 20
patients were missed. The model had a high lesion-level
sensitivity for aneurysms located in the anterior communication
artery (ACoA, 100%), anterior cerebral artery (ACA, 100%),
vertebral basilar artery (VBA, 100%) and PCoA (87.9%), middle
cerebral artery (MCA, 87.5%), whereas lower lesion-level
sensitivity for those in the ICA (60.6%), posterior cerebral artery
(PCA, 66.7%), and CA (66.7%). The most frequently missed
aneurysms were tiny aneurysms (<3 mm, lesion-level sensitivity
of 51.7%), but there was an improved lesion-level sensitivity of
75.0% for those ≥3 mm, 95.8% for those ≥5 mm, 100% for those
≥10 mm. Supplementary Fig. 4 demonstrates some examples of
the correctly predicted findings.

Another completely independent external validation data set
from Nanjing Brain Hospital (NBH cohort) from 1 January 2019
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to 31 July 2019 was collected to test the model’s generalizability
and robustness, which contained 211 cases with both head CTA
and DSA. Of those cases, 39 patients had 46 IAs. The model
reached an accuracy, patient-level sensitivity, and specificity of
81.0%, 84.6%, and 80.2%, respectively, with a lesion-level
sensitivity of 76.1% and FPs/cases of 0.27 (Table 2). In all, 11
aneurysms from 11 patients (including five IAs in five patients
with multiple IAs) were missed. The model had 100% lesion-level
sensitivity for aneurysms located in the MCA, ACoA, ACA and
PCA, and 80.0%, 66.7%, and 62.5% for those in the PCoA, ICA,
and VBA. Similarly, it had lower lesion-level sensitivity for tiny
aneurysms (37.5%), with a lesion-level sensitivity of 84.2% for
those ≥3 mm, 90.5% for those ≥5 mm, 100% for those ≥10 mm.
There was no significant difference between the patient-level,
lesion-level sensitivity and specificity in the internal and external
validation cohorts (p= 0.114, 0.239, and 0.400, respectively).

Comprehensive analysis of the performance of the model. In
the process of model development, we found 31 occult cases that
were defined as CTA-negative but DSA-positive aneurysms8,
especially for tiny aneurysms or those located in the ophthalmic
artery segments (Supplementary Fig. 5). These cases were exclu-
ded in the internal cohort 1 and the validation cohorts because
they were impossible to be annotated in CTA source images. We
wondered whether these cases could be detected by the model
given the strength of DL18–20,21. There are 39 aneurysms totally
regarded as occult aneurysms (mean size: 2.0 (1.0, 3.0) mm,
range: 1.0–4.0 mm). Most of these aneurysms were located in the
ICA (51.3%, 20/39), especially in the ophthalmic artery segments
(60.0%, 12/20). Our model detected five occult aneurysms with a
mean size of 2.7 mm in five patients, among which two were
located in the ICA, two in the CA, and one in the ACA.

Image quality affects the diagnostic performance of CTA,
especially for small aneurysms. Herein, we analyzed the level of
tolerance of our model to the image quality of head CTA. CTA
image quality was rated on a four-point scale31, which is based on
the degree of noise, vessel sharpness, and overall quality
(Supplementary Fig. 6). Further analysis was performed on
another internal validation data set (Internal cohort 3) including
226 patients. In total, 61 patients had 80 aneurysms. There were
11, 55, 97, and 63 cases for the image quality scores 1–4,
respectively. The results demonstrated that the patient-level
sensitivities were 66.7%, 93.3%, 75.0%, and 72.7% in the groups of
score 1–4 with a lesion-level sensitivity of 66.7%, 84.2%, 62.8%,
and 66.7%; the specificities were 87.5%, 90.0%, 83.1%, and 92.3%,
respectively (Supplementary Fig. 7b/c). There was no significant
difference among the four subgroups (all Bonferroni-corrected p
> 0.05), which meant the model had a relatively high tolerance to
image quality. However, another truth is that with the advance of
CT techniques and optimized CTA protocols, poor quality images
(score 1) are rare. We only collected 11 cases with poor image
quality among all head CTA cases, which meant the model
requires further validation.

