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Plant phenotyping technologies play important roles in plant research and agriculture. Detailed phenotypes of individual plants can
guide the optimization of shoot architecture for plant breeding and are useful to analyze the morphological differences in response
to environments for crop cultivation. Accordingly, high-throughput phenotyping technologies for individual plants grown in field
conditions are urgently needed, and MVS-Pheno, a portable and low-cost phenotyping platform for individual plants, was
developed. The platform is composed of four major components: a semiautomatic multiview stereo (MVS) image acquisition
device, a data acquisition console, data processing and phenotype extraction software for maize shoots, and a data management
system. The platform’s device is detachable and adjustable according to the size of the target shoot. Image sequences for each
maize shoot can be captured within 60-120 seconds, yielding 3D point clouds of shoots are reconstructed using MVS-based
commercial software, and the phenotypic traits at the organ and individual plant levels are then extracted by the software. The
correlation coefficient (R2) between the extracted and manually measured plant height, leaf width, and leaf area values are 0.99,
0.87, and 0.93, respectively. A data management system has also been developed to store and manage the acquired raw data,
reconstructed point clouds, agronomic information, and resulting phenotypic traits. The platform offers an optional solution for
high-throughput phenotyping of field-grown plants, which is especially useful for large populations or experiments across many
different ecological regions.

1. Introduction

Plant genotyping and phenotyping technologies have sig-
nificantly accelerated breeding programs focused on feed-
ing the several billion people worldwide [1]. However,
compared with the rapid development of genotyping tech-
nologies, the inability to efficiently and accurately capture
complex phenotypic traits has become a bottleneck that
limits progress in breeding programs [2, 3]. Substantial
changes and improvements in phenotyping technologies
for crops are required in the long term [4, 5]. Plant shoot
architecture is one of the most important collections of
phenotypic traits necessary for unleashing the full poten-
tial of plant science research [6]. Capturing these morpho-

logical traits provides a feasible way to assess the growth,
physiology, stress responses, yields, and every developmen-
tal aspect of plants [7]. Such approaches are also funda-
mental to improving plant characterization, selection, and
identification [8]. Therefore, developing accurate and effi-
cient morphological data and processing approaches is of
great significance for plant phenotyping and further plant
breeding efforts.

Early phenotyping technologies are usually time con-
suming, low throughput, and labor intensive. Thus, many
phenotyping platforms have been developed for the pur-
pose of throughput and efficiency improvements [9–11].
According to their working context, existing platforms can
be categorized into field and indoor phenotyping platforms.

AAAS
Plant Phenomics
Volume 2020, Article ID 1848437, 17 pages
https://doi.org/10.34133/2020/1848437

https://orcid.org/0000-0001-7184-5121
https://orcid.org/0000-0002-7282-7379
https://doi.org/10.34133/2020/1848437


Field phenotyping platforms mainly consist of unmanned
aerial vehicle (UAV) remote-sensing platforms [12], cable-
suspended field phenotyping platforms [13], robotic field
phenotyping platforms mounted on fixed rails [10], and
tractor-driven field phenotyping systems [14, 15]. Field
phenotyping platforms are integrated with moveable sensors
on robotic carriers that enable them to acquire morphologi-
cal and physiological data from crops and are thus described
as “sensor-to-plant” systems [16]. These platforms have been
used to evaluate the field performance and adaptability of
crops in natural field conditions. Plot- or canopy-scale phe-
notyping parameters, such as plant height, leaf area index
(LAI), canopy cover, and above-ground biomass, can be effi-
ciently estimated using these platforms [17]. To achieve data
acquisition efficiency for large-scale canopies, the resolution
of sensors on these platforms is often relatively low. Further-
more, the occlusion of adjacent plants tends to obstruct the
accurate capture of finer phenotypic traits by field phenotyp-
ing platforms.

