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CsPrx25, a class Il peroxidase in Citrus sinensis,
confers resistance to citrus bacterial canker
through the maintenance of ROS homeostasis and
cell wall lignification

Qiang Li®', Xiujuan Qin', Jingjing Qi', Wanfu Dou', Christophe Dunand? Shanchun Chen' and Yongrui He'?

Abstract

Citrus bacterial canker (CBC) results from Xanthomonas citri subsp. citri (Xcc) infection and poses a grave threat to citrus
production. Class Ill peroxidases (Clll Prxs) are key proteins to the environmental adaptation of citrus plants to a range
of exogenous pathogens, but the role of Clll Prxs during plant resistance to CBC is poorly defined. Herein, we explored
the role of CsPrx25 and its contribution to plant defenses in molecular detail. Based on the expression analysis, CsPrx25
was identified as an apoplast-localized protein that is differentially regulated by Xcc infection, salicylic acid, and methyl
jasmone acid in the CBC-susceptible variety Wanjincheng (C. sinensis) and the CBC-resistant variety Calamondin (C.
madurensis). Transgenic Wanjincheng plants overexpressing CsPrx25 were generated, and these transgenic plants
exhibited significantly increased CBC resistance compared with the WT plants. In addition, the CsPrx25-overexpressing
plants displayed altered reactive oxygen species (ROS) homeostasis accompanied by enhanced H,0, levels, which led
to stronger hypersensitivity responses during Xcc infection. Moreover, the overexpression of CsPrx25 enhanced
lignification as an apoplastic barrier for Xcc infection. Taken together, the results highlight how CsPrx25-mediated ROS

homeostasis reconstruction and cell wall lignification can enhance the resistance of sweet orange to CBC.

Introduction

Plants possess an intricate repertoire of cell-based defense
systems to maintain their resistance to potentially harmful
pathogensl’z‘ As an immediate pathogen recognition
response, oxidative bursts produced in apoplasts induce
reactive oxygen species (ROS), including superoxide (O, )
and H,O,, as a first line of defense®. The current models of
plant responses include ROS and other radicals as catalysts
of covalent cell-wall modifications®, as signals for cell-death
reactions®® and as regulators of resistance-associated
genes”®, In plants, high concentrations of ROS act to
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strengthen the cell wall and inhibit pathogen growth, which
results in the enhancement of host resistance to pathogens
via hypersensitive responses (HRs) and the modulation of
gene expression via signaling molecules™'°. However, high
accumulation of ROS can be toxic to plant cells by inhibiting
plant growth and development®. Thus, ROS homeostasis
needs to be maintained by antioxidant compounds and
enzymes''. In plant cells, ROS are produced by NADPH
oxidase resident at the cell surface, class III peroxidases (CIII
Prxs, or POD) and their associated pathways, including
photosynthesis, photorespiration, and respiration'>"?, In
addition, the ROS scavengers superoxide dismutase (SOD),
catalase (CAT), and glutathione s-transferase (GST) coop-
erate with ROS producers to maintain ROS homeostasis'*.
Moreover, antioxidant enzyme activities and ROS home-
ostasis are regulated by important plant hormones, includ-
ing jasmonic acid (JA) and salicylic acid (SA)*7Y,
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CIII Prxs are heme-binding proteins that are ubiqui-
tously expressed in all plants and comprise large multi-
gene families'®', For example, a total of 73 CIII Prxs are
present in Arabidopsis thaliana®**3, and 138, 374, 93, 94
and 72 have been found in Oryza sativa®*, Triticum aes-
tivum®®, Populus trichocarpa®®, Pyrus bretschneideri®’ and
Citrus sinensis®®, respectively. CIII Prxs regulate the
loosening of cell walls, lignification and suberization®~>*
and participate in ROS and RNS metabolism during
abiotic and biotic stress responses®~>°, CIII Prxs are key
to the innate resistance of many plants to both fungal and
bacterial pathogens and mediate both passive and active
defense mechanisms®***’, and the efficiency of this
mediation determines their susceptibility to pathogenic
infections®®, Rapid ROS production is one such exemplar
defense strategy that leads to O, generation and H,O,
production in apoplasts. H,O, is tightly regulated by CIII
Prxs as both producers and scavengers depending on
whether the enzyme participates in peroxidative cycles
and hydroxylic cycles, respectively'>'>, In French bean
and tobacco plants, apoplastic CIII Prxs produce ROS and
act as catalysts for covalent cell-wall modifications* and
cell death regulators®. Based on these functions of CIII
Prxs, an increasing number of studies have identified links
between this enzyme and pathogen attack and have
improved host resistance due to CIII Prxs. Radwan and
colleagues reported that bean yellow mosaic virus infec-
tion leads to increased levels of monodihydroascorbate
(MDA) and H,0, in Vicia faba leaves®. Enhanced CIII
Prx and SOD activities have also been observed in leaves
infected by yellow mosaic virus, which suggests that
enzymatic antioxidants regulate ROS generation in
response to pathogen infection®. Increasing the expres-
sion of a peroxidase in plants can effectively increase the
resistance of the plants to disease. For example, the
overexpression of HvPrx40™ and TaPrx10°**' leads to
higher levels of resistance to Blumeria graminis (wheat
powdery mildew) in wheat (7. aestivum).

