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Managing plant diseases is increasingly difficult due to reasons such as intensifying the field production, climatic change-driven
expansion of pests, redraw and loss of effectiveness of pesticides, rapid breakdown of the disease resistance in the field, and
other factors. The substantial progress in genomics of both plants and pathogens, achieved in the last decades, has the potential
to counteract this negative trend, however, only when the genomic data is supported by relevant phenotypic data that allows
linking the genomic information to specific traits. We have developed a set of methods and equipment and combined them into
a “Macrophenomics facility.” The pipeline has been optimized for the quantification of powdery mildew infection symptoms on
wheat and barley, but it can be adapted to other diseases and host plants. The Macrophenomics pipeline scores the visible
powdery mildew disease symptoms, typically 5-7 days after inoculation (dai), in a highly automated manner. The system can
precisely and reproducibly quantify the percentage of the infected leaf area with a theoretical throughput of up to 10000
individual samples per day, making it appropriate for phenotyping of large germplasm collections and crossing populations.

1. Introduction

Cereals, which include wheat, barley, rice, maize, rye, oats,
sorghum, and millet, have been the primary component of
humans’ diet delivering more than 50% of the world’s daily
caloric intake [1]. Like any other plant, these species are
under constant attack by a vast number of pathogens. How-
ever, because the impact of cereal diseases is proportional
to the importance of these crops for human nutrition, they
are of exceptional interest to plant pathologists and breeders.

Precise and sensitive phenotyping is one of the critical
requirements for modern breeding and functional genomics
studies. Many of the desired traits are polygenic by nature,
and their manifestation depends on the cumulative effect of
several factors with a small to moderate effect. The quantita-
tive disease resistance of the plants against pathogens is a typ-
ical example of a complex polygenic trait. Although this type
of resistance is usually less efficient than the strong R-gene-
based resistance, it is nevertheless a desired trait because of

its durability on the field, and in high contrast to the R-
gene resistance, it is effective against all races of a particular
pathogen and even against different pathogen species. How-
ever, studying the underlying mechanisms of the quantitative
resistance is seriously challenged by the complexity of this
phenomenon [2, 3]. The accessibility of the genomic infor-
mation for several host and pathogen species greatly facili-
tates these studies but, on the other hand, introduced an
enormous amount of data that needs to be tested and func-
tionally validated. Thus, the ability of high throughput
becomes an essential requirement for the new systematic
phenotyping, and the term “phenomics” was coined to
describe this approach.

The natural disease resistance is, besides the high yield
and abiotic stress resistance, one of the most desired crop
traits since the beginning of the agriculture. The breeders
invested significant efforts in improving these traits, and as
a result, the modern crop cultivars are usually outperforming
their wild progenitors in nearly all aspects. However, unlike
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other factors that may influence plant performance, the
pathogens actively develop and modify strategies to evade
the host defense mechanisms in a process sometimes called
“evolutionary arms race”.

Powdery mildew (PM) is a disease caused by a diverse
group of obligate biotrophic fungi that lead to extensive dam-
age to various crop plants, including cereals. Blumeria grami-
nis is the causative agent of the powdery mildew disease of
wheat and barley [4]. Like most of the obligate biotrophs,
B. graminis shows extreme host specificity. The so-called for-
mae speciales (f.sp.) have specialized virulence for particular
plant species, e.g., for barley (B. graminis f.sp. hordei) or
wheat (B. graminis f.sp. tritici).

The asexual life cycle of B. graminis, from the beginning
of the infection to the production of new spores, completes
within a week. The haploid asexual fungal spores, called
conidia, start germination within a few hours after contact
with a plant leaf. The appressorial germ tube penetrates the
cell wall of the leaf epidermal cells directly and grows into
the living plant cell forming a feeding structure called a haus-
torium. The establishment of biotrophy occurs within the
first 24 hours after leaf spore inoculation. In the following
days, epiphytically growing hyphae develop many secondary
haustoria in neighboring epidermal cells next to the initial
infection site. After three days, the fungal colony is macro-
scopically visible. In the following days, abundant spores
are formed by the mycelium, which completes the life cycle
[5]. In controlled infection assays with defined spore titters,
the severity of the infection and the size of the infected area
are commonly the scoring parameters in disease rating to
estimate host susceptibility [6].

