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Abstract

Background: Human umbilical cord mesenchymal stem cells (HUC-MSCs) present in the umbilical cord tissue are
self-renewing and multipotent. They can renew themselves continuously and, under certain conditions, differentiate
into one or more cell types constituting human tissues and organs. HUC-MSCs differentiate, among others, into
osteoblasts, chondrocytes, and adipocytes and have the ability to secrete cytokines. The possibility of noninvasive
harvesting and low immunogenicity of HUC-MSCs give them a unique advantage in clinical applications. In recent
years, HUC-MSCs have been widely used in clinical practice, and some progress has been made in their use for
therapeutic purposes.

Main body: This article describes two aspects of the clinical therapeutic effects of HUC-MSCs. On the one hand, it
explains the benefits and mechanisms of HUC-MSC treatment in various diseases. On the other hand, it summarizes
the results of basic research on HUC-MSCs related to clinical applications. The first part of this review highlights
several functions of HUC-MSCs that are critical for their therapeutic properties: differentiation into terminal cells,
immune regulation, paracrine effects, anti-inflammatory effects, anti-fibrotic effects, and regulating non-coding RNA.
These characteristics of HUC-MSCs are discussed in the context of diabetes and its complications, liver disease,
systemic lupus erythematosus, arthritis, brain injury and cerebrovascular diseases, heart diseases, spinal cord injury,
respiratory diseases, viral infections, and other diseases. The second part emphasizes the need to establish an HUC-
MSC cell bank, discusses tumorigenicity of HUC-MSCs and the characteristics of different in vitro generations of
these cells in the treatment of diseases, and provides technical and theoretical support for the clinical applications
of HUC-MSCs.

Conclusion: HUC-MSCs can treat a variety of diseases clinically and have achieved good therapeutic effects, and
the development of HUC-MSC assistive technology has laid the foundation for its clinical application.
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Introduction

HUC-MSCs are self-renewing and multipotent. They
can continuously proliferate and differentiate under spe-
cific conditions into one or more cell types that consti-
tute human tissues and organs. They affect immune
responses and can be easily harvested, separated, cul-
tured, expanded, and purified. HUC-MSCs retain the
stemness after multiple passages and expansion. The
surface antigens of HUC-MSCs are not prominent, the
rejection of transplanted cells is insignificant, and the
matching requirements are not strict, facilitating their
use in allografts [1-3].

At present, HUC-MSCs are used in the treatment of vari-
ous diseases. They have several distinct properties essential
for their therapeutic applications. (1) Differentiation: the gen-
eration of differentiated cells by HUC-MSCs promotes tissue
regeneration and improves tissue function [4, 5]. (2) Immune
regulation: HUC-MSCs inhibit the proliferation of immune
cells, such as T cells, B cells, and Tth cells; induce the differ-
entiation of macrophages from pro-inflammatory phenotypes
to anti-inflammatory phenotypes; and reduce inflammation
by secreting interleukin-10 (IL-10) and interleukin-4 (IL-4).
Together, these modifications of immune responses facilitate
tissue repair [5]. (3) Paracrine effects: HUC-MSCs promote
tissue regeneration by secreting soluble molecules such as
keratinocyte growth factor (KGF), hepatocyte growth factor
(HGF), epidermal growth factor (EGF), and other cytokines
[5-7]. (4) Anti-inflammatory effect: HUC-MSCs suppress
the secretion of inflammatory factor interleukin-1p (IL-1p),
tumor necrosis factor-a (TNF-«), and interleukin-8 (IL-8),
reducing inflammation and oxidative stress, thus suppressing
cell apoptosis [8, 9]. (5) Anti-fibrotic activity: HUC-MSCs
stimulate fibrosis-related cell apoptosis and the secretion of
HGF and other molecules. The anti-fibrotic function can also
be mediated by the regulation of related signaling pathways
and the promotion of vascular remodeling. (6) Non-coding
RNA regulation: HUC-MSCs can affect the expression of
microRNA (miRNA), long non-coding (IncRNA), and circu-
lar RNA (circRNA), indirectly regulating their target genes
and achieving therapeutic effects [10-12].

Currently, HUC-MSCs are used to treat more than ten
types of diseases, and major therapeutic breakthroughs have
been achieved with these cells. In this review, we will
summarize the progress in the application of HUC-MSCs
during the last 5 years, with the objective of guiding further
research and clinical applications (Fig. 1, Table S1).

Main text

Application of HUC-MSCs in clinical treatment

Application of HUC-MSCs in diabetes and its complications
Diabetes is a group of metabolic diseases characterized
by hyperglycemia resulting from insufficient insulin se-
cretion, impaired response to insulin, or both [13]. Clin-
ically, two types of diabetes are recognized: type 1
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insulin-dependent diabetes mellitus (T1IDM) and type 2
insulin-independent diabetes mellitus (T2DM). T1DM is
typically characterized by a low level of insulin and C-
peptide due to the impairment of islet B cell function,
while T2DM is associated with the reduction in insulin
receptor sensitivity. It has been shown that HUC-MSCs
injected intravenously in diabetic animals can home to
pancreatic islets and differentiate into functional islet-
like cells. These cells affect macrophage polarization
while blocking the activation of NLRP3 inflammasome
and inflammatory factors [8, 14]. These anti-
inflammatory effects improve the course of diabetes. In
diabetic patients, 6 months to 1 year after intravenous
injection of HUC-MSCs, the metabolic index was im-
proved, the level of insulin and C-peptide was increased,
the number of Treg cells was elevated, while glycosylated
hemoglobin, fasting glucose, and daily insulin require-
ment were decreased [15, 16]. HUC-MSCs are safe and
effective in the treatment of diabetes.

