AAAS

Plant Phenomics

Volume 2020, Article ID 1375957, 14 pages
https://doi.org/10.34133/2020/1375957

Research Article

High-Throughput Rice Density Estimation from
Transplantation to Tillering Stages Using Deep Networks

Liang Liu(®,' Hao Lu®,’ Yanan Li(®,’> and Zhiguo Cao

1

'National Key Laboratory of Science and Technology on Multi-Spectral Information Processing, School of Artificial Intelligence
and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China

>The University of Adelaide, Adelaide, SA 5005, Australia

3School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205 Hubei, China

Correspondence should be addressed to Zhiguo Cao; zgcao@hust.edu.cn

Received 29 February 2020; Accepted 2 June 2020; Published 21 August 2020

Copyright © 2020 Liang Liu et al. Exclusive Licensee Nanjing Agricultural University. Distributed under a Creative Commons
Attribution License (CC BY 4.0).

Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage
evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and
inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to
automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations,
render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-
based approach called the Scale-Fusion Counting Classification Network (SFC?Net) that integrates several state-of-the-art
computer vision ideas. In particular, SFC*Net addresses appearance and illumination changes by employing a multicolumn
pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance
engendered by scale, SFC*Net follows a recent blockwise classification idea. We validate SFC*Net on a new rice plant counting
(RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC*Net achieves
highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error
(MSE) of 38.06, a relative MAE of 3.82%, and a R? of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the
conventional counting approach CSRNet. Further, SFC*Net provides high-throughput processing capability, with 16.7 frames
per second on 1024 x 1024 images. Our results suggest that manual rice counting can be safely replaced by SFC*Net at early

growth stages. Code and models are available online at https:/git.io/sfc2net.

1. Introduction

Plant counting is a fundamental task in agriculture. It is an
important index for crop growth monitoring. For example,
the total number of maize tassels determines whether maize
plants step into the tasseling stage [1]. The number of root
nodules is an indicator of the health status of soybean [2].
The dynamics of the pest population [3] benefits pest fore-
casting. In addition, knowing the condition of the weeds
helps farmers to spray herbicide and to optimize its use [4].
More importantly, many counting results are closely related
to the crop yield, such as the number of wheat ears per unit
ground area (ear density) [5, 6] and the number of fruits [7].

Rice is one of the most important cereal crops in the
world. Its annual production is more than 590 million tons

[8]. The numbers of leaves [9], panicles [10], spikes [11],
and particles [12] are common statistic indexes of interest.
In particular, rice density is closely associated with cultivated
area statistic and management [13], as well as how to maxi-
mize the use of cultivated land [14]. The increase in planting
density can suppress the growth of weed [15] and improve
the efficiency of nitrogen and the yield of rice [16]. In addi-
tion, the number of survival rice plants is one of the key met-
rics in rice breeding [17]. It is also related to damage
evaluation caused by typhoon [18] and flood [19].
Nowadays, in-field rice plant counting still depends on
manual sampling and statistics. Agricultural observers must
frequently process each plant manually, which is tedious,
ineflicient, and inaccurate. Such an observation manner eas-
ily causes irreversible damage to rice. With the prevalence of
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FIGURE 1: Some examples showing the difficulties in rice counting: (a) shows illumination variations, (b) shows the appearance changes when

rice grows, and (c) shows overlapping scenes.

a low-end digital camera, computer vision technology
emerges as a potential automated solution. However, it faces
many difficulties shown in Figure 1:

(i) Occlusions. Since the camera is fixed, rice that is far
from the camera tends to be blocked by the one that
is close to the camera. Neighboring leaves may
occlude rice planted in the same row.

(ii) Illumination Variations. The illumination of the
outdoor environment changes significantly because
of the changing sunlight. Since rice grows in a field
covered by water, the water leads to sunlight reflec-
tion, thus rendering unreliable imagery.

(ili) Appearance Variations. The appearance of rice
plants varies at different growth stages. For example,
the height and stem diameter of rice at the returning
green stage increase obviously compared with those
at the transplant seeding stage.

(iv) Scale Differences. A fixed camera also generates per-
spective distortion. Objects close to the camera are
large in the visual field. Even for the same rice plant,
images taken at different heights show different sizes.