Manufacturers can be a factor affecting the performance of the
model, so consecutive patients with head CTA from the Tianjin
First Central Hospital (TJ cohort) from 1 January 2013 to 31
December 2018 were included, in which three different
manufacturers were used to generate images. CTA was acquired
by GE Revolution in 30 patients (26 patients with IAs), by
SIEMENS SOMATOM Definition or Definition Flash in 68 (63
patients with IAs), and by Toshiba Aquilion ONE in 49 (20
patients with IAs). The results demonstrated that the lesion-level
sensitivity of SIEMENS was significantly higher of 89.3% than
those of GE (62.5%, p= 0.001) and Toshiba (32.0%, p < 0.001).
The patient-level sensitivities were 90.5%, 69.2%, and 40.0% forT
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SIEMENS, GE, and Toshiba. The specificity was comparable with
100% in GE and SIEMENS, whereas 58.6% for TOSHIBA without
significant differences (Bonferroni-corrected p > 0.05) (Supple-
mentary Fig. 7a/c).

Radiology expert analysis of the error modes. To uncover the
underlying causes of misclassified cases in our developed model,
we analyzed the cases in Internal cohorts 2, 3, NBH cohort, and
TJ cohort. The misdiagnosed cases (6 in Internal cohort 2, 13 in
Internal cohort 3, 6 in NBH cohort and 26 in TJ cohort) were
found between the model diagnosis and the DSA findings (Sup-
plementary Table 2a). Since that misdiagnosis would lead to
serious consequences, we focused on these cases rather than the
FPs. Several reasons can be attributed to misdiagnosed cases,
including (1) tiny aneurysms (<3 mm); (2) Uncommon shape of
aneurysms; (3) aneurysms located in uncommon locations (such
as the posterior inferior CA); (4) inappropriate contrast agent
protocols that result in poor artery enhancement or marked
intracranial vein enhancement; (5) overshooting of bone sub-
traction in the ophthalmic artery segment; (6) other unexplained
reasons (Supplementary Table 2b). We defined unexplained
reasons as these aneurysms that were obvious for radiologists to
identify but were missed by our model. The unexplained cases
were mainly found in the TJ cohort and NBH cohort, which may
be attributed to different manufacturers or CTA scan protocols
(representative missed cases are presented in Supplementary
Fig. 8).

Clinical application in routine practice and comparison with
radiologists and neurosurgeons. In order to clearly understand
the performance of the model against clinicians in the clinical
setting, we designed an experiment to compare the performance
of the model to those of six board-certified radiologists (two
resident radiologists, F.X. and Y.X.; two attending radiologists, L.

W. and X.L.Z.; two assistant director radiologists, J.L. and Y.E.Z.)
and two assistant director neurosurgeons (L.L.W. and L.J.Z.) in
reading consecutive real-world cases with suspected IAs or other
cerebral vascular disease that underwent head CTA, in one
internal data set from 1 June 2019 to 31 July 2019 in Jinling
Hospital (Internal cohort 4) and one external data set from 1
August 2018 to 30 September 2019 in Lianyungang First People’s
Hospital (LYG cohort). The prevalence of IAs is distinct in the
general populations and SAH patients1,2, which acts as an
important clue for detecting IAs for clinicians. Therefore, we
analyzed the performance of the model and clinicians in the
entire group, SAH subgroup, and non-SAH subgroup,
respectively.