Cultivated barley (Hordeum vulgare spp. vulgare), a
member of the Triticeae tribe of grasses, is among the most
favored crops worldwide. Besides, barley is a famous genetic
model for the very closely related but more complex wheat
genome.

With the significant progress made on the sequencing of
several cereal genomes, Genome-Wide Association Studies
(GWAS) to identify resistance traits became possible. How-
ever, a bottleneck for successful genotype-phenotype
associations is the high-throughput monitoring of disease
symptom development as a measure of host plant suscepti-
bility. Disease resistance traits range from partial, or quanti-
tative, to complete, or qualitative. It has been shown in many
cases that quantitative disease resistance is more durable on
the field and, therefore, of high potential value to the breeders
[7]. However, the quantitative resistance is usually a poly-
genic trait, which is based on the joined effect of many genes,
where each of them contributes quantitatively to the level of
plant defense [8]. The identification of genes with small to
moderate resistance effects requires exact and reproducible
quantification of infection as a prerequisite for genetic fine
mapping and gene isolation.

The choice of high-throughput phenotyping technologies
for disease resistance has rapidly increased over the last years.
There are methods based on measuring the enzymatic activ-
ity of the infected tissue [9], on chlorophyll fluorescence [10],
or on quantitative PCR of fungal genes [11], but more com-
monly optical sensors and computer vision approaches are

used [12]. Hyperspectral imaging is using the information
about the reflectance of the tissues in a wide range of wave-
lengths and may visualize the disease symptoms in relatively
early stages [13, 14]. Multispectral imaging is done with only
a few but usually highly informative wavelengths, thus signif-
icantly reducing the cost of equipment and the amount of
raw data. However, the most common type of optical sensors
is using the visible and near-visible spectrum. These sensors
are either with integral wide-band filter matrices for limiting
the sensitivity on the pixel level to specific wavelengths (e.g.,
RGB cameras) or without wavelength discrimination (gray-
scale cameras) but often with external filters and/or illumina-
tion sources with a discrete wavelength band.

Although the phenomics platforms are typically built on
highly customized hardware, some implementations are
using standard hardware components from the consumer
market. This approach allows the building of very cost-
efficient and versatile systems but with certain limitations.
An example of such a system represents the PhenoBox [15],
which is based on a consumer mirror-reflex camera for phe-
notyping in controlled conditions. The system allows pheno-
typing of biotic and abiotic stress of small plants and plant
organs at a very moderate cost. However, the inbuilt filters
of the used camera type allow imaging only in the visible
range of light.

Designs based on multiple single-board computers (e.g.
Raspberry Pi and Arduino) provide another exciting low-
cost alternative to the large robotics platforms. An example
of such a system is the low-cost SeedGerm platform [16],
which is using multiple Raspberry Pi computers and imple-
ments a single-axis camera movement for seed imaging and
germination phenotyping. Nevertheless, typically the low-
cost devices are usually missing robotics components for
sample handling that renders them less appropriate for
high-throughput and 24/7 applications.

The development of image analysis methods is very
dynamic and contributes to increasing the expectations
for more complex phenotypes. Currently, two primary
approaches are commonly used to analyze image data. The
first one is using custom handcrafted features, and the other
one is based on Artificial Neural Networks (ANN). The first
approach typically requires a significant manual input in the
form of selecting and implementing informative features, but
efficient models can be built with a relatively low amount of
training data, which makes this approach attractive in some
instances [17, 18].

The current state of the art machine learning methods is
based on ANN and most recently deep learning (DL) archi-
tectures [19–22]. However, early DL architectures are less
appropriate for semantic segmentation (pixel-based classifi-
cation) because of the missing spatial information, which is
an essential feature for conventional image recognition
networks such as convolutional neuronal networks [23].
Therefore, edge detection, clustering, or thresholding-based
segmentation solutions are still frequently used for pixel clas-
sification [24]. Another drawback of the DL is the typically
very high demand for annotated training samples and high
hardware requirements. New Convolutional Neural Network
(CNN) architectures like Mask Regional-CNN (Mask R-
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CNN) [25] or U-Nets CNN [26] promise to solve many of
the limitations of the DL and are already used for semantic
segmentation of plant diseases [27, 28].