The problems above not only appear in rice counting but
also are pain spots in generic object counting in CV. Many
effective CV-based counting approaches have been devel-
oped to address these issues. For example, occlusions can
be alleviated in the density regression-based paradigm [20].
Appearance variations caused by illumination or different
growth stages can be mitigated via a multicolumn feature
encoder [21], a pretrained model [22], or a feature fusion
strategy [23]. Further, scale variations often lead to sample
imbalance. This problem is well addressed by transforming

count values to quantized count intervals (counting class)
[24]. Hence, we propose to integrate these successful count-
ing ideas into SFC*Net for rice density estimation. First, in
the feature extraction stage, SFC*Net introduces ImageNet-
pretrained MixNet-L [25] as the backbone (a multicolumn
light-weight convolution architecture) to enhance feature
representation. Second, multilayer fusion is used to fuse
feature maps from different convolution layers to further
increase appearance robustness. Third, following [24, 26], a
redundant module generates a redundant count interval
map (class map) to address object splitting and sample
imbalance. Finally, in the inferring stage, the redundant class
map is normalized by inverse quantization [24] and dere-
dundancy [26] to generate a count map. The final count of
the input image can thus be computed by summing over
the normalized count map.

We evaluate our method on a middle-scale rice plant
counting (RPC) dataset, which includes 382 high-resolution
images. They are collected from two field sites in China from
2010 to 2013. We manually annotate dots for each plant.
Extensive experiments verify the effectiveness of each module
and report highly accurate counting performance on the RPC
dataset with a mean absolute error (MAE) of 25.51, a mean
square error (MSE) of 38.06, a relative MAE of 3.82%, and
a R? of 0.98. In addition, SFC*Net can process 1024 x 1024
images with 16.7 frames per second (FPS), implying its
high-throughput nature.

Overall, we make the following contributions:

(i) We integrate several successful object counting ideas
and present a novel deep learning-based rice count-
ing approach, SFC*Net, for rice density estimation

(ii) We introduce a new rice plant counting (RPC)
dataset with dotted manual annotations
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(iii) We show that traditional manual rice counting can
be safely replaced with our automated solution pre-
sented in this work

2. Related Work

We review recent counting methods in computer vision and
their applications in crop phenotyping.

2.1. Object Counting in Computer Vision. Early object count-
ing methods in CV are derived from object detection where
each object is detected by a hand-crafted feature classifier
[27], and the number of the detected objects is summed
to be the object counts. Another solution is with the help
of video [28], which first segments the foreground and
background by motion information and then sums the
foreground objects. Considering that bounding box- and
pixel-level annotations are expensive, a milestone work [20]
translates counting into density map regression. At this time,
another regression solution [29] is to regress the local count.

After deep learning achieves unprecedented success [30],
it is introduced into the counting community. [31] is the first
work applying deep learning to counting by estimating the
density map and object counts simultaneously. Ever since,
deep learning-based methods become popular for object
counting. According to different learning targets, typical
deep learning-based methods can be classified into the fol-
lowing paradigms: density map-based method, count map-
based method, class map-based method, dot map-based
method, and detection-based method. Density map estima-
tion is still the mainstream which inherits from traditional
methods. [21, 32] utilize a multicolumn convolution neural
network (MCNN), where different columns have convolu-
tional layers of different receptive fields to increase size
robustness of objects. [22] uses VGG16 [33] as its backbone
and dilated convolution to increase the receptive field. Fur-
thermore, aside from density map-based methods, count
map-based methods are also developed where each point
represents the count of a block in the input image. In this
paradigm, [26] regresses patch count for each patch indepen-
dently, while [34] uses a fully convolutional network for esti-
mation. In order to solve the problem of sample imbalance in
count map-based methods, count values are converted to
count intervals through nonlinear quantization [24, 35],
thereby transforming a counting task into a blockwise multi-
class classification problem. Besides, a dot map-based
method [36] is proposed to compute the dot map directly
without the help of the Gaussian kernel. Apart from these
map-based methods, with the development of weakly super-
vised object detection, detection-based counting methods
return to the eye of researchers. For example, [37] extracts
bounding box information from dotted annotations to train
a crowd detection network. In summary, CV-based counting
methods have the following advantages:

(i) The architecture of the fully convolutional network
(FCN) pretrained on ImageNet can extract powerful
and descriptive features with high efficiency

(ii) The multiscale feature encoder (typically MCNN)
can extract multigrained features and further
improve the feature description

(iii) By quantizing counts into count intervals, counting
models can alleviate sample imbalance caused by
scale variations

SFC’Net inherits several key advantages from object
counting networks. It extracts multiscale features by a multi-
branch ImageNet-pretrained MixNet-L in a fully convolu-
tional manner. It also predicts a redundant class map to
alleviate sample imbalance.