Diabetic complications, such as diabetic foot, diabetic
nephropathy, diabetic wound ulcers, and diabetic retin-
opathy, are frequently the primary causes of disability
and death. In the clinical treatment of diabetic foot,
HUC-MSCs could be targeted to the ulcer and increase
the formation of vascular endothelial growth factor
(VEGF) and brain-derived neurotrophic factor (BDNF).
These factors could promote the epithelialization of ul-
cerated tissue by stimulating the release of cytokeratin
19 from keratinocytes and extracellular matrix formation
[17-19]. All treated patients exhibited significant im-
provement in ankle-brachial pressure index, transcuta-
neous oxygen tension, and claudication distance.
Moreover, the density of newly formed vessels increased,
and ulcers healed partially or completely [20]. Based on
these results, HUC-MSCs were suggested to provide an
effective strategy for the treatment of the diabetic foot.

When HUC-MSCs have been applied in the treatment
of diabetic nephropathy, they exerted a therapeutic effect
by reducing the expression of inflammatory cytokines, in-
creasing the number of Sertoli cells, and upregulating the
expression of their proteins and enhancing the expression
of anti-apoptotic proteins in the kidney [21]. Experiments
in diabetic rats documented that blood glucose, blood
urea nitrogen, and 24-h urinary albumin excretion rate
were significantly reduced after the treatment [22]. In a
clinical study, 5 patients aged 30-60 years, with chronic
diabetic non-healing wounds, received HUC-MSC trans-
plantation and were followed up for 1 month. The healing
time and the size of the wound significantly shorten after
HUC-MSC treatment [23], but the mechanism respon-
sible for this benefit was not clear. It may be related to
macrophage polarization; increased secretion of IL-10,
VEGEF, and other cytokines; decreased secretion of IL-6; or
upregulation of certain genes [24, 25]. In animal studies
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Fig. 1 Clinical application and mechanisms of action of HUC-MSCs. This figure depicts the use of HUC-MSCs in the treatment of various diseases
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such as diabetes and its complications, liver diseases, systemic lupus erythematosus, arthritis, brain injury and cerebrovascular disease, heart
diseases, spinal cord injury, respiratory diseases, viral infections, and other diseases

on the treatment of diabetic retinopathy, HUC-MSCs
were induced to differentiate into neurological function
cells in vitro and then transplanted in vivo. With time, ret-
inal microvascular permeability and vessel leakage were
reduced. Moreover, the expression of Thy-1, IL-1f, IL-6,
IncRNA, and myocardial infarction-related transcript
(MIAT) was significantly reduced [26, 27], indicating that
HUC-MSCs represent a promising candidate for applica-
tion in the treatment of diabetic retinopathy.

In summary, HUC-MSCs have the following charac-
teristics: (1) targeting inflammatory tissues and differen-
tiation into functional islet-like cells to block the activity
of inflammasomes and exert anti-inflammatory effects;
(2) targeting the ulcer tissue and promote the release of
cytokines, and then promote the epithelialization of ul-
cerated tissue, eventually resulting in partial or complete
healing of the ulcer; and (3) potential to differentiate

in vitro into functional cells and being transplanted
in vivo, providing a satisfactory therapeutic effect.
Therefore, we believe that when HUC-MSCs are used
therapeutically, they need first to target damaged or in-
flamed tissues, and then differentiate into differentiated
cells or secrete immune regulatory factors. HUC-MSCs
can also be induced in vitro to differentiate into func-
tional cells and subsequently be used for transplantation
to produce adequate therapeutic outcomes.