Xanthomonas citri subsp. citri (Xcc) pathogen is the
causative agent of citrus bacterial canker (CBC), a known
cause of citrus yield losses in an array of citrus-producing
regions*>*®, In our previous studies of the citrus tran-
scriptomes induced by Xcc, we found that CIII Prxs were
differentially expressed and explored the relationship
between CBC and CIII Prxs, and our results revealed
CsPrx25 as a potential gene for improving CBC resis-
tance®®. Here, we performed both a structural and func-
tional characterization of CsPrx25. We also developed
transgenic sweet orange overexpressing CsPrx25 that
displayed enhanced tolerance to CBC due to ROS
homeostasis accompanied by high levels of H,O, and high
lignification of the apoplastic barrier. We herein describe
the utility of transgenic plants overexpressing CsPrx25 for
enhancing CBC resistance.
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Results
CsPrx25 encodes a Clll Prx in citrus

We amplified and sequenced the complete transcript of
CsPrx25 using cDNA from Wanjincheng leaves as the
PCR template. The primary sequences were searched in
PeroxiScan, which is built in RedoxiBase****. The findings
revealed that CsPrx25 belonged to the CIII Prx family
(PeroxiScan accession: PS52045), a subgroup of non-
animal peroxidases (PeroxiScan accession: PS50873). The
CsPrx25 sequence was further analysed by the Blast tool
built in RedoxiBase and CAP*, and the results revealed
that CsPrx25 was clustered with the CIII Prxs sequence ID
8898 in RedoxiBase and Cs3g21730 in CAP due to 100
and 98% sequence similarities, respectively. CsPrx25 is a
344-residue CIII Prx (molecular weight: 38.06 kD; iso-
electric point: 8.55) present on chromosome 3 of C.
sinensis (Fig. 1a) that possesses two introns (1515 bp and
659 bp, respectively) (Fig. 1b). The N-terminus of CsPrx25
contains a signal peptide of 27 residues that is required for
correct trafficking to the apoplast. Throughout the
sequence, eight cysteine residues were detected (C1-C8)
(Fig. 1c), and these form a total of four disulfide bonds
(DB) that maintain thermal stability. These 4-DB struc-
tures are common to almost all plant CIII Prxs and impart
distinction from ascorbate and other plant peroxidases®.
The three-dimensional (3D) structures also showed that
the cysteines that form disulfide bonds are close to each
other (Fig. 1d). To study the evolutive scenario of CIII
Prxs between organisms, the phylogeny of CIII Prxs
orthologs was assessed, and close relationships between
CsPrx25 and AtPrx12 were found (Fig. 1e).