Precise phenotypic traits are of value for genome-wide
association studies (GWAS) and enabling advances in crop
breeding [18, 19]. Thus, indoor platforms have been devel-
oped to obtain more fine-scale data on phenotypic traits.
Indoor platforms include conveyor-based platforms for phe-
notyping individual pot-grown plants [20, 21], robot-assisted
imaging pipelines for tracking the growth of individual plants
[22], chamber monitoring systems for small plants [23], and
microscale phenotyping for interior structure analysis [24].
Most indoor phenotyping platforms have fixed sensors, and
therefore, plant samples are transported to the imaging sys-
tem, which is thus described as “plant-to-sensor” systems
[16]. Accordingly, high-resolution sensors can be used to
acquire morphological and physiological data, and detailed
phenotypic traits, such as leaf length, leaf area, leaf angle,
and growth rate, can be derived at a large scale.

Most of the above phenotyping platforms are expensive
to build, operate, and maintain. This prevents many
researchers from implementing these urgently needed
approaches owing to their insufficient budgets. Therefore,
affordable phenotyping solutions [25] are needed. Common
sensor choices for acquiring morphological data to achieve
affordable phenotyping include RGB cameras [26], two-
dimensional (2D) LiDAR [27], and three-dimensional (3D)
scanners [28]. Accuracy, efficiency, and cost are three key
attributes of these sensors.

Maize (Zea mays) is one of the most widely grown crops
worldwide. It is predicted that more than half of the increased
food demand for cereal plants will come from maize [19].
Accordingly, substantial changes in phenotyping technolo-
gies for breeding and crop improvement will be required
[29]. As precision phenotyping of individual plants will ben-
efit GWAS and crop breeding research, many researchers
have developed high-throughput and efficient phenotyping
platforms and methods to capture maize plant traits. Pheno-
typic parameters derived from 2D images taken from appropri-
ate angles [22] are satisfactory for many research demands.
However, these data often lack depth information and require
some extracted parameters to be calibrated, such as leaf azi-
muthal angle, leaf length, and leaf area. As such, 3D reconstruc-

tion of plants is an alternative way to solve this problem.
Commonly adopted 3D reconstruction approaches include
2D LiDAR synthesis [27], time-of-flight camera recon-
struction [30, 31], multiview stereo (MVS) reconstruction
[32–34], 3D digitization [35], and 3D laser scanning [36].

MVS reconstruction has been demonstrated to be more
efficient than 3D scanning and digitization, and its low cost
and one-by-one pipeline data acquisition pattern make it a
better choice among affordable and portable field phenotyp-
ing platforms [35]. However, MVS image sequences are
acquired manually in most plant phenotyping applications,
which is time consuming and labor intensive. Manually cap-
turing MVS images seems infeasible for GWAS, as recombi-
nant inbred line populations contain many recombinant
individuals [29]. Moreover, neighboring images acquired by
manually operations might not be satisfactory for MVS
reconstruction, and this data deficiency is often discovered
while using postprocessing applications, which is too late.
PlantScan Lite, an automatic MVS-based phenotyping plat-
form with dual cameras, was built according to the plant-
to-sensor pattern [37]. However, it requires about 30 minutes
to obtain all MVS images of an individual plant, which is
ineffective and unsuitable for high-throughput phenotyping.
Additionally, a low-cost 3D imaging system was built for
quantifying variation in soybean crops caused by flooding
[38]; an arm-mounted camera in the system allows the capture
of images along a defined trajectory of a circle in a plane dur-
ing automatic MVS image acquisition. However, owing to the
limited circle range, the system is only suitable for small crops.

Plants grown in controllable environments are not repre-
sentative of crops under natural field conditions, especially
when evaluating the adaptability and resistance of new culti-
vars under certain cultivation strategies. Though indoor phe-
notyping platforms are capable of acquiring fine-scale
phenotypes of individual plants, high-throughput 3D pheno-
typing of field-grown maize still remains a practical problem.
Besides, the plant height of maize shoots changes across a
wide range dynamically throughout the entire growth period.
Humans need to climb ladders around a shoot to acquire the
full MVS images of tall shoots, which is laborious and time
consuming. Accordingly, to create a high-throughput and
fine-scale phenotyping solution for individual plants in fields
of maize, we developed MVS-Pheno, a portable and low-cost
phenotyping platform using MVS reconstruction. Automatic
and high-efficiency MVS image acquisition of maize shoots
can be conducted using the platform. Additionally, a data
acquisition console, phenotype extraction software, and data
management systems were also developed specifically to
facilitate use of the platform.