Application of HUC-MSCs in hepatic diseases

Hepatitis, cirrhosis, and liver cancer are common liver
diseases, and fibrosis is the common pathway underlying
the development of multiple chronic conditions of the
liver. The activation of hepatic stellate cells (HSCs) is a
critical element of the etiology of hepatic fibrosis [28],
which can be inhibited by HUC-MSCs. HUC-MSCs
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suppress the proliferation of HSCs by downregulating
the expression of transforming growth factor-1 (TGF-1)
and Smad3 while increasing the expression of Smad7
[29]. Studies in animal models demonstrated that HUC-
MSCs accelerate the degradation of fiber matrix and
promote the apoptosis of HSCs by increasing the expres-
sion of matrix metalloproteinases (MMPs), particularly
MMP-13 [30]. HUC-MSCs co-cultured with activated
HSCs inhibited their proliferation and induced cell
apoptosis by reducing collagen deposition [29, 30].
Moreover, HUC-MSCs can prevent the activation of
HSCs via paracrine mechanisms, blocking the synthesis
of IL-10 and TGF-a and, thereby, eliminating the inhibi-
tory effect of HUC-MSCs on HSC proliferation and col-
lagen production [31]. Thus, HUC-MSCs appear as an
important regulator of HSC proliferation and apoptosis,
implying that the infusion of HUC-MSCs can delay or
even reverse liver fibrosis and consequent liver diseases.
Besides, HUC-MSC-derived exosomes (HUC-MSC-ex)
could reduce the expression of the NLRP3 inflamma-
some by inhibiting the activation of proteins associated
with this complex and decreasing the level of alanine
transaminase (ALT), aspartate aminotransferase (AST),
and pro-inflammatory cytokines, playing an anti-
inflammatory role [32]. At the same time, HUC-MSCs-
ex could also reduce the infiltration of neutrophils, and
oxidative stress and apoptosis of liver cells in vivo, and
function as an antioxidant protecting the liver against
oxidative damage and ischemia-reperfusion injury [9].
The transplantation of HUC-MSCs had obvious hepato-
protective effects as it significantly improved hepatocel-
lular necrosis and neutrophilic infiltration without
triggering serious adverse reactions or tumor formation
[33]. Therefore, HUC-MSCs may provide new treatment
strategies for liver fibrosis and other liver diseases.

We believe that HUC-MSCs could treat liver diseases
based on the following properties: (1) HUC-MSCs in-
hibit proliferation and promote apoptosis of HSCs,
delaying or even reversing liver fibrosis and fibrosis-
related liver diseases; (2) HUC-MSCs release exosomes
that can reduce the expression of NLRP3 inflamma-
somes and decrease the level of pro-inflammatory fac-
tors, thereby achieving an anti-inflammatory effect; and
(3) HUC-MSCs can reduce the level of ALT and AST,
suppress the infiltration by neutrophils, decline oxidative
stress and apoptosis of liver cells, and protect against
oxidative and ischemia-reperfusion injury of the liver. At
present, initial steps in the field of the application of
HUC-MSCs for the treatment of liver diseases have been
made, but in-depth research on the underlying mechan-
ism of action remains to be performed. For example, the
optimal time for transplantation, the administration
method, and the effective dosage need to be determined.
In addition, side effects of HUC-MSC transplantation
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must be considered. Resolving these issues and obtaining
a better understanding of the biology of HUC-MSCs,
transplantation of these cells will certainly gain a
broader application in the treatment of liver diseases.

Application of HUC-MSCs in systemic lupus erythematosus
Systemic lupus erythematosus (SLE) is an autoimmune
inflammatory disease of the connective tissue involving
multiple organs. SLE affects prevalently young women.
In most patients, traditional therapies for SLE can man-
age the condition but are associated with a high rate of
adverse reactions, such as infection, ovarian failure, ma-
lignant tumors, osteoporosis, and other diseases, ser-
iously affecting the patient’s quality of life. The
immunoregulatory function of HUC-MSCs had been
widely employed for the treatment of various auto-
immune diseases, particularly in cases of severe and re-
fractory SLE that had failed to respond to pharmacologic
therapy, and some beneficial effects have been obtained.

The treatment of SLE by HUC-MSCs is safe and ef-
fective [34]. The overall survival rate of patients treated
with HUC-MSCs is more than 80%, the remission rate
varied among different studies, the recurrence rate was
approximately 20% [35, 36], and BILAG or SLEDAI
score was significantly reduced. In addition, serum levels
of albumin, antibodies, and the complement, as well as
the number of peripheral blood leukocytes, platelets, and
24-h proteinuria level, were all improved [35, 36]. HUC-
MSCs can play a role in the treatment of SLE by inhibit-
ing the proliferation of T cells, increasing the number of
Treg cells, inhibiting the expansion of Tth cells, main-
taining the balance between T helper 1 and T helper 2
cells (Th1/Th2), and decreasing the level of TNF-a and
IL-17 [37, 38]. In addition, certain microRNAs (miR-
NAs) are implicated in immune diseases, and the treat-
ment of SLE by HUC-MSCs upregulated the expression
of miR-153-3p and miR-181a [39, 40]. All these effects
should become the subject of future research.

The findings discussed above point to two possible
mechanisms by which HUC-MSCs can treat SLE: (1) in-
hibition of the proliferation of T and Tth cells, upregula-
tion of Treg cells, maintaining the Th1/Th2 balance, and
decreasing the level of TNF-a and IL-17 and (2) regula-
tion of the expression of certain miRNAs. Several
in vitro and in vivo studies have demonstrated the im-
munomodulatory properties of HUC-MSCs, providing
basic science support for the application of these cells in
clinical practice. Although the current clinical applica-
tion of the research on HUC-MSCs begins to materialize
and shows good prospects, the possibility of excessive
immunosuppression by HUC-MSCs creates the risk for
infection and tumorigenesis. The possibility of this type
of adverse effects necessitates further research and in-
depth discussion.
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Application of HUC-MSCs in arthritis

Arthritis is an inflammatory disease affecting joints
and surrounding tissues. Its etiology is complex and
mainly related to an autoimmune reaction, infections,
and trauma. Traditional treatments do not effectively
solve the problem of the lack of immune tolerance
mechanisms and are burdened by obvious side effects.
The use of stem cells became a new therapeutic strat-
egy for this disease. HUC-MSCs have been shown to
effectively treat arthritis by differentiating into osteo-
blasts [41]; inhibiting the proliferation and promotion
of apoptosis in T lymphocytes; reducing the secretion
of IL-1, IL-6, IL-7, IL-17, and TNF-qa; and suppressing
the inflammatory response [42-44]. After treatment,
the joint function and quality of life were significantly
improved, as documented by the Lysholm score,
WOMAC score, SF-36 scale score, health index
(HAQ), and joint function index (DAS28) [45, 46].

