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Abstract
Objectives: Coronavirus disease 2019 (COVID-19) is rapidly spreading worldwide. 
Lianhua Qingwen capsule (LQC) has shown therapeutic effects in patients with 
COVID-19. This study is aimed to discover its molecular mechanism and provide po-
tential drug targets.
Materials and Methods: An LQC target and COVID-19–related gene set was estab-
lished using the Traditional Chinese Medicine Systems Pharmacology database and 
seven disease-gene databases. Gene ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis and protein-protein interaction (PPI) net-
work were performed to discover the potential mechanism. Molecular docking was 
performed to visualize the patterns of interactions between the effective molecule 
and targeted protein.
Results: A gene set of 65 genes was generated. We then constructed a compound-
target network that contained 234 nodes of active compounds and 916 edges of 
compound-target pairs. The GO and KEGG indicated that LQC can act by regulating 
immune response, apoptosis and virus infection. PPI network and subnetworks iden-
tified nine hub genes. The molecular docking was conducted on the most significant 
gene Akt1, which is involved in lung injury, lung fibrogenesis and virus infection. Six 
active compounds of LQC can enter the active pocket of Akt1, namely beta-carotene, 
kaempferol, luteolin, naringenin, quercetin and wogonin, thereby exerting potential 
therapeutic effects in COVID-19.
Conclusions: The network pharmacological strategy integrates molecular docking to 
unravel the molecular mechanism of LQC. Akt1 is a promising drug target to reduce 
tissue damage and help eliminate virus infection.
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1  | INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an acute respiratory infec-
tious disease caused by severe acute respiratory syndrome coro-
navirus-2 (SARS-CoV-2).1 It can lead to fever, fatigue, dry cough, 
multiple organ dysfunction and death.2 A total of 216 countries 
or regions have reported confirmed cases. By 4 September 2020, 
the number of patients has reached 26 171 112, including at least 
1 million deaths.3 As a public health emergency with international 
concern, COVID-19 has brought a disastrous impact on the global 
health system and economic system.4 However, the drug that can 
cure SARS-CoV-2 infection is still elusive.

China has successfully controlled the domestic epidemic in a 
short period due to the strict epidemic policy. In this process, tradi-
tional Chinese medicine (TCM) has also made a great contribution.5 
A meta-analysis that incorporated 11 studies compared TCM plus 
western medicine with western medicine alone.6 The pooled results 
showed that integrated TCM and western medicine generated a 
higher overall response rate, higher cure rate, lower severity illness 
rate and shorter hospital stay.6,7 Besides, the Guideline on Diagnosis 
and Treatment of Coronavirus Disease 2019 (8th version) in China 
recommended various TCMs for patients in the medical observation 
period or different stages of infection, revealing favourable effects 
of TCM on symptom alleviation and reduction of severity conver-
sion.8 Nevertheless, the mechanism by which TCM works is not 
clear since TCM usually consists of dozens of compounds for both 
Chinese patent medicine and Chinese herbal compound formulae. It 
is of clinical significance to explore the active compounds and target 
genes of TCM to guide drug discovery.

Among the diverse TCMs that can defend against SARS-CoV-2 
infection and COVID-19, Lianhua Qingwen capsule (LQC) shows 
great effectiveness in the treatment of patients with COVID-19 both 
in clinical observation and randomized controlled trials (RCT)..9-11 LC 
is a Chinese patent medicine composed of 13 ingredients.12 LQC is 
widely used in preventing and treating viral influenza (eg, H1N1) in 
China.12 In the present SARS-CoV-2 pandemic, an RCT with 259 par-
ticipants found that LQC plus abidor was associated with a higher 
overall response rate and comparable adverse events than abidor 
alone in mild cases.11 Another study developed a quadruple com-
bination therapy including LQC and evaluated its efficacy.10 After 
treatment, coagulation disorder in severe COVID-19 infection cases 
was significantly improved and patients in the combined therapy 
group had a better prognosis.10 The cumulative evidence proved 
the capability of LQC to control SARS-CoV-2 infection. Therefore, 
the study aims to identify the active components of LQC related to 
SARS-CoV-2 defence and investigate the key targets of eliminating 
the infection.