2. Methods

2.1. Overview of the Platform. The MVS-Pheno platform
includes four components (Figure 1). (1) The hardware for
automatic MVS image acquisition is composed of a rotary
stepper motor for rotating the arm and cameras, a supporting
arm for holding the cameras, RGB cameras to acquire the
MVS images, a laptop for data storage and hardware control,
and a balance weight to ensure system stability while
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rotating. (2) The data acquisition console is a module setup
on the laptop that is used to interactively handle the hard-
ware settings for MVS data acquisition. The setting parame-
ters include rotation speed and range, imaging time interval,
and image storage path and tagging. (3) The algorithms and
software have been developed specifically for maize and
include integrated modules for MVS reconstruction, point
cloud registration and denoising, scale calibration, and phe-
notype extraction. (4) The data management system consists
of a database built to organize and manage the data flow
using the MVS-Pheno platform. The input agronomic infor-
mation, the original acquired MVS sequences, the recon-
structed 3D point clouds and extracted skeletons, and the
phenotypic traits of corresponding individual plants are
organized in the database.

2.2. Design of the MVS Image Acquisition Device. An MVS
image acquisition device was designed for the following
aims: (1) to perform automatic MVS image acquisition
under uniform standards, (2) to offer an easy to disassem-
ble and assemble device with portability and usability in
any agricultural field, and (3) to improve image acquisi-
tion efficiency using two or more cameras simultaneously.
The device designed with these objectives in mind is illus-
trated in Figure 2.

2.2.1. Structure of the Device. The device is composed of four
parts, as illustrated in Figure 2, consisting of part-A to part-
D. (1) Part-A is the driving component of the device. A1 is
a circular gear bearing, with a built-in rotary stepper motor
that drives the rotation of the arms and cameras with a uni-
form velocity. A2 is a rotation controller that controls the
rotation angle of the rotary machine. A3 is the support table,
which has four wheels at the bottom to facilitate device
movement. Plant samples are placed in the center of the
table. (2) Part-B is composed of two beams that connect
Part-A to Part-C and Part-D. The length of each beam is
adjustable according to the height of the target shoot. (3)
Part-C is the vertical arm. It is composed of a supporting
arm (C1), several camera mounts (C2), and multiple cameras
(C3). The length of the supporting arm and the number of
cameras used are also adjustable to ensure the full overlap
and consistency of MVS image sequences and also suit a
range of shoot heights. The length adjustment of both beams

in part-B and supporting arms in part-C is realized by insert-
ing small extensions. (4) Part-D is the balance weight (D3) of
the device, which is attached to the other beam of the device.
A laptop can be placed on the supporting table (D1), and a
portable power source (D2) can also be placed on part-D to
provide sufficient power to the laptop for lengthy data acqui-
sition periods. In addition, a wireless bar code scanner (D4) is
included to enable the rapid capture of agronomic informa-
tion about the target shoot.

The device is composed of these basic components,
which makes the device easy to reproduce, assemble, and
transport. Figure 2(c) presents the breakdown drawing of
the device. The device can be assembled by simply connect-
ing these components using bolts. Table 1 shows the com-
ponent costs of the device, which is $7560 in total for a
standard device with two camera sensors. Compared with
the expensive infrastructure and sensors typically required
for plant phenotyping, this platform is relatively low-cost.
Table 2 presents the weight and minimum length parame-
ters of the main components of the device, which deter-
mine the portability and transportation cost of the device.
The shortest length of all the components is 120 cm, and
the total weight of all the components is around 140 kg.
Thus, the device can be transported by logistics or express
delivery over long distances for experiments or by a minivan
for nearby experiments. A collection of “sldprt” and “sldasm”
format files of the components and the device can be found in
Supplementary Materials (available here), with detailed
dimensional drawings and assembly procedures.