2.2. Plant Counting in Crop Phenotyping. Recently, some
CV-based methods have been proposed for plant counting,
which can be classified into traditional methods and deep
learning-based methods. The traditional methods commonly
segment plants or detect them by hand-crafted low-level
features and count the detected objects. For example, [7]
segments apples by a threshold, which is further dealt by
morphological processing to identify the count of apples.
[38] extracts the SIFT descriptors from superpixels and trains
a support vector machine to classify the fruit and nonfruit
areas. On the contrary, deep learning-based detection
methods employ a data-driven network for segmentation/de-
tection. For instance, [39] utilizes Faster RCNN [40] to detect
wheat spikes. Another deep learning-based counting para-
digm is to employ CNNs to infer the count from an image
directly. In this paradigm, [41] regresses the global count
from images captured by drones. TasselNet [26] introduces
local patch regression into maize tassel counting. Further,
[42] combines density map regression and background seg-
mentation to estimate the count of rice seedlings. However,
current crop counting methods have the following points
that can be further improved:

(i) Detection/segmentation-based methods tend to fail
when tackling partially overlapping objects

(ii) Regression-based methods suffer from sample
imbalance, which is caused by inhomogeneous dis-
tribution and gives rise to a training bias

(iii) For traditional methods, they are unable to adapt to
complex scenes in real-world scenarios because the
features are not strong enough

(iv) For deep learning-based methods, they commonly
use a simple structure of the backbone, which limits
the feature expression to scale variations

SFC*Net overcomes these disadvantages with a carefully
chosen feature backbone, a well-designed feature fusion
strategy, and a delicately developed learning paradigm.

3. Materials and Methods

3.1. Experimental Fields and Imaging Devices. The experi-
mental field images analyzed in this work were captured in
Jiangxi and Guangxi Provinces, China. All the images were
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FIGURE 2: Image acquisition device in the rice field. The numbers in the image represent the following: 1—lighting rod, 2—antenna,

3—support, 4—CCD cameras, and 5—monitoring camera.

taken under natural illumination from 2010 to 2013. The
imaging device includes an image-capturing and a communi-
cation system [43], as shown in Figure 2. The image-
capturing system is used for data collection. In detail, rice
image sequences (4272 x 2848) are captured in Jiangxi with
an OLYMPUS E-450 camera during the daytime from 9:00
to 16:00 every hour within 2010 to 2013. Similarly, rice
images with resolution 3648 x 2736 are also captured in
Guangxi with a Canon EOS 1100D camera during the day-
time from 7:00 to 19:00 every hour within 2012 to 2013.
Moreover, the communication system including the antenna
and encoder is used for data transmission through 3G wire-
less networks.

3.2. Rice Plant Counting Dataset. We choose 382 high-
resolution in-field rice images from 10 image sequences
(two sequences in Jiangxi from 2010 to 2013 and one
sequence in Guangxi from 2012 to 2013) from the transplan-
tation stage to the tillering stage. The rice sizes vary from
80 x 80 pixels to 300 x 300 pixels, with spatial resolutions
ranging from 1.51 mm?*/pixel to 5.65 mm?*/pixel. Considering
that there were more than one thousand plants in the images
taken in Jiangxi from April 2012 to May 2012 only, we divide
the first half of them in the training set and the rest in the test
set. Overall, the rice plant counting dataset consists of 230
training images and 152 testing images.

Following the standard counting annotation paradigm,
we manually mark a point at the root of each plant. Indeed,
point annotations are considered the most natural way to
count objects, especially for dense objects, because the bur-
den of point annotations is less than that of other fine-

grained annotations such as bounding boxes or pixels.
Figure 3 shows some samples with dotted annotations. In
our training set, the maximum count of an image is 1330,
the minimum is 182, and the average is 493.11. In our testing
set, the maximum count of an image is 1255, the minimum is
341, and the average is 648.39. The total number of annota-
tions in the RPC dataset is 211,971.

3.3. Learning Target. Here, we describe the learning target of
the model because this learning target is not in accordance
with one’s common sense. Differing from the local patch
regression task that estimates the count map directly [26,
44], in this paper, blockwise classification counting was
introduced [24], which estimates the class map describing
the counting intervals. The reason why we use blockwise clas-
sification counting is that, by quantizing the patch count into
the counting interval via nonlinear transformation, it can
ameliorate the sample imbalance [24].