Akt is a serine/threonine protein kinase that includes Akt1, Akt2 
and Akt3. Recent studies showed that during SARS-CoV-2 infec-
tion, Akt is activated in a dose-dependent manner.13 The PI3K/Akt/
mTOR pathway is also involved in lung injury,14 lung fibrogenesis15 
and immune cell development.16 The results indicate that Akt may 
be a therapeutic target for COVID-19. Network pharmacology is a 

novel method that integrates computer science and medicine, con-
structing and visualizing ‘multi-gene, multi-target, multi-pathway’ in-
teraction network to evaluate the molecular mechanism of drugs.17 
This approach is perfectly suitable for the research of multi-com-
ponent drug such as TCM due to their complex matrices nature.18 
Molecular docking refers to the process that a small molecular is 
spatially docked into a macromolecular and can score the comple-
mentary value at the binding sites, which is used for structure-based 
drug design.19 In this study, we explored the molecular mechanism 
of the action of LQC in COVID-19 using network pharmacology and 
molecular docking. We found that Akt1 was a hub gene that LQC pri-
marily regulated, suggesting a novel target for COVID-19 treatment.

2  | MATERIALS AND METHODS

2.1 | Obtaining the LQC target and COVID-19–
related gene set

First, we searched the main ingredients of Lianhua Qingwen capsule 
in the Traditional Chinese Medicine Systems Pharmacology (TCMSP) 
database (https://tcmspw.com/) to obtain the active compounds and 
their target genes.20 Specifically, we selected the “Herb name” by 
each ingredient of LQC, respectively. The search results showed a 
series of compounds in traditional Chinese medicine and their corre-
sponding pharmacokinetic indicators. We filtered active compounds 
by setting the pharmacokinetic index that the oral bioavailability 
(OB) was greater than 30% and the drug-like (DL) index was > 0.18. 
For each active compound, we searched related target genes in 
TCMSP. An LQC target gene set is acquired after gene symbol an-
notation under the help of Uniprot (https://www.unipr​ot.org/).21

Then, Seven databases were used to search COVID-19–related 
genes: Genecards database (https://www.genec​ards.org/),22 OMIM 
database (https://omim.org/),23 PharmGkb database (https://www.
pharm​gkb.org/),24 TTD database (http://db.idrbl​ab.net/ttd/),25 
DrugBank database (https://www.drugb​ank.ca/),26 DisGeNet data-
base (https://www.disge​net.org/home/)27 and PubChem database 
(https://pubch​em.ncbi.nlm.nih.gov/).28 We established a COVID-
19–related gene set by taking a union of the search results.

An LQC target and COVID-19–related gene set was obtained 
by intersecting the LQC target gene set and the COVID-19–related 
gene set.

2.2 | Compound-target pharmacology network and 
enrichment analysis

Based on the LQC target gene set and the COVID-19–related gene set, 
a compound-target network is constructed by means of Cytoscape 
version 3.8.0.29 Enrichment analysis, including gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, 
was performed to reveal the underlying mechanism through biological 
processes, cellular components, molecular function and key signalling 

https://tcmspw.com/
https://www.uniprot.org/
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https://omim.org/
https://www.pharmgkb.org/
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http://db.idrblab.net/ttd/
https://www.drugbank.ca/
https://www.disgenet.org/home/
https://pubchem.ncbi.nlm.nih.gov/
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pathways. The “clusterprofile” package in R software version 3.4.0 was 
used to performed enrichment analysis.

2.3 | Protein-protein interaction (PPI) network and 
critical subnetwork

The LQC target and COVID-19–related gene set was used to con-
struct PPI network by using STRING database.30 We set the param-
eter as moderate confidence (0.400). The PPI network from STRING 
was then imported into Cytoscape to investigate the critical sub-
network. We applied two methods to screen the core subnetwork. 
Firstly, we used CytoNca plugin in Cytoscape to analyse the PPI net-
work.31 In detail, we filtered genes according to the primary score file 
calculated by CytoNca that each score of Betweenness, Closeness, 
Degree, Eigenvector, LAC, network scores was higher than the me-
dian value. We constructed a primary subnetwork using the filtered 
genes. The filter process was conducted again to acquire the final 
critical subnetwork. Another method we used to screen critical sub-
network was CytoHubba plugin in Cytoscape. This approach was to 
analyse the top 12 genes in the PPI network and to construct the 
critical subnetwork without checking the first-stage nodes.