For Internal cohort 4, the micro-averaged patient-level
sensitivity and specificity were 58.5%, 95.3%; 66.7%, 95.4%;
56.6%, 95.3% for the radiologists in the entire group, SAH group
and non-SAH group, respectively. The neurosurgeons had a
patient-level sensitivity and specificity of 66.0%, 93.9%; 80.0%,
83.3%; and 62.8%, 94.6%. The radiologists had higher positive
predictive value (PPV) in the SAH group than the non-SAH
group (p < 0.001), and vice versa for negative predictive value
(NPV) (p < 0.001), which demonstrated the additional value of
SAH for diagnosis of IAs9 (Supplementary Table 3). The micro-
averaged lesion-level sensitivities were 50.3%, 54.8%, and 49.1%
for radiologists and 54.2%, 64.3%, and 51.8%, respectively, for
neurosurgeons in the three groups. For the model, it had higher
patient-level sensitivity (73.6% (p= 0.037 and 0.334, compared
with radiologists and neurosurgeons, respectively), 80.0% (p=
0.636 and p > 0.999) and 72.1% (p= 0.056 and 0.293)) and NPV
(95.3% (p= 0.370 and 0.568), 88.9% (p= 0.930 and p > 0.999),
and 95.7% (p= 0.244 and 0.537)) (Fig. 2 and Supplementary
Table 3). Further, the model had a comparative lesion-level
sensitivity of 60.6% (p= 0.107 and 0.379), 64.3% (p= 0.506 and
>0.999) and 59.6% (p= 0.141 and 0.329). In general, our model
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Fig. 2 Comparison of the performance of the model and the radiologists/neurosurgeons in Internal cohort 4 and LYG cohort. A two-sided Pearson’s
chi-squared test or Fisher exact test was used to evaluate the differences between the model and the radiologists and neurosurgeons. a Performance in
Internal cohort 4. The model had higher patient-level sensitivity than that of the radiologists (χ2= 4.337, p= 0.037) and comparative to neurosurgeons
(χ2= 0.934, p= 0.334). b Performance in external LYG cohort. Similar results can be found, i.e., that the model had a higher patient-level sensitivity than
those of the radiologists (χ2= 5.219, p= 0.022) and neurosurgeons (χ2= 4.347, p= 0.037), and the specificity (χ2= 140.346, p < 0.001 for the
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model. ACC accuracy, NPV negative predictive value, PPV positive predictive value. *0.01≤ p < 0.05; **0.001≤ p < 0.01; ***p < 0.001.
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had slightly higher patient-level sensitivity and NPV but without
significant differences in the entire group, SAH and non-SAH
subgroups, except for the patient-level sensitivity in the whole
group for radiologists (significantly higher, p= 0.037), whereas
the specificities were significantly lower than human clinicians (p
< 0.001). Compared with the radiologists, the model showed
superiority at a pre-specified 5% margin for patient-level
sensitivity in the entire group and non-SAH subgroup, non-
inferiority for patient-level sensitivity in the SAH subgroup and
NPV in the entire group and non-SAH subgroup. Compared with
the neurosurgeons, the model showed non-inferiority at a pre-
specified 5% margin for patient-level sensitivity and NPV in the
entire group and non-SAH subgroup. The mean diagnosis time
per examination micro-averaged across radiologists and neuro-
surgeons were 30.1 s (95% CI: 29.2–31.0 s) and 22.4 s (95% CI:
21.1–23.6 s), respectively. While the model took 18.2 s (95% CI:
17.9–18.4 s) per case and was significantly faster than the
radiologists (p < 0.001) but was comparable to the neurosurgeons
(p= 0.818). Similar results were achieved in LYG data set, the
external cohort. Compared to clinicians, the model demonstrated
an improvement in patient-level sensitivity with superiority or
non-inferiority at a pre-specified 5% margin. The micro-averaged
diagnosis time was 27.1 s (95% CI: 26.3–28.0 s) and 25.7 s (95%
CI: 24.1–27.3 s) for radiologists and neurosurgeons, respectively.
The model took 19.6 s (95% CI: 19.3–20.0 s) per examination,
which was significantly faster than radiologists (p= 0.001) and
comparative to neurosurgeons (p= 0.301).

Clinical application in the work-up of AIS in emergency
department. The results above demonstrate that our model had a
higher lesion-level and patient-level sensitivity than the clinicians,
which may have the potential for complementary implementation
in clinical practice. Inspired by this finding, we wondered whether
this model could work well when excluding the control cases to
reduce workload in a specific clinical setting. The newly published
guideline has strongly recommended CTA (with CT Perfusion)
for AIS patients (Class I; level A) for selecting candidates for
mechanical thrombectomy15. Radiologists are expected to detect
stenotic and occlusive lesions and, as a result, they often overlook
aneurysms. Intravenous thrombolysis is efficacious and safe for
AIS patients, while it might increase risk of aneurysm rupture in
some reports32,33. Therefore, radiologists should also pay special
attention to the presence of IAs in this setting. So we endeavor to
determine whether our model has the potential to apply to this
population in excluding patients without IAs with high con-
fidence, so that high-risk patients with IAs could be focused on
more intensively. We enrolled another 333 consecutive patients
from the emergency department of Jinling Hospital who had
undergone emergent head CTA examination from 1 January 2019
to May 31, and from 1 September to 31 December 2019, and were
suspicious for AIS (14 patients containing 16 IAs) (Internal
cohort 5). The results demonstrate that our model had a speci-
ficity of 89.7%, moderate patient-level sensitivity of 78.6%, and
NPV of 99.0%. From this result, we can assume that, with the
triage of the model, 86.8% of patients were predicted as negative,
among which 99.0% predicted-negative cases were true-negatives,
and the other 13.2% were predicted as a high-risk group of having
aneurysm(s). Therefore, radiologists can focus on these patients
with more-intense attention in order to improve workflow and
reduce workload (Fig. 3).