HUC-MSC:s also have a chondroprotective effect, which
is considered to depend on the reduction of inflammation,
which delays cartilage destruction. At the same time,
HUC-MSC:s inhibited the expression of MMP-13, collagen
type X al chain, and cyclooxygenase-2, and enhanced the
proliferation of chondrocytes, while osteoarthritis chon-
drocytes promoted HUC-MSC:s to differentiate into chon-
drocytes [47, 48]. Additionally, HUC-MSCs have anti-
fibrotic properties and may affect the course of arthritis by
the secretion of HGF [6]. It has been documented that the
treatment regimen consisting of a single injection of
HUC-MSCs did not provide a satisfactory outcome, and
in clinical practice, 3-5 rounds of administration of the
cells are generally recommended [49].

In summary, HUC-MSCs can treat arthritis through the
following mechanisms: (1) differentiation into cartilage or os-
teoblasts to repair the cartilage and regenerate the knee car-
tilage; (2) the release of soluble molecules such as cytokines,
growth factors, and immunomodulatory factors to exert an
immunomodulatory effect; and (3) inhibition of the prolifera-
tion of immature dendritic cells (DC) and natural killer (NK)
cells, suppression of cytokine cytotoxicity, induction of
macrophage differentiation from pro-inflammatory M1
phenotype to anti-inflammatory M2 phenotype, and secre-
tion of IL-10 and nutritional factors. These properties of
HUC-MSCs reduce inflammation and promote tissue repair.
In addition, HUC-MSCs can inhibit the proliferation of T
cells and B cells, and the immunomodulatory properties of
HUC-MSCs significantly weaken the progress of osteoarth-
ritis [44]. Therefore, HUC-MSCs have the potential for
broad applications in the treatment of arthritis.

Application of HUC-MSCs in brain injury and
cerebrovascular disease

The incidence of death and disability in cerebrovascular
diseases such as brain injury and stroke is high.
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Traditional drug therapies do not provide satisfying
results, and the sequelae of the damage can be severe,
indicating that an effective treatment for stroke and
other diseases is not available. It has been shown that
the motor and nerve function scores in patients
treated by HUC-MSC transplantation were improved
[50], implying that this therapeutic modality can sig-
nificantly reverse the brain function injury. Animal
experiments demonstrated that HUC-MSC transplant-
ation increased the release of VEGF, stimulated angio-
genesis [51], and produced an anti-inflammatory
effect by reducing the level of inflammatory factors
[52]. Additionally, HUC-MSCs reduced neuronal
apoptosis by increasing the expression of glial cell-
derived neurotrophic factor (GDNF) and BDNF and
reducing the number of hypertrophic microglia/mac-
rophages, thus generating a neuroprotective effect [52,
53]. Intranasal administration of HUC-MSCs or
HUC-MSC-ex to treat brain injury and cerebrovascu-
lar disease had also received a significant amount of
attention in recent years as a noninvasive and safe
treatment [54, 55]. HUC-MSC-ex can inhibit the ex-
pression of inflammation-related genes and pro-
inflammatory factors. Moreover, the infusion of exo-
somes increases myelin formation and decreases glial
hyperplasia. HUC-MSC-ex can regulate the activation
of microglia and astrocytes, reduce the level of TNF-a
and IL-1B, and increase the formation of IL-10,
BDNEF, and glial cell-derived neurotrophic factor [54—
56]. These exosomes produce an anti-inflammatory
effect and enhance nerve function. The methods for
delivering HUC-MSCs for brain injury include lumbar
puncture, arterial and venous infusion, direct injection
into the brain, and implantation on biomaterials [50,
57]. The intravenous injection could lead to most
HUC-MSCs being stranded in the lungs and failing to
migrate to the brain or other organs. The arterial in-
fusion provides a relatively broader distribution in the
organism than intravenous infusion [57, 58]. The
therapeutic effect of the combination of HUC-MSCs
with other drugs or adjuvant therapy produces better
outcomes than a single therapy. For example, HUC-MSC
transplantation combined with minimally invasive
hematoma aspiration for cerebral hemorrhage, or com-
bined with nimodipine for radiation-induced brain injury,
provided results indicating that the therapeutic effects
were superior to those of a single therapy [59, 60].
HUC-MSCs and their exosomes treat cerebrovascular
diseases primarily by inducing an anti-inflammatory ef-
fect through the downregulation of inflammation-related
genes and reduction in the level of pro-inflammatory
factors while promoting the release of VEGF and neo-
vascularization. Moreover, HUC-MSCs and HUC-MSC-
ex increase the level of BDNF and glial cell-derived
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neurotrophic factor, which protect neurons and en-
hance their function. Due to the biological character-
istics of HUC-MSCs and the uniqueness of cerebrovascular
diseases, different transplantation pathways can affect
the number and spatial distribution of HUC-MSCs
that home to the brain parenchyma, thereby affecting
the therapeutic effect of these cells. Therefore, the
route of delivery of HUC-MSCs for the treatment of
cerebrovascular diseases has become the focus of
current research.