2.4 | Molecular docking technology

The most significant gene from two critical subnetworks was se-
lected for subsequent molecular docking analysis. The receptor 
protein coded by the selected gene was searched in the Uniprot 
database (https://www.unipr​ot.org/). We downloaded 3D struc-
ture of the protein in RCSB PDB database (https://www.rcsb.
org/). The 2D structure for the molecule ligands was downloaded 
from the PubChem database (https://pubch​em.ncbi.nlm.nih.gov/). 
ChemBio 3D software was used to calculate and export the 3D 
structure by minimizing energy. PyMOL 2.4.0 software was per-
formed the dehydration of the receptor protein and Autodock 
software was used to carry out hydrogenation and charge calcula-
tion of proteins. Parameters of the receptor protein docking site 
were set to include the active pocket sites where small molecule 
ligands bind. Finally, Autodock Vina was used to dock the receptor 
protein with the small molecule ligands of the active compounds 
of LQC.32

3  | RESULTS

3.1 | Screening of active compounds and potential 
targets

Using the TCMSP database, 10 key ingredients of LQC were ob-
tained: Banlangen, Dahuang, Gancao, Guanghuoxiang, Guanzhong, 
Jinyinhua, Kuxingren, Lianqiao, Yuxingcao and Gancao. A total of 
257 drug target genes were gained. Besides, we obtained 42, 5, 1, 

87, 11, 33 and 473 COVID-19–related genes from Genecards, OMIM, 
PharmGkb, TTD, DrugBank, DisGeNet and PubChem database, re-
spectively. After removing duplication and combining the search 
results, an overall 586 COVID-19–related gene set was acquired 
(Figure  1A). Further, by taking an intersection of the compound-
target genes and disease-related genes, we finally obtained the LQC 
target and COVID-19–related gene set (Figure 1B).

3.2 | Compound-target network

After discovering compound-target disease-related genes, we visu-
alized the compound-target interaction network with 234 nodes and 
916 edges by using Cytoscape 3.8.0 (Figure 2A). Generally, one gene 
is targeted by multiple active compounds while one compound can 
target more than one gene. Among 65 genes, PTGS 2 is the most 
targeted gene by LQC ingredients.

3.3 | GO enrichment analysis

GO enrichment analysis was used to discover the underlying biologi-
cal processes (BP), cellular components (CC) and molecular functions 
(MF) of the 65 target genes. By setting the filter as adjusted P-value 
<0.05 and q-value  <  0.05, we obtained 1711 significant enriched 
GO terms. The top 10 terms were illustrated in Figure 2B. The GO 
terms suggested that these target genes played an essential role in 
host defence and response to stress. Additionally, we exhibited 7 GO 
terms related to virus invasion from the enrichment analysis results 
as Table 1, which suggested that these target genes play a significant 
role in virus infection.

3.4 | KEGG enrichment analysis

KEGG enrichment analysis was performed to discover those path-
ways enriched by the 65 target genes. The filter was also set as an 
adjusted P-value <0.05 and q-value  <  0.05. A total of 151 KEGG 
pathways were significantly enriched, which showed that these tar-
get genes affected the pathways of bacterial and viral infection, the 
differentiation of immune cells and signal transduction pathways, as 
well as a series of important pathological processes such as apop-
tosis. The bubble plot of the most significant 30 KEGG pathways 
was shown in Figure 3A and the pathway map of the apoptosis was 
illustrated in Figure 3B. In addition, we extracted and exported the 
virus-related pathways as Table 2, and the pathway map can be ac-
quired in the supplementary file.

3.5 | PPI network and core subnetwork

Protein-protein interaction network derived from STRING data-
base showed that the proteins encoded by these target genes had 

https://www.uniprot.org/
https://www.rcsb.org/
https://www.rcsb.org/
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complex interactions (Figure 4A, B). We imported PPI network into 
Cytoscape for further analysis. Finally, two key subnetworks com-
posed of 12 target genes were obtained by using CytoNca and 
CytoHubba, respectively (Figure 5A-D).