We show how to generate the class map from dotted
annotations step by step. An example demonstrating the dif-
ferences between the dot map, density map, count map, and
class map is shown in Figure 3. Following the standard
counting paradigm, a density map is first obtained from the
dot map [20]. This process can be defined by

D(i)=Y #(i;P,0%), (1)

ieP

where i €I is the pixel in image I, P is the dot map of I by
setting the pixel of annotated points to be 1 (otherwise 0),
and (i;P,0?) is the 2-D Gaussian kernel parameterized
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FIGURE 3: Annotation samples (a and b, the cross center is the labeled point for rice root) and conceptual differences between a dot map (c),

density map (d), count map (e), and class map (f).

by o. This equation is equivalent to a convolution operation
on the dot map with the Gaussian kernel.

Given the density map, a count map is further computed
by blockwise summation [26], defined by

Y. D(k), (2)
kebX

where b; is the j-th block in I and k € b; is the pixel within b;.

To train a local count regression model, ¢, loss can be used,
which takes the following form:

6 ==y IN(b;) - N&(b))], (3)

jeI

where N¥(b;) is the ground truth count of patch b;.

Given the count map, following [24], we further quantize
the count map to obtain the class map C(b;) by

)= { 0, N(b;) =0,

C/(N(b))), otherwise, (4)

C(b

where

i) = (o (50 1.2) 1), (9

where s is the quantization step and q is the start of the log
space. log (0) is excluded where the majority of samples are
the background. To quantize all patch samples, background
patches and the patches whose count values are between 0
and e? are set to be independent classes. After quantization,
we transform local count regression into blockwise classifica-

tion. To train a multiclass classification model, the cross-
entropy loss is used, defined by

CMax

(-3 3 e

jeI ¢=0

)) log p(js ©), (6)

where p(j, ¢) is the probability of the j-th block for the c-th
counting interval, Cy,, is the maximum counting interval,
and Cg(j) is the ground truth counting interval of the j-th
block.

At the inferring stage, to recover the count map from the
class map, the median of each interval is set as its count value
[24], i.e.,

N, (1+ c(bj))

2

, otherwise,

(7)

where

eI (C2%  otherwise,

0, Cc<1,
N,(C)= { (8)

and C(b;) is the estimated count interval of block b;.

3.4. Overview of SFC°Net. As shown in Figure 4, SFC*Net
includes four parts: a MixNet-L backbone, a multilayer
fusion module, a redundant processing module, and an infer-
ring module. To compute the number of rice plants in the
image, multiscale feature maps are first extracted by the
MixNet-L backbone and then fused by a multilayer fusion
module. The fused feature maps are subsequently processed
by the redundant module to compute the redundant
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FIGURE 4: Overview of SFC*Net. The MixNet-L backbone first extracts feature maps that are further fused by multilayer fusion modules
(MFM). Then, the redundant module processes multiscale feature maps to generate a redundant class map. Finally, after inverse
quantization and deredundancy, SFC*Net outputs the count map. The final count of the input image is computed by summing each pixel

in the count map.
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FIGURE 5: Structure diagrams. (a) is a typical structure of MixNet while (b) is that of multicolumn CNN. Common modules (single group
convolution and pooling) are not shown. (c) Multilayer fusion (MFM). The input of the higher layer is the H; x W, x C, feature map,
and the input of the lower layer is 2H, X 2W x C,. The output of this model is the 2H, x 2W, x 2C, feature map. “BN” denotes batch
normalization. “C” means the concatenation operator. (d) Redundant module. “A-POOLING” means average pooling. “C,,” denotes the

number of counting intervals.

(overlapping) class map. During the inference process,
inverse quantization and deredundancy modules convert
the redundant class map into a count map. The total count
of the image can be calculated by simply summing the count
map. We describe each module in detail next.

3.5. MixNet-L Backbone. A multicolumn network [21] is a
popular solution to mitigate scale variations and increase
the feature description. In this architecture, convolution ker-
nels of different sizes in different columns extract multiscale
feature maps to take object size variations into account.
In this work, we introduce MixNet [25] into our model.
It also utilizes filters with different receptive fields and is
proven to be a powerful backbone in the ImageNet [33]
classification. The typical structural difference between
MCNN and MixNet is shown in Figure 5. MCNN fuses
multiscale feature maps only once before the count map
estimation, while MixNet fuses the feature maps after each
multikernel convolution (“group convolution”). According
to different application scenarios, MixNet has three types of
architectures called MixNet-S, MixNet-M, and MixNet-L,
respectively. MixNet-S has few layers than MixNet-M and

MixNet-L, while MixNet-L has the identical architecture
with MixNet-M but is with extra convolution channels. In
this work, we select MixNet-L as our backbone.