This work is aimed at establishing a high-throughput,
automated phenotyping platform for precise and reproduc-
ible quantification of leaf disease of cereals, with a focus on
powdery mildews and rusts.

2. Materials and Methods

2.1. Experimental Design. The Macrophenomics pipeline
consists of hardware and software components. A specialized
robotic system (Macrobot) implements the image acquisition
part of the Macrophenomics pipeline. The Macrobot auton-
omously acquires images of detached leaf segments mounted
on standard size microtiter plates (MTPs) (Figure 1).

Typically, the wheat and barley plants are grown in 24-
well trays in a greenhouse. The samples are taken at the 2-
leaf stage from the middle part of the second leaf. The leaf
fragments are mounted on standard 4-well MTPs with 1%
water agar (Phyto agar, Duchefa, Haarlem, the Netherlands)
supplemented with 20mgL-1 benzimidazole as a leaf senes-
cence inhibitor. For achieving regular inoculation of all
leaves, the plates without lids are placed in a rotating table
inside an inoculation tower and are inoculated by blowing
in conidiospores from sporulating material. Inoculated plates
are incubated in environmentally controlled plant growth
chambers (20°C, 60% RH constant; 16 h light, 15μEm-2 s-1)
for 6 days until the disease symptoms are visible. The infected

plates are loaded into the Macrobot system for automated
imaging. The acquired images are transferred to the image
analysis server for quantification of the disease symptoms.

2.2. Hardware. In the original version, the Macrobot employs
a 14-bit monochrome camera (Thorlabs 8050M-GE-TE) at a
resolution of 3296 × 2472 px. A high-end lens (CoastalOpt
UV-VIS-IR 60mm 1 : 4 Apo Macro) with apochromatic cor-
rection in the range from 310 to 1100nm wavelength ensures
that images using different illumination setups are precisely
registered and focused. The illumination is realized using
small-bandwidth isotropic LED light sources (Metaphase
Exolight-ISO-14-XXX-U) with 365nm (UV), 470 nm (blue),
530 nm (green), and 625nm (red) peak wavelengths.

The robotic part of the Macrobot is built of off-the-shelf
OEM components developed for laboratory use that facilitate
the maintenance and allow quick replacement of defective
components. Specifically, a PlateCrane EX Microplate Han-
dler (Hudson Robotics, Inc., NJ, USA) in conjunction with
an IGUS precision linear stage (igus GmbH, Germany) is
used. The plate crane and linear stage can be accurately posi-
tioned with high repetition accuracy using the vendors’ soft-
ware API. The positions of the plate crane and linear stage for
the different stages of plate handling are determined at the
initial system setup and have to be manually readjusted if
the system was moved or rearranged in some form. Posi-
tional information is stored in parameter files and reloaded
in the Fraunhofer IFF custom implemented system software.
This also applies to the imaging settings of the Thorlabs

24-well plant growing tray
with up to 10 plants of the same 
genotype per well

Cutting and transferring of 
leaf fragments to a standard 
4-well microtiter plate

Batch inoculation of the plates 
with PM in an inoculation tower 
by air-blowing of conidiospores 

Incubation and development of 
disease symptoms

Macrobot–plate handling 
and multimodal imaging 
robot (96-plate capacity)

Image analysis 
server

Figure 1: Overview of the phenotyping pipeline. The plants are grown in 24-well trays in a greenhouse. At the appropriate stage, leaf
fragments are harvested and mounted on standard 4-well microtiter plates, filled with 1% water agar for keeping the humidity, and
inoculated by air-blowing of powdery mildew spores in an inoculation tower. After incubation of 5-7 days, the disease symptoms become
visible. The plates with the infected leaves are loaded into the Macrobot system for automated imaging. The acquired images are
transferred to the image analysis server for quantification of the disease symptoms.
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camera. The imaging process is controlled by the system soft-
ware using its custom scripting engine, which allows a con-
trolled complex sequence of steps to unfold in order to
ensure a repeatable and high-throughput measurement on
the supplied sample set. Imaging procedure parameters can
be adjusted by the user and are stored as profiles to ensure
repeatable imaging.

