
may be necessary to unequivocally determine individual benefit of
lumacaftor–ivacaftor on clinical outcomes (1, 2).

In summary, our data suggest that FIS of intestinal organoids and
in vivo biomarkers of CFTR function are sensitive tools for detection
and quantification of restoration of CFTR function in response
to CFTR-directed therapeutics. However, we did not observe a
correlation at the low levels of functional rescue of lumacaftor–
ivacaftor in F508del-homozygous patients. We conclude that
future studies in a larger group of patients with a spectrum of
responsive CFTR mutations and more effective CFTR modulators
(1, 2, 11) will be required to determine the exact role of patient-
derived organoids and in vivo biomarkers of CFTR function
in predicting clinical efficacy of different CFTR modulators
in individual patients to enhance precision medicine for
CF. n
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The Arousal Threshold as a Drug Target to Improve
Continuous Positive Airway Pressure Adherence:
Secondary Analysis of a Randomized Trial

To the Editor:

Obstructive sleep apnea (OSA) is common and associated with
many adverse health outcomes (1–3). Continuous positive airway
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pressure (CPAP) virtually eliminates OSA, but adherence is
variable (4). Thus, there has been great interest in interventions to
improve CPAP usage, but success has been limited (4). Two recent
studies suggest that the nonanatomic trait “low arousal threshold”
(ArTH; waking up easily) predicts low CPAP adherence (5, 6).
Importantly, the ArTH can be increased with sedatives such as
eszopiclone (7) and thus may be a therapeutic target to increase CPAP
usage. However, the two prior reports focused on distinct subsets of
patients with OSA (post-stroke patients [6]), lacked in part objective
adherence data (5), and did not assess the effect of interventions
targeting the ArTH on CPAP usage (5, 6). To address these issues, we
performed a secondary analysis of a randomized trial that showed that
2 weeks of eszopiclone 3 mg versus placebo at CPAP initiation
improved objectively measured CPAP adherence over 6 months in a
cohort of patients with general OSA (8). Thus, for the present study,
we tested our hypotheses that 1) a low ArTH at baseline predicts low
CPAP usage, and 2) the effect of eszopiclone on CPAP adherence is
modified by the ArTH. Some of the results of the present study have
been previously reported in the form of an abstract (9).

We obtained a deidentified subset of the original data set
containing basic demographics, the Epworth sleepiness scores (ESS),
OSA parameters, and CPAP adherence at 1 month for 162 subjects
(2 subjects in the placebo group piloted study procedures before
randomization of 160 subjects; we were unable to identify and
remove these 2 nonrandomized subjects). Using a validated formula
(10, 11), we estimated the ArTH for each subject based on age, sex,
body mass index (BMI), apnea–hypopnea index (AHI, hypopneas
defined by 3% desaturations or cortical arousals), oxygen saturation
as measured by pulse oximetry (SpO2

) nadir, and fraction of
hypopneas and then dichotomized the ArTH into low versus high
using a standard cutoff of 15 cm H2O (10). The BMI had originally
been collected for each subject, but these data could not be
retrieved for this secondary analysis. To allow calculation of the
ArTH, we imputed individuals’ BMI using the mean BMI
previously reported for the eszopiclone versus placebo group
(mean, 30.3 vs. 30.4 kg/m2). Missing data for age (number

missing = 3) and SpO2
nadir (number missing=6) were minimal and

thus not imputed. Outcomes were mean CPAP use per night (primary)
and percentage of nights with.4 hours at 1 month (secondary). Using
the Wilcoxon rank-sum test, we compared CPAP adherence in subjects
1) with a low versus high ArTH and 2) who received eszopiclone
versus placebo stratified by the ArTH. To adjust for potential
confounding by baseline characteristics (baseline AHI, ESS, CPAP
level, sex, age, and residual AHI), we used median regression
(backward selection based on Bayes’ information criterion) (6). We
used median regression to assess for an interaction between ArTH and
study drug (results from a two-way ANOVA were similar but the
normality and homogeneous variance assumptions were violated
despite log transformation). For the primary analysis, we assumed that
subjects who discontinued CPAP within the first month had zero usage
per night. In sensitivity analysis, we excluded such patients.

We included 153 of 162 subjects in whom we could estimate the
ArTH (9 had missing data for age and/or SpO2

nadir). Subjects were
mostly middle-aged (median, 44 yr [interquartile range (IQR), 36–50])
men (76%) with moderate OSA (AHI, 23/h [IQR, 13–43.5]) and a low
ArTH (66%). The low-ArTH subgroup had less severe OSA than the
high-ArTH subgroup (mean [SD] AHI, 18.3 [9.8] vs. 58.8/h [27.2];
P,0.001); otherwise, groups were clinically similar: age (43.1 [9.6] vs.
44.6 [9.0] yr; P=0.33), male sex (67.3% vs. 80.2%; P=0.11), assignment
to eszopiclone (50.5% vs. 50%; P=0.95), subjective sleepiness (ESS, 12.0
[4.5] vs. 13.5 [4.3]; P=0.048), residual AHI during titration (median
2.7/h [IQR, 0.9–6] vs. 3.4/h [2–11.6]; P=0.04), and prescribed CPAP
level (9.4 [2.1] vs. 10.6 [2.6] cm H2O; P=0.003).

Patients with a low ArTH were more likely to discontinue CPAP
during the first month than those with a high ArTH (36.6% vs. 17.3%;
P= 0.02 using Fisher’s exact test). Eszopiclone did not significantly
affect the percentage of patients who discontinued CPAP overall or
within the ArTH subgroups (P> 0.14 using Fisher’s exact test).