3.6. Multilayer Fusion. The multilayer fusion module (MFM)
is used to fuse the multilayer feature map to enhance the fea-
ture representation further. The structure of this module is
shown in Figure 5. In each step, the decoder fuses features
from two adjacent layers and outputs a fused feature map.
In this module, channels of the feature map in the high-
level layer are adjusted to be 2 times larger than those in
the low-level layer. Next, it is upsampled by bilinear interpo-
lation and further concatenated with the low-level feature
map. The reason for adjusting feature map channels is to
highlight high-level features, which include high-level
semantic information, and to make it play the major role in
the fused feature map. Low-level features are only treated as
auxiliary information that supplements details. By using this
module, all feature maps from each layer can be fused as long
as the feature channels are changed accordingly. In this work,
we only fuse three layers. We also investigate how to choose
the number of fusion layers in experiments.
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FIGURE 6: The detailed example of deredundancy.

3.7. Generating a Redundant Class Map. In [26], to amelio-
rate the effect that block splits an object, a patch with overlap
(the patch size is 32 x 32 and the stride is 8) was sampled and
the count from overlapped patches was averaged. Following
[26], a similar redundant module is concatenated after
MEFM for redundant evaluation. The structure of the redun-
dant module is shown in Figure 5. First, an average pooling
layer processes the feature map to generate the redundant
feature maps. As mentioned above, we fuse three high-layer
features, whose minimum downsample rate is 8. Thus, the
downsampling rate for the feature map after the fusion stage
is 8 (the patch size is 8 x 8 and the stride is 8). To be the same
with the setting in [26], the kernel size of average pooling
layers is 4 and the stride is 1.

After average pooling, the model outputs the response
map for each counting interval viaa 1 x 1 x C,, convolution,
which further generates a probability map after a SoftMax
layer. The probability map further generates the redundant
class map by selecting the class interval with the maximum
response. Training loss (Equation (6)) is generated from here
to increase the probability of the ground truth counting
interval.

3.8. Deredundancy. In this section, we explain the deredun-
dancy process that decodes the redundant class map. First,
the patch count is distributed evenly across each pixel it con-
tains as

Dy ("j’)’j) il ’ ©)

nbj

TaBLE 1: Performance comparison between regression and
classification.

Method MAE MSE rMAE RrR?

Regression 34.58 55.61 5.27% 0.95

Classification 25.51 38.06 3.82% 0.98
TaBLE 2: Backbone effectiveness verification.

Backbone MAE MSE rMAE R?

VGGl6 30.67 57.53 4.51% 0.95

MixNet-L 25.51 38.06 3.82% 0.98

where (x;, ;) € b; are the pixels within block b; whose total
number of pixels is 7, and N (b)) is the estimated patch
count of b;. The final count map is computed by pixel-level
average normalization, defined by

ij D[bij (x.)

D°(x,y) = ()

, (10)

where T(x, y) denotes the computing times of pixel (x, y) in
the output count map D°. A detailed example of deredun-
dancy is shown in Figure 6.

3.9. Implementation Details. We implement our method
based on PyTorch [45, 46]. The initial parameters of the
backbone network are loaded from the ImageNet- [30] pre-
trained MixNet-L. Other parameters are initialized by the
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FIGURE 7: Sensitivity results of model parameters. (a) Adaptation of the Gaussian kernel. (b) Performance of different choices of multilayer
fusion. Different structure settings are shown in Table 3. (c) Sensibility testing for the start in the log space.

TABLE 3: Parameters of average pooling for different fusion choices.
“stride-a” and “size-a” are the stride and kernel size of average
pooling, respectively, and “stride-s” and “size-s” are the stride and
size of a sampling patch, respectively.

Setting Fusion layer Stride-a  Size-a  Stride-s  Size-s
a 5 1 1 32 32
b 5+4 2 1 32 16
c 5+4+3 4 1 32 8
d 5+4+3+2 8 2 32 8
e 5+4+3+2+1 16 4 32 8

TABLE 4: Sensibility testing for the step in the log space.

TaBLE 5: Effectiveness of the network module.