For each plate, monochrome images in all illumination
wavelengths are acquired separately and stored in 16-bit
TIFF image files. An RGB image is generated by combining
the images of the red, green, and blue LED channels (Supple-
mental Figure S1). The UV channel is used to facilitate the
extraction of the region of interest (ROI), where the leaves
are located. Video sequences showing the Macrobot in
action can be seen in [29].

An improved version of Macrobot was introduced on a
later stage and designated as Macrobot 2.0 (Figure 2). The
illumination system was upgraded by doubling the LED
units allowing bilateral illumination of the objects. A back-
ground illumination system based on electroluminescence
foil was mounted on the MTP carrier to simplify the sepa-
ration between the foreground and background, thus
improving the leaf segmentation. The image acquisition
and hardware controlling software was upgraded to a 64-
bit version for optimal system memory utilization. The
entire technical layout was improved with respect to the
gained experience with the first version of the Macrobot.
Since the image acquisition components remain unchanged,
data generated by Macrobot 2.0 is fully comparable to data
acquired by Macrobot 1.0, as far as a comparable hardware
setup is used (e.g., one-sided illumination). The data presented
in this article was acquired by the original Macrobot hardware
configuration.

2.3. Software. The image analysis software was imple-
mented in Python 3.8 under Microsoft Windows 10 with
extensive use of the NumPy (v. 1.12.1) [30], opencv-
python (v. 2.4.13), scikit-learn (v. 0.17.1) [31], and scikit-
image (v. 0.13.0) [30] open-source libraries. The source
code is available at [32].

2.4. Model Evaluation. Each model was validated by calcu-
lating the accuracy, recall, and precision of the model to
test the prediction performance for each class. The overall
accuracy is calculated by the number of correctly
predicted observations divided by the total number of
observations:

Accuracy = TP + TN
TP + FP + FN + TN

: ð1Þ

Precision is a measure of the false-positive rate. It can
be calculated by dividing the true positive observations by
the total predicted positive observations:

Precision =
TP

TP + FP
: ð2Þ

Recall measures the sensitivity of the predicted posi-
tive observations:

Recall =
TP

TP + FN
: ð3Þ

2.5. Wheat Genotype Collection. A collection of 188 elite
lines and 202 genetic resource lines was obtained from
the federal ex situ collection of the Gene Bank of IPK

Robot arm

Photo box

(a)

Camera

LED units

Linear stage 
MTP carrier
(backlight is on)

(b)

Figure 2: Macrobot 2.0 with improved technical design, bilateral illumination, and background light: (a) outside view and (b) inside view of
the photo box.
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Gatersleben. The complete list of the genotypes is given
in Supplemental Table S6.

2.6. Best Linear Unbiased Estimations (BLUEs) of Genotype
Response against Fungal Infections. The phenotypic results
of the tested genotype collection are represented as BLUEs
obtained by fitting the data to the following linear mixed
model:

y = 1nμ + XGg + ZRr + e, ð4Þ

where y is the vector containing the n original raw fungal
infection data points, 1n indicates an n-size vector of only
1 s, μ stands for the fixed intercept term, g is a vector of the
fixed genotypic effects of the material being tested, and r rep-
resents a vector that contains all random factors beyond resid-
ual variation: experiment, treatment, the interaction between
experiments and genotypes, and the interaction between geno-
types and treatments, while e indicates a vector of random
residual variation. XG and ZR are design matrices that assign
g and r to the corresponding values contained within y. Mixed
model equations were computed using the lme4 package [33]
implemented in R Environment ver. 3.4.0 [34].

2.7. Plant and Fungal Material. Wheat and barley plants
from different cultivars and landraces were grown in 24-pot
trays (31 × 53 cm) in a greenhouse at 20°C constant and
16 h light period in a soil substrate. The first or the second
leaves were harvested at 7 days and 13-14 days, respectively,
after sowing. The leaf segments were mounted on 20mgL-1

benzimidazole-supplemented and 1% water agar plates and
inoculated with the corresponding pathogen at approxi-
mately 10 spores/mm2. As pathogens, the Swiss wheat pow-
dery mildew field isolate FAL 92315 and the Swiss barley
powdery mildew field isolate CH4.8 were used, respectively.
The image acquisition was performed seven days after inoc-
ulation (dai).