CsPrx25 is an apoplast-localized protein that is induced by
Xcc and phytohormones

To elucidate the localization of CsPrx25, software pre-
dictions and transient expression systems were investi-
gated. CELLO V2.5 displayed extracellular loci values of
2.46, which were larger than other loci (Supplementary
Table S1). The signal peptide detected by SignalP
V4.0 suggests that CsPrx25, as most of the CIII Prxs, is
extracellular. To validate these predictions, the transient
expression of CsPrx25 was assessed with 35S:CsPrx25-
GEP (Fig. 2a). Relative to the controls, both cytoplasmic
and nuclear fluorescence were observed before and after
plasmolysis (Fig. 2b). In epidermal onion cells, CsPrx25-
GFP showed robust cell surface expression (Fig. 2c),
confirming that CsPrx25 localizes to apoplasts.

Pathogens and phytohormones can mediate gene
expression changes that occur in response to plant dis-
ease®™®*’. In Calamondin, CsPrx25 was upregulated, and
maximal expression (~5-fold) was observed at 36 hpi. In
contrast, Wanjincheng CsPrx25 showed little-to-no
expressional changes in response to Xcc infection (Fig.
2d). To detect the effect of drought during in vitro
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Fig. 1 Bioinformatics features of CsPrx25. a CsPrx25 chromosomal locus obtained via CAP. b Exons and introns of CsPrx25 obtained through GSDS
V2.0. The blue rectangles represent untranslated regions (UTRs) at the 5’ and 3’ ends; the yellow rectangles represent exons; and the blank lines
represent introns. ¢ Schematic of the signal peptide and cysteines (C1-C8) of CsPrx25. The disulfide bonds formed by the cysteine residues are joined
by lines. The signal peptide was predicted using SignalP V4.0. d 3D model of CsPrx25 predicted by Phyre V2.0. The cysteine residues are labeled with
red arrows and C1-C8. e Maximum-likelihood (ML) phylogeny of CsPrx25 and its orthologs in several organisms. The ML tree was constructed using
the ClIl Prx sequences of Lycopersicon esculentum (LePrx16), Solanum tuberosum (StPrx14), Nicotiana tabacum (NtPrx15), Mimulus guttatus (MguPrx11),
Fragaria vesca (FvPrx01), Prunus persica (PpePrx02), Populus trichocarpa (PtPrx67), Gossypium raimondii (GrPrx32), Gossypium hirsutum (GhPrx33), Ricinus
communis (RcPrx11), A. thaliana (AtPrx12) and C. sinensis (CsPrx25) with MEGA V7.0 (bootstrap: 500, Poisson model). The clustering of the taxa is
shown through the percentages of trees displaying clusters. The branches are drawn to scale, and each length is representative of the number of
substitutions at each site

inoculation, we tested the inducibility of CsPrx25 under
drought stress. The results indicated that CsPrx25 was
hardly induced by drought in both varieties, which indi-
cated that it was specifically induced by Xcc (Supple-
mentary Fig. S1). CsPrx25 is therefore likely to represent
an Xcc resistance gene. To reveal the molecular
mechanisms through which CsPrx25 mediates disease
resistance, CsPrx25 transcripts were assessed in SA- and
MeJA-treated leaves. The expression of CsPrx25 rapidly
increased in Calamondin in response to SA. In contrast,
CsPrx25 expression was downregulated in Wanjincheng
(Fig. 2e). The expression of CsPrx25 induced by MeJA
increased and then decreased over time in both Wan-
jincheng and Calamondin, and the times to maximal
expression in these varieties was different (Wangjincheng:

24 hpt vs Calamondin: 6 hpt) (Fig. 2f). The different
expression patterns of CsPrx25 induced by phyto-
hormones indicate the different roles of CsPrx25 in disease
resistance signaling in Calamondin and Wanjincheng.