On the other hand, the 1.0% FN patients cannot be ignored.
In this experiment, five aneurysms in three patients were
missed. Three missed aneurysms were smaller than 4 mm and;
three were located in MCA, and the other two were located in
the ICA.

Discussion
In this study, we developed and propose for clinical use a specific
DL model to automatically predict and segment IAs in digital
subtraction bone-removal CTA images and conducted a com-
prehensive translation study into the clinical scenarios to see the
influence of occult cases, image quality, and manufacturers, which
indicated the model’s high tolerance. The validation process in
the simulated real-world scenarios demonstrated that the model
had higher patient-level sensitivity and lesion-level sensitivity
than radiologists and neurosurgeons. Inspired by this, we further
validated the model in the suspected AIS clinical scenario, which
demonstrated that the model could exclude IA-negative cases
with high confidence (99.0%) and help prioritize the clinical
workflow to reduce the workload so that the radiologists could
focus on high-risk patients. The study had a complete workflow
of development and validation procedures from laboratory to
real-world settings for clinical application. Implementation stu-
dies are warranted to develop appropriate and effective radi-
ologists’ alerts for the potentially critical finding of IAs and to
assess their impact on reducing time to treatment.

There are several reasons contributing to the complexity of the
IAs detection task. First, arterial visualization of CTA images is
easily affected by the enhanced veins. Second, the prevalence of
IAs in the general population and the SAH patients is sig-
nificantly different (2–3% vs. 85%)2,34. Third, the IAs detection
procedure includes two steps for clinicians, the first step is to
identify cerebral arteries and then to recognize abnormal dilation
(aneurysm), which is different from diagnosing solid lesions such
as lung cancer35, retinal diseases18, and thyroid cancer19. The
peculiarity of head CTA has resulted in little efforts that apply
supervised learning to IA classification and detection. Because of
these reasons, CAD of CTA to automatically detect IAs has been
rarely reported, and only two studies exist in the literature24,25.
The lack of a reference standard and external validation data or
focusing only on non-ruptured aneurysms ≥3 mm limited the
generalization and further application of their models in the
clinical setting. In order to solve these issues, we enrolled a large
number (n= 1177) of CTA cases for training the specific
designed DL model for high robustness, which had been verified
by DSA, the gold standard for IAs diagnosis, especially for small
aneurysms. Besides, we collected external datasets from other
hospitals for validation of generalizability. Other factors that
influenced the model performance were also taken into con-
sideration, including image quality, occult IAs, and different
manufacturers. Our study also highlights the potential clinical
application of the model in a suspected AIS setting, for which
head CTA is recommended and the results demonstrated that the
model could reduce radiologists’ workload by triage. With all
these efforts, our work provided a relatively complete and inno-
vative insight into the development and validation of the model
for automatic prediction and segmentation of IAs.

Several approaches were adopted to improve model perfor-
mance. First, the proposed model was built based on the U-Net30,
a well-proven network structure that has been widely used in
medical image segmentation. Second, we used the Basic Block
instead of the stacked convolution layer, thus the performance of
the deep conventional network was boosted by the residual
connection28. Last, the dual attention block29 was employed to
enforce the network to focus on the informative region and fea-
tures. We also compared the performance of the model to that of
the most frequently employed 3D U-Net36 using the same
training and testing data (Internal cohort 1), and our model had a
significantly higher performance (Supplementary Table 4).

Another strength of our proposed model is that all CTA studies
in the training and, some of the internal and external validation
cohorts were demonstrated by DSA results, which guaranteed the
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ground truth of the cases. Although inter-grader variability is a
well-known issue in many settings including IAs diagnosis in
CTA11,12,37,38, human interpretation is still used as the reference
standard in some studies22–25. Some structures, such as the
infundibula, might otherwise be misdiagnosed as aneurysms.
Unambiguous interpretations, which are called noisy labels can
lead to an obviously biased performance of the model39,40.
Therefore, it is necessary and urgent to use DSA, the gold stan-
dard for IAs detection in machine learning based CAD studies.