In patients with a lowArTH, median CPAP usage was 2.5 hours
less than those with a high ArTH (1.3 h [IQR, 0–3.9] vs. 3.8 h [0.6 –
5.6]; P= 0.001; Figure 1A). Results were similar when adjusting for
baseline characteristics (22.1 h; adjusted P= 0.003; the final model
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included CPAP level, age, and residual AHI as covariates). Results
were also similar in sensitivity analyses adjusting for baseline AHI
as a covariate (22.9 h; adjusted P= 0.04), or when excluding the
subjects who discontinued CPAP by 1 month (22.3 h; P= 0.04;
Figure 2A). Moreover, the difference in median CPAP usage
between the low- versus high-ArTH subgroups was numerically
similar in women (22.8 h; P= 0.09) and men (22.3 h; P= 0.007),
suggesting that sex did not substantially modify this relationship.

Overall, eszopiclone versus placebo increased median CPAP
usage by 2.5 h (3.6 h [IQR, 0–5.5] vs. 1.1 h [IQR, 0–2.7]; P= 0.001).
Among subjects who received eszopiclone, CPAP usage was less in
those with a low ArTH than those with a high ArTH (2.1 h vs.
4.8 h; P= 0.01; Figure 1B), but usage was similar across ArTH
strata when excluding subjects who discontinued CPAP during
the first month (4.3 vs. 4.9 h; P= 0.40; Figure 2B).

There was no significant interaction between ArTH and
study drug in primary (P= 0.45; adjusted P= 0.72; Figure 1B) or
sensitivity (P= 0.37; Figure 2B) analyses.

Results were similar for percentage of nights with .4 hours as
outcome (data not shown).

We note two major findings: First, in this cohort of patients with
general OSA, a lowArTH at baseline was associated with substantially
lower CPAP usage at 1 month than a high ArTH at baseline. This
finding extends and validates results from two other studies that were
performed in specific subsets of patients with OSA and/or used
different methods to measure the ArTH and adherence (5, 6). Second,
if a low ArTH causes low CPAP adherence, then one would expect
that eszopiclone, which increases the ArTH, is only/more effective in
patients with a low ArTH than those with a high ArTH. In this
study, the effect of eszopiclone on CPAP use was not significantly
modified by the ArTH, but considering that interaction tests have
low power (12), we note the following: among patients who
continued using CPAP for 1 month, eszopiclone increased CPAP
usage substantially more in subjects with a low ArTH than those
with a high ArTH (Figure 2B). Importantly, those with a low ArTH

who received placebo had the lowest usage (2 h), whereas those with
a low ArTH who received eszopiclone had a CPAP usage (4.3 h)
similar to patients with a high ArTH (3.6 h with placebo; 4.9 h with
eszopiclone; P> 0.4). Thus, low-ArTH patients who persist using
CPAP may particularly benefit from eszopiclone (which may also
improve the AHI off CPAP) (7). However, eszopiclone appeared to
improve adherence even in subjects with a high ArTH. The reason
for this finding is unclear, but the difference in CPAP usage was
largely driven by the higher percentage of patients who discontinued
CPAP in the placebo group than in the eszopiclone group (27% vs.
8%; P=0.14; see Figure 1B vs. 2B). Because CPAP can lower arousal
threshold over time (13), in theory, the medication may be yielding
improved adherence by diminishing this impact in patients with
OSA with a high baseline arousal threshold. This study had
several limitations. First, prior reports suggest that the effect of the
ArTH on adherence is modified by the BMI, which could not be
explored in our study. Moreover, to estimate the ArTH, we had
to impute individual BMIs, which may have resulted in some
misclassifications. But we do not think missing data substantially
affected our findings because data were likely missing at random,
BMI is a minor component of the ArTH formula, and results were
similar when using another variant of the formula predicting low
versus high ArTH based on three categorical variables (AHI, SpO2

nadir, and fraction hypopnea; data not shown) (7). Second, other
factors may affect CPAP adherence (e.g., comorbidities, nasal
congestion, claustrophobia, and psychosocial factors like a priori
readiness to change behavior or partner support) (14–16), but we
were unable to assess this. Third, we were unable to retrieve
adherence data beyond 1 month precluding longitudinal analyses to
assess the effect of the ArTH on long-term adherence and increase
the power of interaction tests. But early adherence is a strong
predictor of long-term adherence (17), and results from studies with
longer follow-up were similar (5, 6). On the other hand, CPAP tends
to lower the ArTH (13), perhaps explaining (in part) the “slowly
declining” use seen in some patients (15).
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Figure 2. (A) Sensitivity analysis: average hours of nightly continuous positive airway pressure (CPAP) use at 1 month. (B) Subjects with a low arousal
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In conclusion, we found that a low ArTH is associated with
substantially reduced CPAP adherence and that eszopiclone
improves CPAP usage overall, especially in subjects with a low
ArTH who continued CPAP for 1 month. However, we emphasize
that the presented results are based on exploratory post hoc
analyses. Rigorous interventional trials assessing hard outcomes are
needed to better understand the potential risks and benefits
of targeting the ArTH to improve CPAP adherence and
effectiveness. n
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Comparison of Two Approaches to Estimate Driving
Pressure during Assisted Ventilation

To the Editor:

Negative pressure swings generated by patients’ muscles (Pmus)—
which add up to airway pressure generated by the ventilator—are
increasingly recognized as a potential source of injury for the lungs,
particularly in patients with acute respiratory distress syndrome
(1). Precise monitoring of this component requires transduction
of esophageal pressure or electrical activity of the diaphragm (2).
Recently, however, two surrogated methods, relying on airway
pressure waveforms only, have been proposed and validated
to estimate the total driving pressure. The first is the static method.
Our group reappraised (3) the end inspiratory technique (originally
described by Foti and colleagues [4]), which takes advantage of
patients’ relaxation, normally occurring at the end of inspiration, to
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