CsPrx25 overexpression in sweet orange induces resistance
to CBC

Transgenic citrus constructs overexpressing CsPrx25
were used to fully dissect the role of CsPrx25 during Xcc
resistance. CsPrx25 was overexpressed using exogenous
expression plasmids driven by the 35S promoter (Fig. 3a).
The generation of four CsPrx25-overexpressing plants
1-4 (OE1-OE4) that successfully integrated CsPrx25 was
confirmed by qRT-PCR, GUS assay and Southern blot.
Through PCR, we detected an 1874-bp fragment that was
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not present in the wild-type (WT) lines (Fig. 3b), and the
GUS assay revealed blue color on the periphery of the leaf
discs (Fig. 3c). As determined by Southern blot, OE1 and
OE2 contain two copies of CsPrx25, and OE3 and OE4
harbor only one copy (Fig. 3d). We confirmed that all
lines expressed high levels of CsPrx25 (550-fold, 589-fold,
401-fold and 395-fold of the WT levels, respectively) by
qRT-PCR analysis (Fig. 3e). According to the Southern
blot assay, a certain positive correlation exists between
copy number and expression (Fig. 3d). With respect to
phenotypes, the four transgenic lines showed normal
growth rates compared with the WT lines (Fig. 3f).
Acupuncture is an effective method for quantitatively
assessing the resistance to CBC and can be used to

accurately quantify CBC resistance, which would allow
the assessment and comparison of resistance between
varieties®>*!, To assess the CBC resistance of CsPrx25-OF
plants, in vitro assays were performed with acupuncture
inoculation at 10 dpi. Smaller lesion sizes, which are
indicative of less-severe symptoms, were observed in the
OE leaves compared with the WT leaves (Fig. 3g). This
finding suggested that Xcc pustules are reduced by
CsPrx25 overexpression, and OE2 showed the highest
levels of resistance. Compared with the WT plants,
OE2 showed smaller lesions (45.8% of the WT levels),
OE1 exhibited comparable lesions (47.0% of the WT
levels), and OE3 and OE4 displayed larger lesions (65.8%
and 68.8% of the WT levels) (Fig. 3h). The disease severity
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Fig. 3 The overexpression of CsPrx25 in sweet orange confers CBC resistance. a Structure of the pLGNe-CsPrx25 plasmid used for the
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decreased by 29.2% (OE3) to 50.7% (OE2) in the OE induced profiles were altered compared with those
plants compared with WT plants (Fig. 3i). Using infiltra-  observed in the WT plants (Fig. 4c). In contrast to SOD,
tion assays after 10 dpi, symptoms of canker (including  CIII Prx and CAT, the overexpression of CsPrx25 did not
pustules) were observed in then WT lines, but these affect the activity of GST compared with that found in the
symptoms were markedly reduced in the OE plants (Fig. 3j). WT plants (Fig. 4d).
We therefore conclude that CsPrx25 overexpression
enhances Xcc resistance in the OE transgenic citrus lines.  CsPrx25 overexpression establishes ROS homeostasis to
confer a more sensitive HR to Xcc infection
CsPrx25 overexpression modulates the enzymatic In response to pathogen infection, ROS production
antioxidant system intricately controls many responses, including apoptotic
Plants possess a well-developed ROS homeostasis  cell death and oxidative damage®®”*. To confirm the
enzymatic system that efficiently regulates the ROS levels, involvement of ROS homeostasis in CsPrx25-mediated
and this system includes CIII Prx, SOD, CAT and Xcc resistance, the levels of H,O, and Oy~ in WT vs.
GST>*2, To assess the changes in the antioxidant system  CsPrx25-OFE lines were assessed. We observed higher
following the induction of CsPrx25-mediated resistance to  levels of H,O, in the OE lines. Of interest, Xcc infection
Xcc, the antioxidant activity in transgenic lines in these  did not significant change the levels of H,O, in WT plants
lines was compared with that in the WT plants at 12 hpi.  but increased these levels in the OE lines (Fig. 5a). This
OE plants with higher resistance (OE1 and OE2) to CBC finding suggested that CsPrx25 overexpression not only
were selected for analysis. The activities of both CIII Prx increased the levels of H,O, but also reversed the indu-
and SOD were upregulated by CsPrx25 overexpression cible patterns of HyO, during Xcc infection. The levels of
(Fig. 4a, b). The overexpression of CsPrx25 conferred O, also increased in response to CsPrx25 over-
antioxidant defenses and led to the induction by Xcc  expression (Fig. 5b). The cell membrane is first affected by
infection. In contrast to CIII Prx and SOD, the activities of  lipid peroxidation, and MDA is the final product®. A
CAT in OE plants were downregulated, and the Xcc-  spectroscopic analysis of the transgenic and WT plants
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revealed elevated levels of MDA, and these levels were
modestly reduced in response to Xcc infection (Fig. 5c),
which indicate lower levels of damage following Xcc
infection in both the transgenic and WT plants. These
data indicate that Wanjincheng has the ability to sup-
press the oxidative damage caused by Xcc infection, and
this suppression is strengthened by CsPrx25 over-
expression. H,O, is a key mediator of an early HR.
Because CsPrx25 overexpression regulates H,O, mod-
ulation, the immediate question was whether the HR is
also altered in the transgenic plants. To investigate the
relationship between the increased CBC resistance