Modules Metric

MixNet-. MFM Classification MAE MSE rMAE R?
X X x 51.41 8540 7.45% 0.89
v X x 46.88 6844 6.96% 0.94
X v x 4761 8594 6.75% 0.89
X X v 31.28 49.82 4.76% 0.96
v v x 3458 5561 527% 0.95
v X v 28.62 39.98 4.74% 0.97
x v v 30.67 57.53 4.51% 0.95
v v v 2551 38.06 3.82% 0.98

TABLE 6: Inference time (frames per second) of different models.

s MAE MSE rMAE R?

05 30.06 54.81 4.38% 0.95 Model 640 x 480 1080 x 720 1024 x 1024 1920 x 1080
10 25.51 38.06 3.82% 0.98 CSRNet [22]  20.34 8.17 6.08 3.06

15 28.98 41.02 4.87% 0.98 BCNet [24] 29.90 11.77 8.82 4.37

20 32.17 46.42 5.17% 0.97 SFC*Net 22.70 19.40 16.70 8.68

Xavier method [47]. To reduce computational consumption,
we downsample the original high-resolution images to their
1/4 resolution. When training a model, we randomly crop
384 x 384 patches (each image generates one cropped patch
in each training epoch) from the downsampled image.
Images are preprocessed by mean subtraction and division
of standard deviation (the mean and standard deviation are
calculated from the training set). We employ stochastic gra-
dient descent (SGD) to optimize the model. The batch size
is set to 8. The initial learning is set to le* and is decreased
by a factor of 10 every 200 epochs. We train the model for
600 epochs.

4. Results

In this section, we show extensive experiments for SFC*Net
on the RPC dataset. First, we introduce the evaluation met-
rics. Second, some ablation studies are presented to show
the effectiveness of the designed modules. Third, our method
is compared with some state-of-the-art counting approaches.

TaBLE 7: Comparison with state-of-the-art methods.

Method MAE MSE rMAE R?
MCNN [21] 92.11 121.52 15.33% 0.89
TasselNetv2 [44] 59.39 95.80 7.86% 091
CSRNet [22] 49.22 74.58 7.47% 091
BCNet [24] 31.28 49.82 4.76% 0.96
SFC*Net 25.51 38.06 3.82% 0.98

Unless otherwise noted, the model leverages MixNet-L as our
backbone and fuses 3-layer feature maps. In addition, the
default quantization parameters are s=0.1 and g=-2, and
the default Gaussian kernel is set to 4. We hypothesize that
each hyperparameter is independent of each other.

4.1. Evaluation Metric. The mean absolute error (MAE) and
root mean square error (MSE) are the standard metrics for
object counting which are defined as follows:
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F1GURE 8: Qualitative results of our method. (a—c) The testing image, ground truth count map, and inferred count map. “GT” is the ground

truth count and “EST” the estimation result.

MAE = %§1|gt(n) — est(n)), (11)
MSE = %Z jgt() — est(m)]P, (12)

where N denotes the total number of test images, gt(n) is the
ground truth count of image #, and est(n) is the inferred
count. The performance of MAE shows the accuracy while
MSE shows the estimating stability. In addition, relative
MAE (rMAE) is also used in evaluation, defined by

rMAE = ,2 % x 100%. (13)

4.2. Ablation Study

4.2.1. Blockwise Classification versus Local Count Regression.
Here, we compare blockwise classification with local count
regression for rice plant counting. To adapt our architecture
to regression, the final 1 x 1 x C,, convolution in the redun-
dant module is replaced with a 1 x 1 x 1 convolution kernel.
In this paradigm, the training target is changed back to local
patch counting, and ¢, loss (Equation (3)) is leveraged to
train the model. Thus, the output of this model is a redun-

dant count map, which is further processed by deredundancy
to output the count map as in [44]. The results shown in
Table 1 illustrate that the blockwise classification counting
obviously reduces the MAE by more than 25% compared
with the regression baseline.

4.2.2. Backbone Comparison. Here, we verify the effectiveness
of the MixNet-L backbone. We compare MixNet-L with
VGG16 [33], which is widely used in crowd counting and
has shown good performance and generalization [22]. We
compare the performance by replacing the backbone of
SFCNet. The results shown in Table 2 illustrate the advantage
of the MixNet-L backbone. In particular, MixNet-L reduces
the MAE and MSE by more than 15% and 34%, respectively,
compared with VGG16 in our method. This experiment
verifies the effectiveness of the MixNet-L backbone.