2.7.1. Wheat Genotype Collection. A collection of 187 elite
lines and 201 plant genetic resource lines was obtained
from the federal ex situ collection of the Gene Bank of
IPK Gatersleben. The complete list of the genotypes is
given in Supplemental Table S6.

2.8. Quantitative PCR. Quantitative real-time PCR was per-
formed in a volume of 5mL QuantiTect Probe PCR Kit (Qia-
gen GmbH, Hilden, Germany) and an ABI 7900HT fast real-
time PCR system (Thermo Fisher Scientific Inc., Waltham,
MA, USA). Forty cycles (15 sec, 94°C; 30 sec, 56°C; 30 sec,
72°C, preceded by standard denaturation steps at 94°C for
2min) were conducted. Data were analyzed by the standard
curve method using the SDS 2.2.1 software (Thermo Fisher
Scientific Inc., Waltham, MA, USA). A standard curve dilu-
tion series was included for each gene, as fivefold dilutions
and three technical replicates per DNA sample. The detected
quantity of the fungal gene GTFI (beta-1,3-glucanosyltrans-
ferase, GenBank: EU646133.1) was normalized to the quan-
tity of the barley UBC gene (ubiquitin-conjugating enzyme,
GenBank: AY220735.1) and used as a proxy for fungal
biomass.

The used primers and probes are as follows: for the pow-
dery mildew GTFI gene—BgGTF1_F (5′TTGGCCAAACA
ACTCAACTC3′), BgGTF1_R (AGCAGACCAAGACACA
CCAG), and BgGTF1_PR (fluorescent TaqMan probe,
FAM-5′CTCCCAGCAACACTCCAGCT3′-BHQ1), and
for the barley UBC gene—HvUBC_F (5′ACTCCGAAGCA
GCCAGAATG3′), HvUBC_R (5′GATCAAGCACAGGG
ACACAAC3′), and HvUBC_PR (fluorescent TaqMan probe
Yakima Yellow-5′GAGAACAAGCGCGAGTACAACCGC
AAGGTG3′-BHQ1).

3. Results

3.1. Frame and Leaf Segmentation. To define the area where
the leaf segments are located on the plates, the C-shaped
white frames that hold the leaves were segmented and
extracted. Optimal results were achieved by applying Otsu’s
thresholding [35] on the UV channel, followed by dilation
with an 8 × 8 kernel to obtain a binary image (Figure 3).
The Moore-Neighbor [36] tracing was used to extract the
contours of the binary image and filter the frames by size
and position.

Each leaf segment was extracted to a separate region of
interest (ROI). The best segmentation results were obtained
by Otsu’s binarization method on the backlight image,
followed by the Moore-Neighbor contour finding algorithm
and object size selection. Otsu’s method also gets along with
the particular challenge of interrupted leaf contours caused
by necrosis or fungal infections.

3.2. Machine Learning Approach. The application of machine
learning approaches gives the advantage of using a data-
driven analysis rather than hypothesis-driven statistics. In
this way, complex statistical modeling assumptions can be
reduced, offering possibly important data features from
which machine learning tools can derive desired classifica-
tion outcomes in the manner of teaching. Therefore, several
machine learning methods were implemented and evaluated
for their accuracy and performance in the quantification of
the PM disease symptoms.

3.2.1. Training Data. Training data was collected by manual
labeling of background, infected, and leaf necrosis areas.
The single labeled pixels were extracted and assigned to these
three classes. For avoiding a class imbalance, the number of
training samples per class was adjusted to the lowest number
of pixels per class, which was 5000. The dataset was split: 70%
for training and 30% for validation.

3.2.2. Feature Extraction and Classification. We have
compared three conventional classifiers: C-Support Vector
Classification [37], Linear Support Vector Classification
[38], and random forest [39]. We found the random forest
to be performing significantly better than the Linear Support
Vector Classification and slightly better compared to the C-
Support Vector Classification (Figure 4(a), Supplemental
Table S2). The training time with the random forest
classifier was about ten times faster than that with the C-
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Support Vector Classification. Therefore, we end up using
the random forest classifier for further experiments.

To find the optimal number of trees for the random
forest classifier, we tested six different values ranging from
10 to 200 trees, which lead to an optimum of 50 trees
(Figure 4(b), Supplemental Table S3).