induced by CsPrx25 and HR, we assessed the HR of the
transgenic plants before and after Xcc infection. The
expression of the HR marker gene, CsHSR203°°~>® was
significantly upregulated in the transgenic plants infec-
ted with Xcc but only modestly increased in the Xcc-
infected WT plants. No obvious changes in the
expression of CsHSR203 were observed between the
transgenic and WT plants in the absence of Xcc infec-
tion (Fig. 5d). We therefore conclude that the transgenic
plants are more sensitive to a HR following Xcc infec-
tion, which increases the early resistance of transgenic
plants to CBC.
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CsPrx25 overexpression enhances lignification as an
apoplastic barrier for Xcc infection

CIII Prxs regulate cell wall lignification, which suggests
a direct role of CIII Prxs on the cell walls of plants®>°~¢*,
To investigate the effects of lignification on Xcc resistance
in transgenic plants, the role of CsPrx25 in lignification
was assessed. The transcript levels of lignin biosynthetic
genes, namely, hydroxycinnamoyl transferase (CsHCT,
CAP ID: Cs1gl14450), cinnamyl alcohol dehydrogenase
(CsCAD, CAP ID: Cs1g20590) and caffeoyl-CoA O-
methyltransferase (CsCCoAOMT, CAP ID: Cs4gl3430),
were elevated in the leaves of the transgenic lines after
mock inoculation and Xcc infection (Fig. 6a—c). These
findings highlight the role of CsPrx25 in lignin bio-
synthesis. All the data were confirmed through lignin
assays, which showed higher values in the transgenic
compared with the WT plants (Fig. 6d). These data
therefore reflect the role of CsPrx25 in the polymerization
of lignin during its biosynthesis and highlight its impor-
tance in CBC resistance through enhanced lignification.

CsPrx25 enhances CBC resistance, and this effect is
associated with ROS homeostasis reconstruction and
lignification

CsPrx25 overexpression confers ROS homeostasis to
the transgenic lines through modulation of the enzymatic
antioxidant system (Figs. 4-5). The levels of lignin were
also higher in the transgenic lines than in the WT plants,
and some lignin biosynthetic genes were more highly
expressed in the transgenic lines (Fig. 6). Based on these
results, we proposed a model to explain how Calamondin
and CsPrx25-OE transgenic Wanjincheng acquired CBC
resistance (Fig. 7). In Calamondin, Xcc infection improves
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Fig. 7 Hypothetical model of the molecular mechanisms
mediating improved CBC resistance through CsPrx25. Increases,
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the levels of CsPrx25, and this effect enhances the H,O,
levels and HR sensitivity and induces lignification,
resulting in CBC resistance. The overexpression of
CsPrx25 in CBC-susceptible Wanjincheng establishes
ROS homeostasis, and higher H,O, levels confer HR
sensitivity in response to Xcc infection. In the transgenic
plants, CsPrx25 overexpression also enhanced lignin
biosynthesis, reinforcing the apoplastic barrier for Xcc
infection. Through these two mechanisms, CsPrx25 pro-
motes CBC resistance.