4.2.3. Sensitivity of Model Parameters

(1) Gaussian Kernels. Here, we show the effect of different
choices of Gaussian kernels. Five different Gaussian kernels
0=({2,4,6,8,10}) are compared. The results shown in
Figure 7 demonstrate that, unless the Gaussian kernel is set
to be too small (0 =2), the performance will not change
dramatically. If the kernel size is too small, the generated
Gaussian kernel covers only limited areas such that only a
few pixels in the image have responses, which may exclude
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FIGURE 9: The coefficients of determination of five methods on the RPC dataset. “GT” denotes the ground truth results and “EST” the

estimated results. (a—e) MCNN [21], TasselNetv2 [44], CSRNet [22], BCNet [24], and SFC*Net.

part of the plant root and confuse the network. Moreover, the
error increases with increased kernel sizes. This is because the
rice root only occupies few pixels. Large kernels lead to
wrong labels of the background. Since o = 4 obtains the best
result compared with other choices, we fix 0 =4 in the
following experiments.

(2) Fusion Layers. Here, we evaluate different choices of fus-
ing layers. Since our multilayer fusion module can be applied
to each layer, we report the performance of different fusion
strategies. Following [26], the step of the sampling patch is
set to 8 and the sampling size is set to 32. Note that different
layers have different downsampling rates, and the steps and
kernel sizes of average pooling are changed conditioned on
the feature maps used. For the fusion choice that employs
layer 5 as the output feature map directly, the redundant
sampling step is set to 32. For fusing layers of 5 and 4, the step
is 16. This is because their downsampling rates of feature
maps are larger than 8 (32 and 16, respectively). The param-
eters of average pooling for different fusion choices are
shown in Table 3, and their performances are shown in
Figure 7. We can see that fusing 3 layers outperforms other
choices. Compared with fusing 1 or 2 layers, fusing 3 layers
receives more low-level details. However, fusing extra low-
level features may weaken high-level semantic information;
thus, fusing 4 and 5 layers increases errors. Since fusing 3
layers obtains the best result, we adopt this choice in the rest
of the experiments.

(3) Count Intervals. Here, we show the effect of hyperpara-
meters in classification. First, we evaluate five different
choices of the starting point in the log space
(q9=1{0,-1,-2,-3,—4}), and the results are shown in Figure 7.

TABLE 8: Performance comparison on the MTC dataset.

Method MAE MSE
JointSeg [47] 24.2 31.6
GlobalReg [48] 19.7 23.3
mTASSEL [49] 19.6 26.1
DensityReg [20] 11.9 14.8
CSRNet [22] 9.4 14.4
TasselNet [26] 6.6 9.6
SDCNet [35] 5.6 9.1
BCNet [24] 54 9.6
TasselNetv2 [44] 53 9.4
SFC*Net 5.0 9.4

The results demonstrate that our method is not sensitive
to this parameter except when it is set to 0. This is because the
patches with counts between 0 and 1 (¢°) are significantly
more than those in other counting intervals. If these patches
are divided into one interval, the model will suffer from seri-
ous class imbalance. Since g = —2 reports the best results, we
choose it as the default parameter.

We also verify the sensitivity of the quantization step s in
the log space. The results shown in Table 4 demonstrate that
our method is not sensitive to this parameter. We hence
choose s =0.1 as the default parameter.

4.2.4. Effectiveness of Network Modules. Here, we verify the
effectiveness of each module (MixNet-L backbone, MFM,
and blockwise classification) in SFC?Net in Table 5. The
baseline (without MixNet-L, MFM, and blockwise classifica-
tion) shown in row 1 represents a model with the VGG16
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F1GURE 10: Failure cases: (a—c) the testing image, ground truth count map, and inferred count map. “GT” is the ground truth count and “EST”

the estimation result.

backbone and local count regression. The results show that
each module has a positive effect on performance improve-
ment. Particularly, the network with only blockwise classifi-
cation (row 4) achieves performance comparable to that of
the full model, which demonstrates the surprising effective-
ness of blockwise classification for rice plant counting.

4.2.5. Inference Time. Here, we report the running time of
SFC*Net on a platform with RTX 2060 6GB GPU and Intel
i7-9750H CPU. The results of four random inputs of size
640 x 480, 1080 x 720, 1024 x 1024, and 1920 x 1080 are
shown in Table 6. We also report the running time of
CSRNet [22] and BCNet [24]. We observe that SFC*Net is
fast when dealing with 1080 x 720, 1024 x 1024, and 1920
x 1080 images. However, it is slightly slower than BCNet
[24] when dealing with a 640 x 480 input. We believe that
the reason is that the advantage of depth-wise convolution
is not fully exploited in low-resolution inputs. However, since
images are usually of high resolution in agriculture, SFC*Net
shows a clear advantage over its competitors in processing
high-resolution images for high-throughput phenotyping.