Application of HUC-MSCs in cardiac diseases

Heart diseases are the major cause of mortality
worldwide, with approximately 20 million people aged
30-70years dying from the disease every year. At
present, the disease tends to affect younger individ-
uals. The available treatments include heart trans-
plantation, surgical interventions, and pharmaceutical
therapies. Surgical treatment is typically associated
with complications and generally is not recommended
unless the condition is severe. Even if the patients
survive and the condition improves, a long-term
maintenance treatment is necessary. HUC-MSCs offer
a relatively safe and effective alternative therapy for
heart diseases.

HUC-MSCs have been shown to treat and relieve vari-
ous cardiovascular diseases, including myocardial infarc-
tion, heart failure, myocardial ischemia, and myocarditis.
These cells promote cardiac tissue regeneration and
angiogenesis, inhibit inflammation [61], and significantly
reduce infarct size and mortality. Also, transplantation
of HUC-MSCs improves the New York Heart Associ-
ation functional class and the results of the Minnesota
Living with Heart Failure Questionnaire and 6-min walk
test, significantly improving patients’ quality of life [62,
63]. The mechanism of HUC-MSCs’ effects on the heart
is not fully understood yet, but previous studies docu-
mented that HUC-MSCs can have an anti-apoptotic
function by increasing the expression of anti-apoptotic
protein Bcl-2 and decreasing the expression of pro-
apoptotic proteins Bax and pro-caspase-9 [64]. The dif-
ferentiation of HUC-MSCs into cardiogenic cells can be
promoted by the overexpression of NK 2 homeobox 5
(Nkx 2.5) and pygopus family PHD finger 2 (PyGO2)
proteins and the regulation of the p53-p21 pathway [65—
67]. The induced cardiomyocytes can form intercalated
discs with myocytes of the host cell, forming a functional
syncytium and directly participating in the contraction
of the heart. In this manner, the transplanted cells en-
hance the local contractile function of the myocardium,
reduce the necrotic infracted area, and increase ejection
fraction. The long-term follow-up found that the induc-
tion of blood vessel formation was also an essential part
of heart repair after injury [63, 64]. Importantly, HUC-
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MSCs can secrete HGF to exert anti-inflammatory ef-
fects [62]. Interleukins, TNF-a, colony-stimulating fac-
tor, and chemotactic cytokines generated by HUC-MSCs
can inhibit inflammation in the myocardium and reduce
the degree of cardiac fibrosis. HUC-MSCs can affect the
expression of the MMP/TIMP system in myocardial fi-
broblasts through the ERK1/2 pathway, inhibit the pro-
duction of TGF-f that is related to myocyte
hypertrophy, and contribute to the prevention of myo-
cardial fibrosis [68].

HUC-MSCs can also upregulate the level of super-
oxide dismutase (SOD) and glutathione (GSH), reduce
the concentration of malondialdehyde (MDA) in in-
farcted myocardium, and reduce oxidative stress and
extracellular matrix (ECM) remodeling [64]. HUC-MSC
can also indirectly play the role of treating heart diseases
by regulating the expression of miRNA, IncRNA, and
circRNA [10-12].

In summary, HUC-MSCs perform a therapeutic func-
tion in heart-related diseases by the following mecha-
nisms: (1) differentiation into cardiomyocytes to
improve heart function, (2) differentiation into vascular
endothelial cells to promote angiogenesis and blood sup-
ply, (3) improvement of cardiac performance by inhibit-
ing myocardial cell apoptosis, (4) anti-inflammatory and
anti-fibrotic activity through paracrine effects, and (5)
regulating the expression levels of miRNAs, IncRNAs,
and circRNAs involved in cardiac repair. HUC-MSCs
have broad prospects for clinical application in the treat-
ment of cardiac diseases.

However, several issues related to the application of
HUC-MSCs in cardiac therapies remain to be investi-
gated, such as the timing, quantity, and administra-
tion mode of transplanted cells; the mobilization and
homing of the cells; and the safety and long-term
outcomes of cell transplantation. Therefore, in-depth
studies of the specific mechanism underlying the
therapeutic effects of HUC-MSCs for cardiovascular
diseases are necessary to enable the future use of
these cells to treat heart-related diseases and restore
cardiac function.