Materials and methods
Plants, bacteria and growth conditions

All the plants were obtained from the National Citrus
Germplasm Repository. Wanjincheng (C. sinensis) was
used for gene transformations. All the plants were grown
at 28°C in a greenhouse. The Xcc variants were derived
from citrus leaves that are susceptible to natural infec-
tions. The Xcc cultures were grown at 28 °C in peptone-
yeast extract-malt extract containing 1.5% (w/v) b-
glucose.

In silico characterization of CsPrx25

The complete transcript sequence of CsPrx25 was
amplified from Wanjincheng leaves using the primers
Faone (ATGGCAACTGCTTCAGCTTCT) and Rgone
(TTAGATAATCCCAGACCAAGC). PeroxiScan was
used for the family classification of CsPrx25°. Blast tools
built in RedoxiBase®***, CAP*®, CitGVD®* and SMART®*
were used to reconfirm the sequence of CsPrx25 retrieved
by PCR. The chromosomal loci and the locations of exons
and introns were defined using GSDS V2.0°* based on the
genome assembly of C. sinensis in CAP. SignalP V4.0%°
was used for signal peptide predictions, and CELLO
V2.5% was used for cellular localization prediction. Phyre
V2.0°” was used for the 3D assessments of CsPrx25. The
gene, protein and coding sequences (CDSs) of CsPrx25
are shown in Table S2.

Transient expression of GFP-tagged CsPrx25

The coding sequence (CDS) of CsPrx25 lacking a stop
codon was amplified with flanking restriction sites using
the primers Fsc (CGGGGTACCATGGCTGTTCATCAA
CATTATCTGG) (Kpnl) and Rgc (TCCCCCGGGTCAC
TGGTTTGAAATTAAAGGATCT) (Smal), digested,
recovered and cloned into pLGNe-GFEP driven by the 35S
promoter to construct the recombinant plasmid pLGNe-
CsPrx25-GFP. The pLGNe-CsPrx25-GFP  plasmid
encodes a fusion protein composed of CsPrx25 and GFP.
The plasmids were heat-shocked into Agrobacterium
EHA105. The transformed EHA105 was infiltrated into
onion epidermal cells, and the GFP fluorescence signals
were observed at 48 hpi by laser-scanning confocal
microscopy (LSM 510 Meta, Zeiss).
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Treatments with Xcc and phytohormones

The expression of CsPrx25 in excised leaves maintained
in culture plates for 16 h of light and 8 h of darkness was
assessed. Diluted Xcc (OD600: 0.8) was inoculated onto
the leaves at 28°C, and after defined durations, the
expression of CsPrx25 was assessed by qRT-PCR. For
phytohormone assessments, leaf discs were soaked in
10 umol L™ SA or 100 umol L' MeJA and collected for
qRT-PCR assays of exogenous phytohormones. The pri-
mers used for CsPrx25 detection were Frr (CCCCACT
TCGGATTCCAACA) and Rpr (CAACCCCTGTCGGTT
CATCA).

Overexpression vector construction and plant
transformation

For the generation of overexpression lines, full-length
CsPrx25 was PCR amplified using Forc (GGGGTACCA
TGGCAACTGCTTCAGCTTC) and Ropc (CGGGATC
CTTAGATAATCCCAGACCAAGCC) and cloned into
pLGNe to yield the recombinant plasmid pLGNe-
CsPrx25. Wanjincheng shoot transformations were per-
formed using Agrobacterium tumefaciens as previously
described by Li and He*®*°,

Validation of the transgenic lines by PCR and GUS assays

PCR assays were used to confirm the presence of the
transgenic gene with the primers Fopp (CGACACGCT
TGTCTACTCCA) and Ropp (CGGGATCCTTAGATA
ATCCCAGACCAAGCC). GQUS activity was assessed
through histochemical analysis*®*".