A random forest classifier has been trained by using
RGB, Lab, and HSV as multiple- and single-color channels
(Figure 5(a), Supplemental Table S4).

Texture spatial features such as local binary pattern [40],
Haralick [41], and Parameter-Free Threshold Adjacency

Statistics (PFTAS) [42] were also tested for improving the
performance of the classifier (Figure 5(b), Supplemental
Table S5).

Four models reached an overall accuracy above 0.80: the
blue channel of the RGB color space, the hue channel of the
HSV color space, the a channel of the Lab color space, and
the Haralick texture features. Those models were tested fur-
ther in the validation experiment.

3.3. Segmentation Approach. In addition to the machine
learning approach, we have tested several segmentation

 

RGB composite image Frame segmentation Row separation

Backlight image

Row 1
Row 2

Row 3
Row 4

Leaf segmentation

Row1 Row 2 Row 3 Row 4

Binary image

Figure 3: Frame and leaf image segmentation processing chain. In the first step, the white leaf-holding frames are used to define the regions of
interest (ROIs) that contain the leaf fragments. Next, the plate image is split on four ROIs, each one containing a row of leaf samples that
typically belong to a single genotype but to a different individual plant (e.g., each leaf fragment in a row is a technical replicate). In
parallel, the back-illuminated image of the plate is used to separate the leaves of each other. The final leaf segmentation is done by
combining the row and leaf ROIs.
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Figure 4: (a) Evaluation of different classifiers on HSV_H_channel (5000 pixels/class, n = 10, error bars = SD). (b) Evaluation of the random
forest classifier with different numbers of trees on HSV_H_channel (5000 pixels per class, n = 10).
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methods: edge detection, superpixel segmentation, watershed
transformation, region growing methods, thresholding, and
minimum and maximum RGB (data not shown). The most
efficient segmentation was achieved by the relatively simple
method of minimum RGB (minRGB) (Figure 6). The algo-
rithm takes the single values for each RGB channel, deter-
mines the minimum number of each channel, and stores
the value. The other two channels are set to the value 0. This
simple filter allowed reliable differentiation of the disease
symptoms from the background by simultaneous reduction
of the analysis artifacts and hardware workload.

3.4. Validation Experiment. The Macrophenomics module is
aimed at providing a precise and reproducible evaluation of
the experimental results and at the same time at releasing

the human personnel from a routine and laborious task. To
estimate the performance of the different approaches and
computer models on independent material, we have carried
out a validation experiment, where six domain experts were
asked to do a manual disease rating. Combining the scores
given by all experts formed a robust mean value, which was
used to validate the computer prediction results. The valida-
tion set included a partially very difficult to score material
with a lot of leaf senescence and necrosis.

In parallel to the visual methods, two other types of mea-
surements were included for comparison: quantification of
the total fungal biomass using quantitative real-time PCR
(qPCR) of fungal DNA and inoculum density as the number
of applied fungal spores per mm2 of leaf surface (Figure 7(a),
Supplemental Table S1).
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Figure 5: (a) Evaluation of different color pixel classification methods (5000 pixels/class, n = 10, error bars = SD). Random forest classifier
(nr trees = 50). (b) Evaluation of texture features (5000 pixels/class, n = 10, error bars = SD). Random forest classifier (nr trees = 50).
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3.4.1. Performance of the Machine Learning Approach. All
machine learning models with accuracy above 0.8
(Figures 4 and 5) plus the minRGB segmentation algorithm
were tested on the validation experiment data by comparing
the mean visual scores and the predictions of the correspond-
ing models (Figure 8).

The best correlation to the mean visual data (0.885) was
achieved by the minRGB method, confirming once more its
efficiency for image segmentation of the particular material.

3.4.2. Performance of the Segmentation Approach. Although
the leaf material of the validation experiment was often cov-
ered by large necrotic and/or chlorotic areas, which may
complicate the disease recognition even for domain experts,
the minRGB-based prediction was very accurate (Figure 9).

The minRGB-based algorithm was also tested in a larger
experiment with wheat, showing an even higher level of accu-
racy (Figure 10).

The better results for the wheat material might be
explained with the lower frequency of appearance of prob-
lematic artifacts such as necrosis and senescence in this par-
ticular material.