In addition, four LED white light sources should be
arranged around the device to ensure brightness and light
uniformity, especially when the light conditions of the exper-
imental site are not satisfactory.

2.2.2. Technical Parameters of the Device. The device is
assembled to match the target shoot height and size of the
space to be used to conduct the data acquisition. The three
primary technical parameters of the device are defined as
follows:

N : the number of cameras used simultaneously by the
device

R: the radius (in m) of both of the beams, including half
of the circular gear bearing

H: the height (in m) of the supporting arm
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Figure 1: Components of the MVS-Pheno platform.
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The size of the device for a maize shoot with a height of h
can be described as Vh = fH, R,Ng. For a maize shoot before
the V6 period [39], with a height of less than 0.6m, the device
can be adjusted to V0:6 = f1:0, 0:8, 1g. For a maize shoot at
the silking stage, with a height of about 2.0m, the device
should be adjusted to V2:0 = f2:5, 1:5, 3g to ensure the over-
lap of the captured MVS images. Maize may grow up to 4.0m
in some ecoregions with adequate sunlight and temperatures
[40]. In these cases, a larger field of view is needed. Thus, the

device can empirically be adjusted to larger than the 5.0m
height of the supporting arm and the 2.0m length of each
beam. However, this would significantly increase the weight
and transportation costs of using the device. Therefore, tall
shoots can be segmented into two parts to acquire the images
and register the point clouds.

Canon 77D cameras (Canon Inc., Tokyo, Japan) are used
as the image acquisition sensors in the standard device. Their
focal lengths are 24mm, and the resolutions are 24 million
pixels. The cameras that can be used are not limited to this
specific model. The cameras are aimed downward towards
the vertical center line of plant shoots, forming an angle of
around 45° with the horizontal plane. Each camera is respon-
sible for acquiring a layer of images. Images captured by adja-
cent cameras must overlap by at least 1/3.

2.3. Data Acquisition Console. A console was developed to
connect the cameras, laptop, and rotary stepper motor in
order for them to work together and enable automatic MVS
image acquisition.

2.3.1. Data Acquisition Process Using the Device. Bar codes
along with text information can be prepared for each shoot

Part-D

Part-C

C3

C3

C2

C2
C1

A3

A2A1

D2

D1

D3

D4

Part-A

Part-B

Part-C

(a) (b)

(c) (d)

Part-A

Part-B

Part-D

Figure 2: The complete device, including the lateral view (a), a stereogram (b), breakdown drawing (c), and a scenario in which the device is
being used for data acquisition (d).

Table 1: Item costs of the hardware device.

Items Cost ($)

Main body of the device 4975

Two camera sensors 1700

Laptop 700

Wireless bar code scanner 70

Fittings 115

Total price 7560
∗The fittings include a portable power source, four LED white light sources,
and cables for the device.

4 Plant Phenomics



used in the experiment. Bar code information typically
includes the cultivar name, density, growth period, ecore-
gion, and shoot ID (Figure 3(a)). First, a room or a tempo-
rary tent that can accommodate the device has to be found
or built at the data acquisition site near the experimental
field. Then, the device is assembled in the chosen space.
Target maize shoots are transplanted into pots carefully,
along with the soil beneath them to a depth of 10–30 cm,
depending on the size of the rhizosphere (Figure 3(b)).
The pots used are of the same size. The prepared bar codes
for the shoots are posted on the corresponding pots
(Figure 3(c)). These shoots and pots are transported to
the device carefully to minimize damage to the morphology
of the plants. The shoots with pots are placed on the device
immediately to perform the MVS image acquisition, one-
by-one (Figure 3(d)). For the whole data acquisition proce-
dure, the first half of the steps are performed manually and
the latter half of the data acquisition process is conducted
using the device. Thus, the whole data acquisition process
is semiautomatic.