We also collected consecutive CTA images from other medical
centers to test the generalizability of this AI tool. It is challenging
for the model to achieve an excellent performance as the pre-
valence of patients with aneurysms in some cohorts was quite low
and the CTA data in the validation sets were generated by mul-
tiple manufacturers that were different from the training set.
Consequently, we have demonstrated that different manu-
facturers had an impact on the model’s performances. Generally,
our model has the potential to overcome some difficulties in the
clinical practice of aneurysm detection, including a large number
of diagnostic errors, substantial waste of resources, and ineffi-
ciencies in the workflow41,42. Given these model results, inter-
preters have the option to take the model results into
consideration or disregard it based on their own judgment. With
this approach to medical imaging, the model offers the visualized
results that show the presence and location of the predicted IAs
on CTA images at slice-level, in a fashion similar to clinical
practice, which can be helpful to handle the results of the model
when the results are different from radiologists. As a result, an
interpretable representation is particularly useful in difficult and
ambiguous cases. Such cases are commonly found in clinical
practice and even specialized neuroradiology practitioners feel
those difficult to detect.

Even though we have demonstrated high performance of the
model, and the model can be run in real-time within or across
entire hospital systems, we have to note the adverse effects on
radiologists’ workload and behaviors. For example, radiologists
must respond to the FP predictions, which may result in
increasing fatigue of radiologists and blunt human responsiveness
to TP predictions by the model. In contrast, we have to avoid the
unfavorable result of clinician overreliance on automated systems.
On the other hand, there were still some visible aneurysms that
were ignored by the model, such as those located in the ICA and
MCA or those images generated by other manufacturers, and tiny
aneurysms, to which radiologists must pay close attention when
augmenting their interpretation with the tool.

The limitations of our study mainly lie in the relatively small
sample of positive cases in the validation cohorts, which cannot
be avoided because of the relatively lower prevalence of IAs in
different clinical settings and hospitals. The second limitation is
the data curation process, where CTA data with arteriovenous
malformation/fistula (AVM/AVF) and head trauma were exclu-
ded. This means the algorithm may not perform as well for
studies with subtle findings that a majority of radiologists would
identify. Third, the performance of radiologists augmented by the
model was not discussed in this study, as the process of device
approval has not started yet. However, we can assume that the
augmented human performance would be better than that with-
out augmentation, which has been shown in one study by Park
et al.24. Fourth, the model’s patient-level sensitivity was not
satisfying in some cohorts and different manufacturers can
impact the performance of the model, so more-diverse training
data may be required. Finally, we did not conduct a prospective
multicenter controlled experiment to validate the model in clin-
ical scenarios.

Suspected AIS patients (n = 14 patients with IA in 333 cases)

Predicted negative cases

Predicted positive cases

Without the triage of the model With the triage of the model

99.0% True negative1.0% False negative

High risk population

100%

Work load

IA positive cases

IA negative cases

13.2% 86.8% Low risk population

13.2%

25.0% True positive

Fig. 3 Impact of the proposed model on clinical practice for patients with suspicion of AIS in the emergency department. In the cohort of patients with
suspected AIS (Internal cohort 5), who were prescribed to perform head CTA examination, 86.8% patients diagnosed as aneurysm-negative cases by our
model, among which 99.0% were true-negative, demonstrating high confidence in identifying negative cases by our model. As a result, only 13.2% of
patients were categorized as high-risk, to whom the radiologists can pay more-intense attention and reduce their workload in detecting aneurysm in AIS
patients. AIS acute ischemic stroke, IA intracranial aneurysm.
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Notwithstanding these concerns, our proposed specific DL-
based model for automated detection and segmentation of IAs
had higher patient-level sensitivity and lesion-level sensitivity
compared with radiologists and neurosurgeons, and it could
reduce their workload. Several aspects of clinical effectiveness
should be measured and tracked, including patient outcomes and
costs. Therefore, it is a worthwhile venture to continue con-
siderations aimed at optimal integration of the model within the
routine radiology workflow in order to leverage the com-
plementary strengths of the DL model with the clinician’s Gestalt
and experience.

Methods
Ethics and information governance. This retrospective study was approved by the
Institutional Review Board of Jinling Hospital, Medical School of Nanjing Uni-
versity, with a waiver of written informed consent. Only de-identified retrospective
data were used for research, without the active involvement of patients.

Data. We performed a retrospective, multicohort, diagnostic study using raw cross-
sectional digital subtraction head CTA image sets from four hospitals in China
(Jinling Hospital, Tianjin First Central Hospital, Lianyungang First People’s Hos-
pital, and Nanjing Brain Hospital). As listed in Table 1 and Supplementary Table 1,
eight cohorts were employed to devise and validate the model regardless of
aneurysm rupture status.