3.6 | Molecular docking of active compounds and 
Akt1 encoding protein

We took an intersection of the two key subnetworks (Figure  6A) 
and nine genes with their rank of significance. The most significant 
gene, Akt1, was selected to conduct molecular docking. We then 
obtained six active compounds targeting Akt1 protein from the 
compound-target interaction network. The compounds were beta-
carotene, kaempferol, luteolin, naringenin, quercetin and wogonin. 
Subsequently, molecular docking indicated that all these six active 
compounds could easily enter and bind the active pocket of the Akt1 
protein as shown in Figure 6B. The docking scores were recorded in 
Table 3.

4  | DISCUSSION

Over the past ten months, COVID-19 has rapidly spread around 
the world. SARS-CoV-2 pandemic is still raging in most coun-
tries due to the lack of target drugs. Notably, China, as a country 
with a population of more than 1.3 billion, has successfully con-
trolled the epidemic outbreak. TCM has made an indispensable 
contribution to prevent and cure SARS-CoV-2 infection. Among 

all the anti-COVID-19 TCMs, LQC is the main Chinese patent 
medicine that is recommended by the Guideline on Diagnosis 
and Treatment of Coronavirus Disease.8 Studies have confirmed 
the efficacy of LQC in symptom relief and clinical outcome im-
provement of patients with COVID-19.6,9-11 In the present study, 
we constructed an LQC target COVID-19–related gene set that 
consisted of 65 target genes by analysing the active components 
from 10 ingredients of LQC. The compound-target network de-
picted the compound-target pairs. GO and KEGG analysis re-
vealed that LQC can regulate the process of immune pathways 
and virus defence. PPI network and critical network analyses 
found 9 hub targets out of 65 genes. We focus on the most sig-
nificant gene, Akt1, and performed molecular docking to verify 
the interaction between active compounds of LQC and Akt1. The 
results of the research demonstrate the effectiveness of LQC in 
the treatment of COVID-19 from a bioinformatics perspective, 
and provide a landscape on the mechanism of LQC. The results 
may also promote target drug design and basic research on SARS-
CoV-2 infection.

We screened several ingredients of LQC in TCMSP da-
tabase. Banlangen, one of the most important ingredients of 
LQC, can act on various viruses such as HCMV, influenza virus, 
HBsAg and HBV-DNA, which is consistent with KEGG analysis 
in our study.33 It can also combat oxygen free radicals through 
reducing the synthesis and secretion of inflammatory mediators 
like TNF-α , IL-6 and IL-10 that are considered as critical mark-
ers for disease severity and poor prognosis of COVID-19.34,35 
Furthermore, erucic acid isolated from Banlangen can suppress 
alveolar epithelial apoptosis initiated by influenza A virus via 

F IGURE  1  Identification of the drug-target interaction. A, Identification of the COVID-19–related genes by taking a union of all the 
results from 7 database. B, Identification of the drug-target disease-related genes by taking an intersection of drug target genes and 
COVID-19–related genes
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F IGURE  2 Construction of the drug-target pharmacology network and GO enrichment analysis. A, The drug-targets interaction 
pharmacology network. Circles represent the small molecule active compounds in LQC. Each colour represents a traditional Chinese 
medicine ingredient. Hexagon represents the COVID-19–related target genes, and edges represent the interaction between the small 
molecule compounds and the target genes. B, GO enrichment analysis of the target genes. Gene ratio refers to the ratio of enriched genes to 
all target genes, and counts refer to the number of the enriched genes
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NF-κB and p38 MAPK pathway, indicating a therapeutic poten-
tial for T-cell apoptosis tendency triggered by SARS-CoV-2.36-38 
Guanghuoxiang, also named pogostemon cablin, is a well-known 
Chinese materia medica. Kiyohara et al exhibited a 99.8% inhib-
itory effect against the H1N1 influenza virus at a concentration 
of 10 μg/mL methanol extract from Guanghuoxiang.39 Another 
effective ingredient Jinyinhua is used in multiple Chinese pat-
ent medicine. Ethanol extract from the herb can substantially 
decrease the release of nitric oxide, IL-6 and TNF-α in macro-
phage. A large number of mechanistic studies of these ingredi-
ents can predict the efficacy of LQC in preventing SARS-CoV-2 
infection, involving antiviral, anti-inflammation and anti-apop-
tosis effects.