Southern blot assay

Total genomic DNA (gDNA) was extracted from the
leaves of the transgenic plants and WT plants using a
CTAB kit (Zoonbio, China). The gDNA was fragmented
using the restriction enzyme EcoRI, and the DNA frag-
ments were separated on a 0.7% agarose gel and trans-
ferred to a Hybond-N" membrane (Amersham, UK). The
NPTII coding gene labeled by digoxin (DIG) was used to
hybridize the membrane-bound DNA (Roche, Switzer-
land). The nylon membrane was then exposed using
nonradioactive probe detection. In the Southern blot
assay, the pLGNe-CsPrx25 plasmid was used as the
positive control.

Assessment of CBC resistance

CBC resistance analyses were performed as previously
described 0%, Briefly, six punctures were made in six
healthy mature leaves of each transgenic line via 0.5-mm
pins, and 1 pL of each Xcc suspension (1 x 10° cfu mL™)
was subsequently inoculated. CBC development was
assessed at 10 dpi, and both the disease severity (DS) and
lesion size (LS) of the diseased spots were used for the
assessment of CBC resistance. The DS was calculated as
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previously described®”’. CBC resistance was further
evaluated through Xcc infiltration assays (1 x 10° cfu mL’
1), and canker symptoms were imaged at 10 dpi.

Biochemical analysis

The activities of CIII Prx, SOD, CAT and GST and the
concentrations of H,O,, Oy, MDA, and lignin were
measured via SinoBestBio assays (Shanghai, China). The
experiments were repeated three times, and the results are
shown as the means + SEs.

RNA isolation, cDNA synthesis and qRT-PCR assay

Miniprep kits (AidLab) were used for RNA isolation,
and cDNA was synthesized using TaKaRa kits. qRT-PCR
was performed using QuantStudio 7. The values were
normalized to the CsActin levels (GenBank accession:
GU911361.1, CAP ID: Cs1g05000) obtained using Factin
(CATCCCTCAGCACCTTCC) and Rpetin (CCAACCT
TAGCACTTCTCC). The qRT-PCR parameters were as
follows: 95 °C for 5 min followed by 40 cycles of 95 °C for
10s and 56°C for 30s. The reaction mixtures (total
volume of 12 uL) contained 50 ng of cDNA, 0.5 uM pri-
mers and 6yl of the PCR mix. The relative gene
expression levels were assessed using the 244CT
method”'. NCBI was used for qRT-PCR primer design
(Supplementary Table S3). The data are presented as the
means from three independent biological repeats.

Statistics

The data were analyzed using SPSS V22. Gene expres-
sion was compared by analysis of variance (ANOVA). The
statistical significance was analyzed by Fisher’s LSD test.
*P<0.05 and **P < 0.01 indicate significant and extremely
significant differences, respectively. The plant lines were
compared using Tukey’s HSD test (P = 0.05).

Discussion

CIII Prxs belong to a plant-specific multigene family
that promotes disease resistance'®**3%, lignification, the
flexibility of cell walls and suberization®”*°. In sweet
orange, 72 CIII Prxs have been identified®®. The expres-
sion of each isoform varies across tissues and can be
influenced by environmental factors, which suggests that
different peroxidase isoenzymes regulate distinct pro-
cesses’”. The distribution of enzymes to either the cell
walls or vacuoles and their destinations reflect their spe-
cific functions®’. In CBC-resistant and CBC-susceptible
varieties, CsPrx25 exhibits altered expression patterns
(Fig. 2d—f), which suggests its role during CBC develop-
ment. The importance of CIII Prxs for the resistance of
plants to pathogenic diseases was identified through
reverse genetics. CIII Prxs mediate innate resistance both
passively and actively®. HvPrx40* and TaPrx10 *>*
enhance the resistance of wheat against wheat powdery
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mildew. Here, CsPrx25 was found to mediate protection
against Xcc pathogenesis, which confirmed its role as a
CIII Prx and further highlighted the importance of this
family in pathogen immunity in sweet orange. We
explored its functional role using overexpression strate-
gies and found that CsPrx25 strongly conferred CBC
resistance to the transgenic plants (Fig. 3g—j).