Application of HUC-MSCs in spinal cord injury

Spinal cord injury (SCI) is a cross-sectional injury of the
spinal cord caused by trauma, inflammation, and other
factors. SCI results in impairment or loss of motor, sen-
sory, and other nerve functions below the site of injury.
Once SCI takes place, particularly in cases of traumatic
injury, the patient should be rescued as soon as possible
to maintain blood volume and prevent neurogenic
shock. After resuscitation, the patient should be given
drug therapy to repair damaged nerve fibers and main-
tain spinal cord stability to prevent further nerve injury.
However, the effects of pharmaceuticals are very limited,
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and the adverse effects of corticosteroids are significant.
Given this backdrop, HUC-MSCs, with their strong pro-
liferation, differentiation, and self-renewal potential,
attracted the interest of scientists. HUC-MSCs represent
a new treatment strategy for spinal cord injury, which is
effective and engenders few side effects. Thus, treatment
with HUC-MSCs is expected to become an alternative
therapy for SCL

Clinical research showed that HUC-MSC treatment of
patients with SCI could restore intestinal and bladder
function and significantly improve sensation, movement,
and self-care ability, as indicated by higher American
Spinal Injury Association scores and daily life activity
scores [69, 70]. Several studies have documented that
timely transplantation of HUC-MSCs effectively treats
SCI by promoting the recovery of nerve function. Re-
peated doses of HUC-MSCs alone or in combination
with human neural stem cells (HNSCs), GDNF, and
hypoxic conditions enhance the outcome of cell therapy
[71-73]. The mechanisms by which HUC-MSCs ameli-
orate the effects of SCI include the inhibition of the
mitogen-activated protein kinase (MAPK) pathway that
is activated after SCI, and reduction in the apoptosis of
spinal cord neurons [74]. HUC-MSCs also decreased the
secretion of inflammatory cytokines IL-6, IL-7, and
TNE-qa, thereby reducing the inflammatory response at
the site of injury [75, 76] and promoting neuronal regen-
eration and reducing the formation of glial scar [73].
However, detailed mechanisms and efficacy need to be
established in large-scale clinical trials.

In summary, HUC-MSCs can treat SCI cord injury
mostly by two mechanisms: (1) reduction of the apop-
tosis of spinal cord neurons and (2) suppression of the
secretion of inflammatory cytokines IL-6, IL-7, and
TNE-a secretion, resulting in the inhibition of the in-
flammatory response at the injured site, promotion of
neuronal regeneration, and reduction in the formation
of glial scars. Although rapid progress has been made in
the use of HUC-MSCs for the treatment of SCI, their
clinical application continues to face many problems.
Future efforts should focus on the standardization of
various HUC-MSC technologies, identification of the
mechanisms of neural repair, a better understanding of
signaling molecules and conduction pathways, and com-
prehensive assessment of different treatment protocols.

Application of HUC-MSCs in respiratory diseases

At present, there are not many instances of the use of
HUC-MSCs to treat the respiratory system. Typical dis-
eases include acute lung injury, bronchial asthma, and
chronic obstructive pulmonary disease. For respiratory
diseases, HUC-MSC treatment significantly elevated
functional scores and increased patient survival [77].
Intrapulmonary infusion of HUC-MSCs can reduce lung
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inflammation and improve lung function through para-
crine KGF. Additional mechanisms leading to the reduc-
tion of lung inflammation include the overexpression of
interleukin-33 (IL-33) and antagonist interleukin-1
receptor-like-1 (IL-1 receptor-like-1), inhibition of pro-
tein extravasation, suppression of the proliferation of
neutrophils, and secretion of inflammatory factors TNEF-
a, IL-6, and macrophage inflammation protein 2 (MIP-
2) [78-81]. The beneficial effect of MSCs on asthma is
achieved mostly by regulating immune responses and
anti-inflammatory activity. Intrapulmonary injection of
MSCs can reduce airway inflammation in asthma by
adjusting the ratio between Thl, Th2, and Tregs cells,
and attenuate airway hyperresponsiveness by inhibiting
the Thl7 signaling pathway [82]. The role of HUC-
MSCs in chronic obstructive pneumonia relies mostly
on the following mechanisms: (1) reduction of airway in-
flammation; inhibition of the secretion of inflammatory
factors such as IL-1B, TNF-a, TGF-f, IL-6, and IL-8; in-
hibition of the oxidative stress caused by inflammation;
and anti-apoptotic signaling; (2) promotion of the secre-
tion of growth factors, such as KGF, stem cell growth
factor, HGF, and EGF; activation of tissue repair; and en-
hancement of lung perfusion; (3) remodeling of pulmon-
ary vasculature and improvement of lung function; and
(4) regulation of lung function through the expression of
miR-410, miR-451, and miR-145 [83-85].

HUC-MSCs have been used in the treatment of lung
diseases for more than 10 years. HUC-MSCs protect
lung tissue primarily through anti-inflammatory and
anti-fibrotic activity, immune regulation, and paracrine
mechanisms. HUC-MSCs also indirectly treat lung dis-
eases by regulating the expression of microRNAs. In
short, these cells provide an important therapeutic effect
and have a wide range of applications in the treatment
of respiratory diseases.