Internal cohort 1 encompassed patients who underwent CTA examinations and
were subsequently verified by cerebral DSA within 30 days in Jinling Hospital,
Nanjing, China from 1 June 2009 to 31 March 2017. The data were then shuffled
and separated into training/tuning/testing sets. The tuning set consisted of 100
cases (50 cases with aneurysms and 50 non-aneurysm controls), and the testing set
had 150 cases with 50% cases having IAs. The tuning set was used to evaluate
model performance at the end of each epoch during training and for hyper-
parameter optimization, and the testing set was a held-out set of images used for
evaluation of the trained models, never used by the algorithm during training or
validation.

For internal validation sets, consecutive patients undergoing CTA examinations
verified by DSA from 1 April 2017 to 31 December 2017 in Jinling Hospital
(Internal cohort 2) were used for internal validation. Consecutive patients
undergoing CTA examinations verified by DSA from 1 January 2018 to 31 May
2019 (Internal cohort 3) were collected for validation of the effect of image quality.
Patients who underwent head CTA without DSA restraints from 1 June 2019 to 31
August 2019 in Jinling Hospital (Internal cohort 4) were included for simulated
real-world validation and human-model comparison. Patients who were suspicious
for AIS from 1 January 2019 to 31 May and from 1 September to 31 December
2019 (Internal cohort 5) were included for the function validation of whether the
confident screening of aneurysm-negative cases can reduce radiologists’ workload.

For external validation, DSA-verified consecutive eligible CTA cases from 1
January 2019 to 31 July 2019 in Nanjing Brain Hospital (NBH cohort) were
enrolled for the effect validation of external data. Consecutive eligible CTA cases
from Tianjin First Central Hospital were included for validation of the effect of
different manufacturers in 2013–2018 (TJ cohort) to the model, which contained
three different manufacturers including GE, Siemens and Toshiba. Consecutive
eligible CTA cases from 1 August 2018 to 30 September 2019 in Lianyungang First
People’s Hospital (LYG cohort) were enrolled for simulated real-world validation
and human-model comparison (Supplementary Table 1).

All CTA images sourced from four hospitals were in Digital Imaging and
Communications in Medicine (DICOM) format. Five multidetector CT scanners
(SOMATOM Definition, SOMATOM Definition Flash, and SOMATOM
Definition AS+, GE Revolution CT, Toshiba Aquilion ONE) were used to generate
source CTA images and all images were processed on a workstation (Syngo 2008G;
Siemens) with the bone voxels removed by software (Neuro DSA application) in
the core laboratory. The bone-removed DICOM images were used for annotation
and training of models.

For patients who underwent CTA, verified by DSA, the interval was <30 days. A
dedicated curation process was only conducted in the training data set (Internal
cohort 1) for high-quality images; the exclusion criteria were as follows: (a) patients
who underwent DSA before head CTA; (b) patients with >30-day interval between
CTA and DSA; (c) patients who had surgical clips, coils, catheters, or other surgical
hardware in the head; (d) patients with AVM/AVF, Moyamoya disease, arterial
occlusive diseases, and other vasculopathies that affected the structure of the
intracranial vasculature; (e) patients with incomplete image data, poor image
quality, and unavailable images; (f) patients with IA on DSA but undetectable in
CTA images. The control group included those who underwent CTA and DSA; all
images were reviewed and were free of abnormal cerebral vasculopathies. Patients
with infundibular dilations and vascular stricture lesions were also included as
controls considering the negligible influence. Supplementary Fig. 2 shows the
flowchart of this study.

In the validation cohorts with DSA verification, we only excluded patients who
met exclusion criteria (a, b, c, e) and those with AVM/AVF. This latter
vasculopathy was obvious to detect with a low prevalence and had a morphological
influence on the intracranial arteries. This way we tested the applicability of the
proposed model in a real-world clinical scenario. In those without DSA
verification, we excluded patients who met exclusion criteria: (c, e), and those with
AVM/AVF.

Radiologist annotations. The presence and locations of IAs in each patient were
determined by DSA (the gold standard), if available. Specifically, the spatial reso-
lution of cerebral CTA was inferior to that of DSA, therefore the locations of IAs
on CTA were reviewed by three specialized neuroradiologists (Z.S., S.L., and C.S.Z.
with 3, 8, and 13 years experiences in neuroradiology interpretation, respectively)
with reference to the DSA images to establish the final ground truth. The observers
were instructed to exclude CTA of poor quality and incomplete images that were
not sufficient for diagnosis as well as CTA cases that were post-procedure.