The results of the target genes enrichment analysis by GO and 
KEGG are interesting. Firstly, target genes were found enriched 
in the defence and regulation of viral infection, which might di-
rectly influence the results of viral infection. This result is consis-
tent with previous studies. Yang et al showed that LQC displayed 
antiviral and anti-inflammatory activity and synergistic effects 
with oseltamivir against influenza B virus infection.40 Our study 
further demonstrated the feasibility of LQC in the treatment of 
COVID-19. Moreover, the 10 most significant GO (BP) terms indi-
cated that LQC could regulate the oxidative stress process during 
the treatment of COVID-19. Schönrich et.al reported that the 
overwhelming production of reactive oxygen species resulting in 
oxidative stress is a major cause of local or systemic tissue dam-
age that leads to severe COVID-19.41 It has been reported that 
some surface proteins in SARS-CoV-2 can bind to the haemoglo-
bin molecule of an erythrocyte, resulting in the destruction of the 
haem structure and the release of harmful iron ions into the blood, 
which lead to the development of oxidative stress and bring oxida-
tive damage to the tissues and organs.42 From this point of view, 
we speculated that LQC may treat COVID-19 by antagonizing ox-
idative stress damage and injury. This oxidative stress-based con-
cept of COVID-19 pathogenesis and treatment should be validated 

in randomized controlled clinical studies and deeper molecular 
studies. Moreover, target genes were also enriched in the MAPK 
and MAPKK activation pathways. Several studies have demon-
strated that the MAPK pathway is closely related to SARS-CoV. 
Lee et al43 found that phosphorylated p38 MAPK was increased 
in CD14-positive monocytes in SARS patients. Augmented p38 
MAPK activation in CD14 cells is associated with elevated IL-8 
levels.43 Moreover, the p38 MAPK signalling pathway is also impli-
cated in the death of SARS-COV–infected cells.44 Recently, Zhang 
et al reported that SARS-CoV-2–induced platelet activation may 
participate in thrombus formation and inflammatory responses 
in COVID-19 patients.45 MAPK pathway, located downstream of 
ACE2, mediated the potentiating role of SARS-CoV-2 on platelet 
activation, and that platelet ACE2 expression decreases following 
SARS-COV-2 stimulation.45 Our study indirectly shows that the 
MAPK pathway may play an important role in the treatment of 
COVID-19 with LQC.

We mainly focus on the Akt1 gene as one of the critical nodes 
in the subnetworks and performed molecular docking between 
micromolecules and the coded protein. Akt1 is one of the serine/
threonine protein kinases call Akt kinase (Akt1, Akt2 and Akt3).46 
A previous study has shown that overexpressed constitutively ac-
tive Akt1 can promote viral protein synthesis.47 Also, activation 
of the PI3K/Akt pathway is indispensable for coxsackievirus B3 
infection.48 Dominant negative mutant of Akt1 can significantly 
dampen viral RNA expression and further reduce viral capsid pro-
tein expression and viral release. 48 The replication of another 
coronavirus, Middle East respiratory syndrome coronavirus, can be 
remarkably inhibited by administrating kinase inhibitors targeting 
the PI3K/Akt.49 Collectively, Akt1 could be an ideal target with a 
broad-spectrum antiviral effect. After molecular docking, six mole-
cules were found to directly interact with Akt1: beta-carotene, kae-
mpferol, luteolin, naringenin, quercetin and wogonin. Among them, 
kaempferol has proven its protective effect against H9N2 swine in-
fluenza virus infection.50 Quercetin is also a potent antiviral agent 

TABLE  1 Virus-related GO terms enriched by the target genes

Ontology ID Description Gene ratio P-value P-adjust q-value Count

BP GO:0009615 Response to virus 12/65 1.04E-09 3.60E-08 1.47E-08 12

BP GO:0051607 Defence response to virus 8/65 1.67E-06 1.96E-05 8.00E-06 8

BP GO:0019054 Modulation by virus of host cellular 
process

3/65 3.17E-05 .000222 9.07E-05 3

BP GO:0019048 Modulation by virus of host process 3/65 .000169 .000887 0.000362 3