Application of HUC-MSCs in viral infections

A recent study reported the use of HUC-MSCs to
treat the coronavirus disease-19 (COVID-19) [86].
Currently, more investigations are being carried out
in more countries to study the efficacy and the
underlying mechanism. HUC-MSCs were also effective
in restoring impaired alveolar clearance and protein
permeability in patients infected with the H5N1 virus
[87]. HUC-MSCs improved immune reconstitution in
immune non-responders (INRs) and may represent a
new immunotherapy tool for reversing immunodefi-
ciency in HIV-1-infected INRs [88]. In general, HUC-
MSC treatment of viral diseases improves clinical
symptoms by regulating the immune function of the
patients. Importantly, HUC-MSCs are a safe and feas-
ible source of human diploid cells (HDCs) for the
production of antiviral vaccines [89].
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Antiviral therapy utilizing HUC-MSCs has provided
certain therapeutic effects, but this application of HUC-
MSCs only begun to be studied. Understanding involved
mechanisms or their combinations, adverse reactions,
usage and dosage, and treatment methods is minimal.
Clinical treatments should proceed with extreme cau-
tion, and scientific research needs urgently to be
developed.

Application of HUC-MSCs in other diseases

HUC-MSCs reduced the incidence of the graft versus
host disease (GVHD) and relieved its clinical symptoms
by immunomodulatory effects. Specifically, HUC-MSCs
increased the number of B lymphocytes, Treg cells, and
the Th1/Th2 ratio and decreased the number of NK
cells in patients affected by GVHD [90]. In autistic pa-
tients, HUC-MSC transplantation significantly increased
the level of HGF, BDNF, and nerve growth factor (NGF)
in cerebrospinal fluid [91]. In patients with femoral head
necrosis, HUC-MSCs significantly reduced the necrotic
volume of the femoral head and increased the oxygen re-
lease index. After intra-arterial delivery, HUC-MSCs mi-
grated to the necrotic area of the bone and differentiated
into osteoblasts, providing a therapeutic effect [92]. In
patients with long-term infertility due to premature
ovarian failure, HUC-MSC therapy preserved ovarian
function by increasing estradiol concentration, improv-
ing follicular development, and increasing the number of
sinus follicles [93]. In patients affected by inflammatory
enteritis, treatment with HUC-MSCs allowed a signifi-
cant reduction in corticosteroid dosage, which might be
related to regulating the expression of IL-6, IL-7, and IL-
10 [94]. In Alzheimer’s disease, HUC-MSCs ameliorated
cognitive dysfunction and cleared the deposits of amyl-
oid B, stimulated the activation of brain microglial cells,
reduced the level of pro-inflammatory cytokines, in-
creased anti-inflammatory cytokines, and suppressed
neuroinflammation. Together, these changes had an im-
portant effect on the outcome of Alzheimer’s disease
[95]. In multiple sclerosis patients, intravenous infusions
of HUC-MSCs were safe and effective, and no active le-
sions were found on MRI scans of the brain and the cer-
vical spinal cord after a follow-up of 1 year [96]. Thus,
HUC-MSCs have provided satisfactory therapeutic bene-
fits in several diseases, but the theoretical basis of these
effects remains to be established.

Basic research on HUC-MSCs related to clinical
applications

Establishment of an HUC-MSC cell bank

Most of the HUC-MSCs currently used clinically are
provided by stem cell banks that collect, prepare, and
store stem cells on a large scale. Stem cell banks are
also called “Life Banks.” The HUC-MSC cell bank is
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one of a wide variety of stem cell banks. At present,
there are few dedicated HUC-MSC cell banks, and in
most cases, HUC-MSCs are supplied by comprehen-
sive stem cell banks. In 2004, the world’s first stem
cell bank that stored HUC-MSCs was opened in the
UK. The National Institute for Biological Standards
and Control (NIBSC) was responsible for the oper-
ation and storage of embryos, fetuses, adult tissues,
and various stem cell lines, including HUC-MSC
lines. In April 2006, the first Chinese HUC-MSC cell
bank was established in Tianjin, with a storage cap-
acity of tens of thousands of copies. It has established
standardized protocols of stem cell isolation, identifi-
cation, culture, expansion, storage, supporting tech-
nologies, and quality control, and the cell bank
developed the first domestic technical standard for
HUC-MSCs and fulfilled the ISO 9001:2008 quality
management system requirements [97]. In 2011, Dr.
Khushnuma Cooper reported a method for building
an HUC-MSC cell bank and believed that HUC-
MSCs have a wide range of clinical applications [98].
An HUC-MSC cell bank could provide high-quality
stem cell “seeds” from legal sources for the clinical appli-
cation, and many companies and hospitals have the abil-
ity to build HUC-MSC cell banks. However, there are no
uniform quality control standards in stem cell banks,
which will directly affect the outcomes of clinical treat-
ment. This issue represents the biggest problem of stem
cell banks and should be resolved as soon as possible.