2.3.2. Control Signal and Data Transmission. The console
runs on the laptop, which is connected to the rotation con-
troller (A2 in Figure 2) via a wireless communication mod-
ule. The console sends user-specified rotation parameters to
the rotation controller, including the total angle range (φ),
the velocity (v) of the rotation, and the moment to start
up the rotation. Micro USB-B data transmission cables,
which are the supporting data line of the cameras, are used
to connect the cameras to the laptop. The ID of the cam-
eras in the device are identified. Thus, the console is able
to send signals to all the cameras synchronously, and the
acquired images are received from each camera through
the cables, respectively. Each group of the acquired images
for a shoot sample is saved to a file directory and tagged
with the sample name based on the user input via the con-
sole interface. The wireless bar code scanner (D4 in
Figure 2(b)) can be used as an alternative and convenient
way to start up and input the agronomic information
(Figure 3(e)). The time interval (t) for capturing images is
also specified by the user through the console interface.

Table 2: The weight and minimum length parameters of the main components of the device.

Component Identifier Minimum length (cm) Weight (kg)

Support table and rotary table Part-A 90 65.8

Horizontal beams Half of part-B 120 16.7

Upper part of the supporting arm Half of part-C 120 8.4

Lower part of the supporting arm Half of part-C 120 9.5

Supporting table for laptop Part-D1 60 3.0

Balance weight Part-D3 12 20.0
∗The lengths of the supporting arm and horizontal beams are adjustable. They are adjusted to their minimum lengths during transportation. Therefore, the
minimum lengths are given rather than their full lengths.

(a)

(f) (e) (d)

(c)(b)

Figure 3: Data acquisition workflow using MVS-Pheno. Preparing labels for a shoot in an experiment (a), including the bar code, cultivar
name (AD268), growth stage (V5), ecoregion (Beijing), and planting density (6 plants/m2). Transplanting shoots to pots in the field (b).
The prepared bar code affixed to its corresponding pot (c). The pots and shoots placed on the device (d). The device is started by scanning
the bar code using a wireless bar code scanner (e). Automatic image sequence acquisition using the console (f).
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Owing to the exposure time for the cameras, the time inter-
val has to exceed 1 s. The number of images in each layer
(n) can thus be calculated.

2.3.3. Common Settings. Most user-specified parameters
input via the console are empirical variables for maize shoots,
including the total angle of rotation range, the velocity of the
rotation, and the image capture time interval of the camera.
These parameters are fixed for most sets of samples. Users
only need to specify the sample name and press the start but-
ton on the console. To ensure the stability of the rotatory
motor, v is limited to lower than 1 minute per circle (6°/s).
The rotation range of a circle is set to 400° to ensure a satis-
factory overlap between the first and last images captured.
Table 3 shows the empirical settings in our experiments with
maize shoots.

2.4. Point Cloud Processing and Phenotype Estimation

2.4.1. Overview of the Point Cloud Processing Pipeline. The
acquired data, including the image sequences and corre-
sponding information, are copied to a workstation. A series
of operations are conducted on the images to reconstruct
and extract phenotypes of the individual plants. First, 3D
point clouds are derived using MVS reconstruction by
inputting the acquired image sequences. Then, noise in the
point cloud of a shoot is detected and removed. After that,
the shoot point cloud is calibrated to its real size by calculat-
ing the size of the pot in the point cloud, whose actual size is
known already. Shoots that are too tall to be acquired by the
device can be cut into two segments to enable the MVS
images to be acquired separately, and the point clouds of
the two segments can then be registered to obtain the com-
plete point cloud. At last, skeletonization and leaf segment
sampling are conducted on the point cloud of maize shoots.
Based on these data, phenotypic traits relevant to shoot
architecture are finally derived. Figure 4 illustrates the point
cloud processing pipeline.