For the patients without DSA verification, two specialized neuroradiologists (C.
S.Z. and S.L.) had access to all the DICOM series, original reports, and clinical
histories, as well as previous and follow-up examinations during interpretation to
establish the best possible reference standard labels (the silver standard) and they
were instructed to exclude CTA of poor quality. In the case of disagreement
between the two observers, such as small aneurysms and infundibula, consensus
was reached in a joint reading with the assistance of a senior neuroradiologist (L.J.
Z. with 19 years of neuroimaging experience) and then the majority vote of three
radiologists established reference standard labels.

After the explicit locations of IA for all examinations were determined, one
neuroradiologist (Z.S.) annotated the IA on bone-removal CTA of DICOM series
pixel-wise with Mimics software (Version 16.0). The neuroradiologist had access to
all the DICOM series and the final standard to identify the accurate location of IAs
on CTA. The identified aneurysms were manually segmented on sections that
contained IAs on bone-removal CTA.

Model development. In this study, we developed a 3-dimensional (3D) CNN
called DAResUNet for the segmentation of IAs from digital subtraction bone-
removal CTA images to evaluate the presence and locations of aneurysms. DAR-
esUNet is a CNN with an encoder–decoder architecture similar to 3D U-Net30,
which contains an encoding module (encoder) for abstracting contextual infor-
mation and a symmetric decoding module (decoder) for expanding the encoded
features to a full-resolution map with the same size and dimensionality as the input
volume. We adopted residual blocks28 to replace the original convolution blocks of
U-Net to ensure stable training when the depth of the network was significantly
increased. Besides, dilated convolutions were used in the top layer of the encoder to
enlarge the receptive field of the network, as we only performed downsampling
three times. To enhance the performance of the network by exploring long-range
contextual information, we embedded a dual attention29 module between the
encoder and the decoder (Fig. 1a).

The size of the input volume of the DAResUNet was 80 × 80 × 80, which was
large enough to enclose the majority of IAs. 3D image patches with the above size
were randomly sampled from the entire CTA volume during training. To balance
the number of training samples containing and not containing aneurysms, sampled
patches had a 50% probability to contain an aneurysm. Before patch sampling, data
augmentations such as rotation, scaling, and flipping were applied to CTA scans.

Before reaching the network, inputs were clipped to [0, 900] Hounsfield units
(Hu) and then normalized to [−1, 1]. The network was trained to optimize a
weighted sum of a binary cross-entropy loss and a Dice loss. The Adam optimizer
was used by setting the momentum and weight decay coefficients to 0.9 and 0.0001,
respectively. We employed a poly learning rate policy, where the initial learning

rate is multiplied by 1� iter
total iter

� �0:9
after each iteration. The initial learning rate

was 0.0001 and the number of training epochs was 10043. In each epoch, we first
selected 600 patients’ images randomly from the training set, and then 100 patches
including positive and negative samples were randomly cropped from each
patient’s image. In total, about 60,000 patches were used to train the model in
each epoch.

In the inference stage (Fig. 1b), the segmentation prediction of the whole
volume was generated by merging the prediction of uniformly sampled patches.
Two adjacent patches may have 1/8 overlap, in other words, the strides along the
three axes were all 40. For each voxel, we used the highest probability from all
enclosing patches as its final prediction. In order to detect IAs in some low-contrast
images clipped by the default window interval of [0, 900], another two intervals of
[0, 450] and [−50, 650] were used to normalize the source images. The setting was
automatically selected according to the brightness distribution. Given a bone-
removal CTA image, a threshold value such as 150 Hu was used to find the initial
area of vessels and then the maximum connectivity area was kept as the final region
of vessels. Histogram of the brightness of voxels in the region was analyzed to find
suitable clipping interval. We counted the distribution of three intervals including
[0, 200], [200, 300], and [300, 500], which corresponded to clipping intervals of [0,
450], [−50, 650], and [0, 900], respectively. Finally, the clipping interval
corresponding to the dominated distribution interval was selected to normalize the
source images.
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Image quality dependence of the model performance. Image quality was rated
using multiplanar reconstructions, maximum intensity projections, and volume-
rendered reformatted images31. Qualitative image scoring was performed inde-
pendently by two neuroradiologists (Z.S. and S.L.) according to the degree of noise,
vessel sharpness, and overall quality. In case of disagreement between both readers,
consensus was reached in a joint reading to determine the final image quality score.
CTA image quality was rated on a four-point scale.