4.3. Comparison with State-of-the-Art Methods. In this sec-
tion, we compare our method with other state-of-the-art
methods. MCNN [21] employs a multicolumn structure to
extract multiscale feature maps to address scale variations.
TasselNetv2 [44] proposes a fully convolutional structure to
generate a redundant count map for wheat spike counting.
CSRNet [22] utilizes VGG16 [33] as its backbone and
replaces its final fully connected layers with dilated convolu-
tion to increase the receptive field. BCNet [24] transforms
counting from a regression task into a multiclass classifica-
tion problem to alleviate sample imbalance. The results
shown in Table 7 demonstrate that our method outperforms
these competitors and reduces the MAE and MSE by at least
18% and 23%, respectively. The qualitative results are shown
in Figure 8, and the coefficients of determination of different
methods are shown in Figure 9.

We also test our method on the MTC dataset [26]. The
MTC dataset is created for maize tassel counting with 361
images collected from 16 imaging sequences. We compare
SFC*Net with the existing methods that have reported their

performance on this dataset. The results shown in Table 8
demonstrate that SFC*Net reports the new state-of-the-art
performance. This experiment justifies the generality of our
method for other plant species.

4.4. Failure Case Analyses. In this section, we analyze some
failure cases. Two examples are shown in Figure 10. Com-
pared with other results, our model reports relatively large
errors on these failure cases. We think the reason is that the
rice plants in these cases have significantly different appear-
ances with tiny leaves, and some of them look like a single
point on the paddy field. On the contrary, the majority of
plants in the dataset are with long leaves. It is worth noting
that these failure cases all come from the images captured
from Guangxi where images show obviously different
appearances from the images captured in Jiangxi. The failure
might be due to two reasons: either the diversity of the train-
ing dataset has to be improved or the method needs to be
improved on the robustness to appearance.

5. Discussion and Conclusion

In this paper, we propose the deep learning-based network
SFCNet for rice density estimation. SFC*Net integrates the
advantages of the mainstream object counting methods.
With powerful feature representation and redundant block-
wise classification, it improves the robustness to appearance
variations and ameliorates sample imbalance. In addition,
we collect a RPC dataset with 10 sequences between 2010
and 2013 in the rice field. A total of 211,971 dot annotations
are manually labeled on rice plants.

In experiments, we empirically verify the influence of
hyperparameters (Gaussian kernel and classification param-
eters), fusion decoder designs, and the counting by a classifi-
cation paradigm with the MixNet-L backbone. The results
show that (i) SFC*Net is not sensitive to the hyperparameters
chosen, (ii) the multilayer fusion module can supplement
details from low-level features and improve the performance,
(iii) the introduction of the blockwise classification counting
and MixNet-L backbone can significantly reduce the count-
ing errors, (iv) SFC*Net is efficient, and (v) SFC*Net also out-
performs state-of-the-art counting methods and reports
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highly accurate counting performance on the RPC dataset
with a coeflicient of determination of 0.98.

Although our method performs well on the test dataset,
there still exists limitation waiting for further improvement.
First, as per failure case analyses, our method still reports a
relatively large error in some samples (about a 100 absolute
error). This suggests that our method may have poor adapta-
tion to other rice cultivars with significant differences in
appearance.

Second, SFC°Net employs a blockwise classification
counting method to ameliorate the sample imbalance during
training. Indeed, it reports better results according to the
ablation study. However, as discussed in [24], quantization
errors exist in blockwise classification. When the accuracy
of blockwise classification estimation surpasses a certain pre-
cision, the major error will lie in quantization errors.

Third, the RPC dataset certainly does not cover the whole
data distribution of rice plants. In a real-world setting, the
weather is susceptible to change. In the RPC dataset, the
majority of samples were captured under nonrain conditions.
Thus, the adaptation of the method to weather variations
may be limited. Besides, the RPC dataset consists of the
images from transplantation to tillering stages, which are
only a part of rice growth. The CCD camera in the image-
capturing device is also fixed with similar height and inclined
angle, which implies that the model trained on the RPC
dataset cannot deal with other application scenarios such as
monitoring from hand-held smartphones or drones.

In future work, we will continue enriching the RPC data-
set to adapt to different weathers, growth stages, perspectives,
and rice varieties. Moreover, in this work, we only test our
method on the precollected dataset. To deploy it in a real-
world setting, we plan to test other flexible platforms.

Data Availability
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