Oxidative bursts, particularly the production of H,O,
and O, ", are common innate responses in plant cells in
response to pathogen infection®®. As key enzymes for
ROS homeostasis in plants, CIII Prxs have multiple
functions and are proposed to serve as key regulators of
the extracellular H,O, and O,  levels depending on
peroxidative cycles (ROS scavenging) or hydroxylic cycles
(ROS production)’®. Plant defense responses are governed
by the ROS levels and peroxidase-generated radicals,
which mediate cell wall reinforcement, damage repair®®
and apoptotic responses to induce plant resistance®®. In
this study, the molecular mechanisms of CsPrx25 were
explored. Based on our analysis of ROS homeostasis and
enzymatic antioxidant activities in the transgenic plants,
we concluded that CsPrx25 overexpression enhances CIII
Prx activities and leads to a simultaneous improvement in
the HyO, and O, content (Fig. 53, b). In plants, the HR
is directly related to plant disease resistance and repre-
sents the classic response to pathogen infection®. These
reactions lead to both rapid and localized necrosis of the
infected tissues and thus prevent the spread of infec-
tion®**’, H,O, is key to the HR and is related to pro-
grammed cell death (PCD) in infected plants®®. To
investigate the relationship between the CBC resistance
induced by CsPrx25 and the HR, we assessed the HR of
the transgenic plants before and after Xcc infection (Fig.
5d). HSR203 is upregulated by plant HRs and is used as a
marker for the HR levels®®*®, In this study, the links
among CsPrx25 activity, ROS content and HR level were
established. Cell wall lignification was further shown to
mediate CBC resistance, which was also demonstrated in
rice due to the enhancement in Xanthomonas oryzae
resistance conferred by CIII Prx-mediated lignification”.

Due to the evolutionary diversity and functional diver-
sity of CIII Prxs, different studies have drawn different
links between CIII Prx and disease resistance. Increased
LePrx06 makes tomato more susceptible to Pseudomonas
syringae infection. In contrast to CsPrx25, the suppression
of LePrx06 can enhance resistance to this pathogen’.
Long-term studies of the relationship between the ROS
levels and the development of CBC have revealed
increased peroxidase activity and thus a reduced ROS
content. Furthermore, the reduction in the ROS levels was
associated with CBC resistance. These effects parallel the
overexpression of MdATG18a and can enhance resistance
to Diplocarpon mali infection via H,O, scavenging’”.
Cybrids of grapefruit with a kumquat plastid genome
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exhibit increased CBC resistance through an early upre-

gulation of ROS-controlling genes upon Xcc infection”®.

These findings illustrate potential links between ROS
homeostasis mediated by plastid ROS-controlling genes
and Xcc resistance. However, this study revealed that
CsPrx25 is an apoplast-localized enzyme rather than a
plastid enzyme (Fig. 2b, c), and this knowledge expands
the list of ROS-controlling enzymes that can upregulate
CBC resistance.

In this study of CsPrx25, regulation of the ROS levels by
CsPrx25 and improvements in HR sensitivity were the
major mechanisms through which transgenic citrus
developed resistance to CBC. Although CsPrx25 over-
expression greatly improved the resistance of Wanjinch-
eng to CBC, CsPrx25-overexpressing Wanjincheng cells
were still not as resistant as Calamondin cells, which
might be due to the fact that Calamondin also has other
mechanisms to maintain an even higher level of CBC
resistance. Anyway, this study explores new insights into
the mechanisms of CIII Prxs in CBC resistance and pro-
vides potential clues for breeding CBC-resistant citrus.
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