Tumorigenicity of HUC-MSCs

The tumorigenicity of transplanted HUC-MSCs, which
will affect the therapeutic effect, is one of the current
concerns. The experiments on tumorigenicity safety
conducted by Jun-Won Yun and coworkers in mice
did not detect tumors related to HUC-MSCs [33].
Also, cultured HUC-MSCs injected into rats did not
form tumors [99]. Yong Wang and collaborators dem-
onstrated that when HUC-MSCs fuse with esophageal
cancer cells, they induce apoptosis and promote the
benign phenotype of cancer cells [100]. HUC-MSCs
stimulate the growth of ovarian tumors through cell-
to-cell communication but can reduce tumorigenesis
after fusion with ovarian cancer cells [101]. HUC-
MSCs can exert an anti-tumor effect also by affecting
transcriptional regulation in leukemia cells. Addition-
ally, HUC-MSCs can enhance the proliferation and
migration of cancer cells [102, 103]. So far, there is
no conclusive proof of HUC-MSC tumorigenicity or
their ability to promote the development of cancer
already present in the organism. These questions can
only be answered by expanding the number of sam-
ples and performing multi-center trials.
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Therapeutic effects of different generations of HUC-MSCs
The therapeutic effects of HUC-MSCs are dependent on
the number of their generations in culture, HUC-MSCs
at less than 10 passages have better cardiogenic differen-
tiation ability, while at passages 11-20, the differenti-
ation towards nerve cells is evidently enhanced [104]. In
addition, CD29, CD44, CD73, CD90, and CD105 are
highly expressed at passages 1 to 16, and CD166 is
highly expressed at passage 2. HUC-MSCs at passages 4
and 16 have a strong potential to differentiate into oste-
oblasts. Therefore, HUC-MSCs at late passages show
stable bone differentiation capacity [105, 106]. In the
treatment of acute liver failure, HUC-MSCs harvested at
different passages show distinct effects. Cells at passage
5 are more potent than passage 10 cells in homing to
the liver, as well as in enhancing proliferation and inhi-
biting apoptosis of liver cells [107]. These findings imply
that cells at different passages may have distinct thera-
peutic effects in various diseases, and selection of an ap-
propriate passage of HUC-MSCs according to the type
of disease may be required to achieve optimal thera-
peutic results. However, no conclusive evidence for the
relationship between the number of cell passages and
disease treatment effects is currently available. To reach
definitive conclusions, the sample size should be ex-
panded, and the principles of evidence-based medicine
should be followed.

Conclusions

Currently, mesenchymal stem cells are a hot research
subject in the field of regenerative medicine. This article
analyzes five functions of mesenchymal stem cells rele-
vant to clinical applications and their therapeutic effects
in eleven types of diseases, including liver and respira-
tory system disorders.

Before 2006, the research of stem cells was mainly di-
rected at the identification of biological characteristics of
stem cells. In 2006, the International Association for Cell
Therapy (ISCT) proposed a unified definition of mesen-
chymal stem cells, which became the identification
standard used worldwide. Only cells that meet the
following three criteria simultaneously can be classified
as mesenchymal stem cells: (1) anchorage-dependent
growth, (2) expression of certain specific antigens
(markers) on the cell surface, and (3) ability to differenti-
ate into adipocytes, osteoblasts, and chondrocytes. In
subsequent years, great progress has been made in the
use of HUC-MSC:s for clinical application. An increasing
number of relevant studies have been conducted, and
the research methods have matured. The comparison of
the therapeutic effects of HUC-MSCs with those of trad-
itional treatments demonstrates that HUC-MSCs not
only improve survival but also significantly ameliorate
various clinical symptoms of the disease, markedly
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improving patients’ quality of life [30]. Since HUC-
MSCs play a therapeutic role from many aspects, and
the pathogenesis of each disease is also different, for a
certain disease, HUC-MSCs may play a part of the func-
tion to achieve the therapeutic effect. However, how to
maximize the function of HUC-MSCs required by the
disease in a specific disease is an important topic of
current research. Meanwhile, the effects of the treatment
are not always persistent, the mechanistic underpinnings
of the beneficial effects are not fully understood, and
large-scale production is at its infancy. These factors
negatively affect the clinical use of HUC-MSCs. Despite
these limitations, in suitable clinical indications, mesen-
chymal stem cells can still provide therapeutic benefits.
Throughout many past clinical trials, the unclear results
were mostly caused by inappropriate clinical endpoints,
inadequate design of the trial, unclear mechanism of ac-
tion, and—as a major factor—unstable cell quality. In
addition, technical issues such as cell transplantation
dose, delivery route, choice of the time window for cell
transplantation, injection rate, and transplantation fre-
quency remain to be solved to ensure the optimal clin-
ical outcome. Therefore, future development of HUC-
MSCs should address the following problems: (1) the ne-
cessity to design large-scale, multi-sample, multi-center,
long-term follow-up studies to verify the efficacy and
safety of HUC-MSC in the treatment of various clinical
diseases; (2) the establishment of a stem cell bank and
reinforcement of the development and quality control of
stem cell preparations; and (3) intensification of research
on HUC-MSCs, mechanisms of action, tumorigenicity,
and safety. At present, the understanding of their func-
tion and underlying mechanisms is rather limited.

HUC-MSCs bring new hope to the future of regenera-
tive medicine. Further in-depth research and clinical ap-
plications of mesenchymal stem cells will certainly
benefit mankind in the near future. Mesenchymal stem
cells have a remarkable potential to differentiate, strong
proliferation capacity, and low immunogenicity. Their
use is not limited by moral and ethical restrictions, and
they are easy to prepare on an industrial scale. They may
become pluripotent stem cells with the best prospects
for broad clinical applications.
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