The run time per sample and per dataset was reduced up
to 10-fold by using the minRGB approach in comparison to
the per-pixel classification methods. With the particular
hardware configuration, the image analysis time was up to
3-fold shorter than the time required for image acquisition,
thus allowing the implementation of image analysis in real
time.

3.5. Application of the Macrophenomics Platform for
Evaluation of Quantitative Disease Resistance of Genetically
Diverse Plant Material. The disease phenotype may strongly
depend on the genotype of the host plant. Therefore, we have
tested a collection of 388 genetically diverse wheat genotypes
for quantitative disease resistance against wheat powdery
mildew. The collection consists of 187 elite breeding lines,
released post-Second World War, and 201 plant genetic
resources, mostly historically collected landraces. The plants
were grown to the two-leaf stage (13 days), and the second
leaf was cut and inoculated with the wheat powdery mildew
isolate FAL 92315. The disease symptoms were scored after
6 days of incubation at 20°C, 60% RH, and 16h light period.
Each genotype was tested in two biological repetitions, with
six individual plants per genotype.

The result showed a very different distribution of the
levels of quantitative disease resistance within the two
groups, with a significant enrichment of resistance genotypes
in the elite lines (Figure 11).

4. Discussion

A massive body of data on powdery mildew disease resis-
tance of different plant genotypes was collected over the
years by the breeders and researchers. Although a precious
resource, the majority of this data is hardly reproducible
because it is collected mostly in uncontrolled field conditions,
with an unknown mix of pathogen isolates, and visually
scored by many different persons. To overcome these
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Figure 7: (a) Plots of the infection area determined automatically (blue triangles) and mean manual values (“Mean man.,” green rectangles),
together with the fungal biomass measured by qPCR (normalized relative transcript levels multiplied by 100 for better visibility, purple
crosses) and inoculation density (spores per mm2, red rectangle, sorted ascending). On the x-axis are the ordered samples, and on
the y-axis are the infection area (% of the leaf surface), relative fungal biomass (relative units), and inoculation density
(spores/mm2). (b) The minimal and maximal visual infection scores (black bars) and the means (red dots) estimated by the domain
experts. The graphs show the discrepancy of visual scoring of the involved persons. On the x-axis are the ordered samples sorted by
the mean, and on the y-axis is the infection area (% of the leaf surface).
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problems and to establish a platform for precise phenotyping
under controlled conditions, we have developed a high-
throughput platform for phenotyping of cereal leaf diseases.
The system is based on the well-established detached leaf
assay [43–45], which allows a very high level of controlling
the environment and pathogen pressure. The method is also
very well adapted for phenotyping via optical sensors since
the leaves can be mounted in special containers for acquiring
images in fully controlled conditions.

In our system, we have selected a monochrome CCD sen-
sor to avoid some of the inbuilt problems of the RGB cameras
(e.g., pixel value interpolation and lowered quantum effi-
ciency). Instead of using filters for specific wavelengths, we
decided to use narrow-bandwidth isotropic LED light
sources, thus avoiding the use of motorized filter magazines
and losing quantum efficiency. The nature of the samples
(nonmoving fixed objects) allows the acquisition of several
images per object and the combination of the data without
complicated merging methods. The leaf samples are fixed in
standardized containers (microtiter plates), which greatly
simplify the hardware design allowing the use of commer-
cially available components such as the plate crane. The
white plastic frames that keep the leaves fixed in the plates

are at the same time used to define the area of interests, where
the leaves are located.

The central hardware part of the system is the Macrobot.
It is equipped with custom imaging system software devel-
oped by Fraunhofer IFF (Magdeburg, Germany). Several
software modules control all actors and sensors in the system
providing services to a service manager. The flow control for
the imaging process is achieved by script programming,
which enables a change in the imaging process without reim-
plementing the different software modules and makes exten-
sions to the system secure and efficient. System modules
providing a graphical user interface are organized in a recon-
figurable user interface, which can be arranged to the needs
of the system user without reimplementation. The imaging
system generates a structured dataset for the subsequent
image analysis.