BP GO:0050688 Regulation of defence response to virus 3/65 .002105 .006533 0.00267 3

BP GO:0050691 Regulation of defence response to virus 
by host

2/65 .007349 .017575 0.007182 2

BP GO:0098586 Cellular response to virus 2/65 .014672 .030848 0.012607 2

F IGURE  3 KEGG enrichment analysis and pathway map. A, KEGG enrichment analysis of the target enes. Gene ratio refers to the ratio 
of enriched genes to all target genes. Counts refer to the number of the enriched genes. B, Pathway map of apoptosis as the most significant 
enriched pathway
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against the influenza virus and coronavirus.51-53 Further studies are 
expected to evaluate the synergistic effect of these molecules.

The activation of PI3K/Akt/mTOR pathway is involved in 
pulmonary fibrosis and lung injury by regulating lung fibroblasts 
and lung epithelial cells. Transforming growth factor-β (TGF-β) 
is a common agent to induce the differentiation of fibroblasts 
into myofibroblasts, accompanied by the excessive secretion of 
extracellular matrix.15 In this process, the PI3K/Akt/mTOR path-
way is upregulated by TGF-β to increase the expression of the 
enzymes that are required for the deposition of collagen pro-
teins and progressive scarring.54 Drugs such as isoliquiritigenin 
and Yifei Sanjie formula can improve TGF-β induced pulmonary 
fibrosis through decreasing the phosphorylation levels of PI3K, 
Akt and mTOR.55,56 Chronic radon exposure can cause lung injury 
and fibrosis, manifested as increasing lung epithelial cell prolifer-
ation and migration.14 Radon radiation also facilitates the phos-
phorylation of PI3K, Akt and mTOR.14 Fine particulate matter 
(PM2.5) is a primary air pollutant to cause lung injury. A mouse 
model study showed that PM2.5 can suppress bronchial epithe-
lial cell autophagy by activating the PI3K/Akt/mTOR pathway.57 
Lipopolysaccharide (LPS) can activate the TLR4/PI3K/Akt/mTOR 
pathway and further leads to neutrophil infiltration and alveolar 
wall oedema involving in acute lung injury.58 All the evidence in-
dicates that targeting PI3K/Akt/mTOR pathway can protect lung 
epithelial cells and reduce fibrogenesis.

Akt also plays an essential role in immune cell modulation. Akt 
can regulate the development and functions of innate immune 
cells, such as neutrophil, macrophage and dendritic cell.59 The ac-
tivation of Akt pathway aggregates inflammatory and metabolic 
signals, which regulates macrophage responses modulating their 
activation phenotype.60 In addition, Akt signalling is crucial in 

cellular immune response. In the course of acute infection, T cells 
expand and differentiate into effector cells, which mediate the 
destruction of the infected cells. Akt can be used as a key signal-
ling node in the development of protective memory CD8 + T-cell 
responses.16 Beyond that, Akt can also mediate the early meta-
bolic response of naive human CD4 + T cell to TCR stimulation.61 
Moreover, Akt is closely related to B cell. During the germinal 
centre response, The Akt isoforms 1 and 2 and its downstream 
pathways drive B cell fate decisions.62 Li et al63 reported that the 
Akt-dependent inactivation of GSK3 and TSC1/2 can regulate 
B cell growth and metabolism in the B cell-mediated immunity. 
In other words, Akt signalling plays a critical role in immune cell 
differentiation, proliferation and migration, which involved in the 
formation of systemic and local inflammation. However, hyper-
activation of Akt during virus infection can lead to an elevation 
of terminal differentiated effector CD8 T cells and a subsequent 
elevation of senescent CD8 T cells.64 The immune cascade may 
rapidly cause T-cell exhaustion and significantly increase the risk 
of death of patients infected with SARS-CoV-2.65 Inhibition of the 
overactivation of Akt during COVID-19 may modulate immune re-
sponse and improve prognosis.