Human-model comparison experiment. It is relatively easier to develop a DL
model in a curated experimental environment than applying it in an ethical, legal,
and morally responsible manner within a real-world healthcare setting. Therefore,
we designed a validation process that simulated the real-world clinical procedures
by applying the model in Internal cohort 4 and LYG cohort, which highlights the
true context of the full breadth of CT scanning presented to clinicians from real-life
clinical practice.

We performed a diagnostic accuracy study comparing performance metrics of
radiologists with different years of experiences and the model. Six board-certified
radiologists (two resident radiologists, F.X. and Y.X. with 4 years of working
experience; two attending radiologists, L.W. and X.L.Z. with 7 years of working
experience; and two assistant director radiologists, J.L. and Y.E.Z. with 11 and 13
years of working experience) and two neurosurgeons (L.L.W. with 10 years of
working experience and L.J.Z. with 15 years of working experience) participating in
the study were asked to interpret the CTA images and identify the presence of IAs.
None of the six radiologists and two neurosurgeons were involved in the procedure
of determining the location of IA as the reference standard. The clinicians read all
the CTA images from Internal cohort 4 and LYG cohort. Acquired CTA image
series were manually transferred to a dedicated workstation for review (Multi-
Modality Workplace; Siemens Healthineer). CTA images were generated with a
workstation (Syngo 2008G; Siemens) with the bone voxels removed by software
(Neuro DSA application). The clinicians were blinded to clinical data as well as
reference standard labels and independently analyzed all cerebral CTA images by
using source images, maximum intensity projections, multiplanar reformations,
volume-rendering reformatted images and target vessel reformation to determine
the presence and locations of aneurysms, a way that simulates the real procedures
of clinical practice. They were allowed to adjust, rotate, and reformat 3D images at
the workstation to optimally view the presence and location of an individual
aneurysm, while the model only used the bone-removal source images to generate
IA predictions. They read independently in a diagnostic reading room, all using the
same high-definition monitor (1920 × 1200 pixels) displaying CTA examinations
on the dedicated workstation (Multi-Modality Workplace; Siemens Healthcare).

Statistical analysis. Quantitative variables were expressed as mean±SD if nor-
mally distributed, while median and inter-quartile range was used when non-
normally distributed data. Categorical variables were expressed as frequencies or
percentages. The segmentation model detects the potential aneurysm lesions in the
CTA image data. To evaluate the performance of automatic segmentation, results
were expressed as lesion-level sensitivity, Dice ratio, and false-positives per case
(FPs/case); Dice ratio computed the overlap of the ground truth segmentation and
the automatic segmentation. To evaluate the performance of automatic detection,
accuracy, patient-level sensitivity, specificity, PPV, and NPV of the correct display
of patients by the model were evaluated separately in each cohort and the 95%
Wilson score confidence intervals were used to assess the variability. Bonferroni
correction was applied to compare the metrics of the model among different image
quality and manufacturers. The performance of clinicians was calculated in
Internal cohort 4 and LYG cohort. The micro-average of patient-level sensitivity,
specificity, accuracy, PPV, NPV, and lesion-level sensitivity across the radiologists
and neurosurgeons were calculated by measuring each statistic pertaining to the
total number of true-positive, true-negative, FP, and FN results. To assess model
performance against those of the clinicians, we used a two-sided Pearson’s chi-
squared test or Fisher exact test to evaluate whether there were significant differ-
ences in specificity, patient-level sensitivity, accuracy, PPV, NPV, and lesion-level
sensitivity. For comparisons with radiologists or neurosurgeons, the choice of
superiority or non-inferiority was based on what seemed attainable from simula-
tions conducted. The confidence limits of the difference were based on Wald
method with Agresti-Caffo correction. For non-inferiority comparisons, a 5%
absolute margin was pre-specified before the test set was inspected. Statistical
analyses were conducted with SPSS Statistics (version 22.0.0, IBM SPSS Statistics,
Armonk, New York), and R (version 3.5.2, R Foundation for Statistical Computing,
Vienna, Austria). We used a statistical significance threshold of 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available on request from the
corresponding authors [L.J.Z. and G.M.L.]. The data with participant privacy/consent are
not publicly available due to hospital regulation restrictions.

Code availability
The code is available at https://github.com/deepwise-code/DLIA.
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