We have tested several machine learning and segmenta-
tion approaches to find the most efficient algorithm for dis-
ease quantification. The most informative features for the
machine learning approach were the H, B, and a channels
of the HSV, RGB, and Lab color spaces, respectively. Among
the tested texture features, Haralick was the by far most
informative. A combined pixel classification based on color
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and texture features was tested as well but without significant
improvement compared to the single features. Of the three
different classifiers that we have evaluated, the random forest
(RF) performed slightly better than the Support Vector Clas-
sifier (SCV) and much better than the Linear SVC. We have
tested also RF with a different number of trees, and we found
the number of 50 trees to be optimal.

Astonishingly, among all tested segmentation approaches,
the most accurate and efficient technique was the simple
method of minimum RGB (minRGB). This filter was able to
detect the infected leaf area reliably and to reduce the signal
from disease-unrelated necrotic brown spots, which were of
a particular problem in nearly all other approaches. Besides,
the hardware workload and the calculation time for comput-
ing the minRGB filter were significantly lower than those of
any other method. Finally, the minRGB was the segmentation
method of choice, which was implemented into the image
analysis pipeline.
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A take-home message from this result can be that the use
of sophisticated image analysis methods should not become a
goal per se. In several cases, more straightforward methods
may provide comparable results at a much lower cost.

We have validated the prediction results by three other
direct and indirect quantification methods: a visual scoring
as the mean value of the scores of six different domain experts,
quantitative PCR (qPCR), and inoculum density as the num-
ber of spores per square millimeter of the leaf surface.

Although the genomic qPCR provides a nearly direct esti-
mation of the total fungal biomass, it is a complicated method,
which is influenced by many factors, such as genomic DNA
isolation and quality, primer design, PCR efficiency, and
detection sensitivity. Also, the measured quantity depends
on both visible (on the leaf surface) and invisible (too small
or internal) fungal structures and is therefore not necessarily
in perfect correlation with the visible disease symptoms. The
inoculum density is instead an indirect parameter, which gives
the infection pressure and the potential for the formation of
fungal colonies. However, the formation of the final fungal
biomass depends on several other biotic and abiotic factors,
such as spore fitness and aggressivity, plant response, and sup-
port of the fungal growth and temperature and humidity. The
mean scoring value of several persons provides a very robust
parameter, and therefore, it was the method of choice for cal-
ibration of the automatic prediction.

We have applied the Macrobot platform for the evalua-
tion of an extensive, diverse collection of genotypes. The col-
lection contains modern breeding material (elite lines) and a
historical collection of landraces and semiwild genotypes.
Widespread opinion among the nonexperts and some
experts is that the wild species and landraces are typically
more resistant to biotic and abiotic stress than the modern
high-yielding varieties. Interestingly, our observation dem-
onstrates that the elite lines showed a substantial enrichment
of resistant genotypes compared to the landraces. This obser-
vation reflects the long-term efforts of the breeders for intro-
ducing disease resistance alleles in the elite material. These
results prove the capability of the Macrobot system to deliver
high-quality data for very diverse plant material. The
obtained phenotypic data can be used directly for breeding
purposes or GWAS approaches.

In this work, we demonstrate that our Macrophenomics
platform can provide reliable and reproducible data in an
excellent correlation with the classical scoring methods, and
it can even outperform the scores of individual experts by
the accuracy of infection area estimation. The platform is also
fully open for adaptation to diseases other than powdery
mildew leaf diseases such as different spot, blight, and rust
diseases caused by several fungal, viral, and bacterial patho-
gens, such as yellow and brown rusts (Puccinia sp.), septoria
leaf blotch (Zymoseptoria tritici), spot blotch (Bipolaris soro-
kiniana), bacterial leaf blight (Pseudomonas syringae), bacte-
rial leaf streak and black chaff (Xanthomonas translucens),
and barley yellow dwarf virus. However, an important limita-
tion is that the tested objects must fit into a standard MTP
container (app. 12 × 8 × 1 cm), which includes samples like
detached leaves, seeds, stem and root fragments, cereal
spikes, and small whole plants.

A FAIR principle [46] compliant data management is
currently under development. The pipeline follows the basic
schema of the BRIDGE Visual Analytics Web Tool for Barley
Genebank Genomics [47]. It will allow visualization and
export of the phenotypic and genotypic data, online GWAS,
and several other features of interest to the scientist and plant
breeders.

Data Availability

Image data used for validation of the Macrobot algorithm
is available at [48]. The image analysis software is available
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