In this pharmacology network–based study, we investigated the 
potential therapeutic mechanisms of the Chinese medicine LQC in 
COVID-19. The results highlight the improvement in inflammatory 
response, cell apoptosis and immune defence of LQC antagonizing 
SARS-CoV-2 infection. Additionally, we provide several potential 
targets for COVID-19 treatment, which could contribute to the de-
velopment of new therapeutic strategies. However, the in-depth 
mechanism of these active compounds still requires further elucida-
tion, which may guide the design of novel broad-spectrum antiviral 
agents.

TABLE  2 Virus-related pathway enriched by target genes

ID Description Gene ratio P-value P-adjust q-value Count

hsa05161 Hepatitis B 22/63 2.84E-22 1.19E-20 2.92E-21 22

hsa05167 Kaposi sarcoma-associated herpesvirus infection 22/63 1.47E-20 3.24E-19 7.98E-20 22

hsa05160 Hepatitis C 20/63 1.18E-19 2.16E-18 5.33E-19 20

hsa05163 Human cytomegalovirus infection 22/63 4.39E-19 6.79E-18 1.67E-18 22

hsa05170 Human immunodeficiency virus 1 infection 21/63 2.54E-18 3.20E-17 7.87E-18 21

hsa05164 Influenza A 19/63 1.59E-17 1.89E-16 4.64E-17 19

hsa05169 Epstein-Barr virus infection 16/63 1.73E-12 8.08E-12 1.99E-12 16

hsa05165 Human papillomavirus infection 18/63 3.33E-11 1.29E-10 3.17E-11 18

hsa05166 Human T-cell leukaemia virus 1 infection 14/63 9.05E-10 3.03E-09 7.46E-10 14

hsa05203 Viral carcinogenesis 9/63 2.58E-05 5.29E-05 1.30E-05 9

hsa04061 Viral protein interaction with cytokine and cytokine 
receptor

5/63 .001056 .001768 0.000435 5

hsa05416 Viral myocarditis 3/63 .011338 .016395 0.004035 3

F IGURE  4 Protein-Protein interaction (PPI) network. A, PPI network exported from STRING database. B, Annotations for the nodes and 
edges in the PPI network
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F IGURE  5  Identification of key subnetwork using Cytoscape. A, PPI network and the first filtration by CytoNca, the yellow nodes 
were screened with each score higher than median. B, Subnetwork constructed by a second filtration via CytoNca. The yellow nodes were 
screened with a score higher than the median. C, Final key subnetwork screened after two filtrations using CytoNca. D, Key subnetwork of 
top 12 nodes analysed by CytoHubba



     |  11 of 13XIA et al.

5  | CONCLUSION

We uncovered the potential mechanisms of LQC by employing 
pharmacology network and molecular docking computational analy-
ses. We believe these findings may aid the global fight against the 
COVID-19 pandemic.

ACKNOWLEDGEMENTS
We thank the authors for the development of the drug database and 
software.

CONFLIC T OF INTERE S T
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Conception and design: Qi-Dong Xia, Jia Hu, Cong Li, and Shao-
Gang Wang. Acquisition of data: Qi-Dong Xia and Yu-Chao Lu. 
Analysis of data: Qi-Dong Xia, Yang Xun, Jun-Lin Lu, and Yuan-Yuan 
Yang. Interpretation of data: Yang Xun, Jun-Lin Lu, and Peng Zhou. 
Drafting the manuscript: Qi-Dong Xia, Yang Xun, and Jun-Lin Lu. 
Revising the manuscript: All authors. All authors have approved the 
final version to be published, and agree to be responsible for all as-
pects of the work.

F IGURE  6 Screening of the key genes in the subnetwork and further molecular docking. A, Screening of the key genes by taking an 
intersection of the two key subnetworks. B, Molecular docking between the six small molecule ligands and protein 1UNP (encoded by 
AKT1), on the top shows the 3D structure of ligands and receptors, at the bottom shows the surface of the receptor and 3D structure of the 
ligands

TABLE  3 Molecular docking score

Molecule name Docking score (kcal/mol)

Beta-carotene ‒6.5

Kaempferol ‒6.8

Luteolin ‒7.3

Naringenin ‒7.6

Quercetin ‒7.0

Wogonin ‒7.8
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