2.4.2. MVS Reconstruction. The commercial software Agisoft
Photoscan Professional (Agisoft LLC, St. Petersburg, Russia),
which performs photogrammetric processing of digital
images, is used to recover dense point clouds with colors
from the acquired MVS images (Figures 4(a)–4(c)). This
software is commonly used in MVS-based plant phenotyping
[41, 42]. Photoscan is able to reconstruct 3D objects automat-
ically using a series of ordered or unordered images with
overlapping areas. The moving trajectory and coordinates
of the camera are not needed during the processing.

2.4.3. Denoising of Point Clouds. The reconstructed point
clouds of individual plants often contain lots of noise from
the backs of leaf blades, forming areas with insufficient data
owing to the uneven illumination and camera angles of views
(Figure 4(c)). This noise affects the accuracy of generated 3D
mesh models and thus the extracted phenotypic traits. Nota-
bly, there are significant color differences between the leaves
and noise associated with the backs of leaf blades, and the
color of the noise is continuous. Therefore, a region growth
denoising algorithm [43], constrained by color differences,

was applied. This algorithm utilizes a low-cost approxima-
tion color metric model (https://www.compuphase.com/
cmetric.htm) to improve the efficiency of denoising. The
model is shown as follows:

�r =
Ri + Rj

2 ,

ΔRij = Ri − Rj,
ΔGij =Gi −Gj,
ΔBij = Bi − Bj,

ΔCij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 + �r
256

� �

× ΔR2
ij + 4 × ΔG2

ij + 2 + 255 −�r
256

� �

× ΔB2
ij

s

:

ð1Þ

Here, Ri, Gi, and Bi are the red, green, and blue values of
the ith point and ΔCij is the color difference between the ith
and jth points.

In the region growth denoising algorithm, a noise point
color list CL is constructed. The list is a priori data list that
is generated by noise sampled from different illumination
experiments. As mentioned, most noise is associated with
the backs of leaves, which appear gray in the absence of light.
Thus, the list is constructed by manually collecting the colors
of noises under different light conditions across different leaf
positions. A point cloud list PL, composed of a few points
with approximate colors of the elements from list CL, is gen-
erated by simply sampling from point cloud set P. For each
point p ∈ PL, the color difference ΔCpq and normal angle
θpq between point p and all the points q belonging to the
k-neighborhood of p are calculated. Finally, a discriminant
threshold δpq is derived for the noise point classification:

δpq = η1ΔCpq + η2θpq, ð2Þ

where η1 and η2 are the weight coefficients of ΔC and θ,
respectively. As a larger of ΔC or smaller θ indicates that
the point may be noise, we empirically set η1 = ‐1/40, and
η2 = 1/90. The normal angle θ is used to estimate the nor-
mal consistency of the two points to avoid false deletion
of points lying on the leaf margin. If δpq is smaller than
an empirical threshold, point q is identified as a noise point
and is pushed into list PL. After all the points belonging to
the k-neighborhood of p are estimated, the seed point p is

Table 3: Standard empirical settings of the parameters for the
console for maize shoot image acquisition.

Parameter Representation
Empirical
value

Unit

Total angle of rotation range φ 400 °

Rotation velocity v 6 °/s

Time interval for taking images t 2 s

Number of images per layer n 33
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removed. Then, all the points in PL are traversed until it is
empty and the denoising process is complete. The visualiza-
tion results are shown in Figure 4(d).

2.4.4. Scale Calibration. Point clouds reconstructed using
MVS algorithms or software are scaled [33]. Thus, the point
cloud model has to be transformed to its actual size, espe-

cially for the eventual phenotype estimation. Scaling
markers, with regular and relatively complete shapes, have
to be found and identified. First, the visibility of the pots con-
taining the plants is ensured, and thus, complete point clouds
of them can be obtained. Second, it is easy to segment the
point clouds of pots by identifying their uniformly distrib-
uted color. Therefore, pots are selected as markers for
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Figure 4: Illustration of point cloud processing pipeline.
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correcting the size of reconstructed shoots in the MVS-
Pheno platform. The segmented point clouds are illustrated
in Figure 4(e). A set of circular ring point clouds is derived
by manually cutting the pot along a horizontal plane. Then,
the radius of the pot is derived by using the least squares
approach to fit the points along the cuts. Finally, the metric
scale factor between the estimated radius from the point
cloud to the actual radius of the pot is considered as the cor-
rective scale for the shoot. The estimation is depicted in equa-
tion (3), where τ is the estimated scale factor, R is the
measured radius of the actual pot, and RMVS is the estimated
radius of the pot from the point cloud:

τ = R
RMVS

: ð3Þ

To reduce the scale error, three slices are used for each
pot in practice, including the top, middle, and bottom of
the pot. Then, the average value at the three estimated posi-
tions is used as the final scale factor. The point cloud coordi-
nates obtained from the MVS-Pheno platform are multiplied
with the scale factor to reach a scaling in millimeters.

2.4.5. Point Cloud Registration. Owing to the height limita-
tion of the device, upper leaves of some tall shoots can be
out of the imaging range of the device. Accordingly, it is
infeasible to acquire full MVS images for these shoots. For
such shoots, we first acquire the basal images of each shoot
using the device. Then, the shoot is segmented manually
using branch scissors, ensuring that the upper parts after seg-
mentation have at least two complete leaves to be validated in
the first image acquisition process. Then, the upper portion
images are acquired once again using the device. Point clouds
are then derived using MVS reconstruction of the basal and
upper parts of a shoot. Leaves repeated in the two point
clouds are selected, and the interactive closest point (ICP)
algorithm [44] is used to register these two point clouds. In
the ICP algorithm, a rotation matrix R and translation matrix
T are estimated to minimize EðR, TÞ, as shown in equation
(4). Using the estimated matrix, the two point clouds are
well registered. The reconstructed point cloud of tall shoots
using truncation and the registration approach is shown in
Figure 4(f) by the following:

E R, Tð Þ = 1
Np

〠
Np

i=1
pi − Rqi − Tk k2: ð4Þ

In equation (4), R and T are the rotation and transmis-
sion matrices to be estimated, P and Q are two point clouds
to be registered, and pi ∈ P, qi ∈Q. NP is the total point
number of P.

2.4.6. Phenotype Extraction of Individual Plants by
Skeletonization. The 3D skeleton of maize shoots exhibit
important maize phenotypes. In our previous study [45],
an accurate approach that extracted phenotypes from 3D
point clouds was proposed to obtain the skeleton and phe-
notypic traits of maize shoots. In this approach, the Lapla-

cian contraction algorithm was applied to shrink the initial
skeleton points (Figure 4(g)). Then, deviation skeleton
points of maize stems and leaves to the input point cloud
were calibrated by building a step forward local coordinate
along the tangent direction of the original points. Finally,
six phenotypes, including plant height, leaf length, leaf
inclination angle, leaf top height, leaf azimuthal angle,
and leaf growth height, can be captured using the extracted
skeleton with high accuracy. Based on these data, we aim
to obtain leaf width and leaf area traits. First, cubic spline
interpolation is conducted by inputting the skeleton points
of each leaf. Then, uniformly distributed points on the
skeleton curve are derived by calculating the output of
the cubic spline through inputting equidistance parameters.
Thus, points on the skeletons of leaves are uniformly dis-
tributed and smoothed. After that, five to eight nodes
evenly distributed on the extracted skeleton are selected,
forming a set of tangent points of each leaf. For each node

p, the corresponding tangent p
*

is then evaluated based on
the skeleton points (Figure 4(h)). A set of point clouds is

selected by cutting a virtual ring perpendicular to p
*

on
the reconstructed point cloud of the shoot; the center of
the ring is p. The radius r of the ring is set to 1.5 times
the average leaf width (manually measured), and the length
l is twice the average distance of the adjacent points of the
point cloud. Overcutting points were selected and deleted
using the nearest neighbor clustering method [46], and
the point set with the most clustered points is considered
as the final point cloud. Finally, the cutting line segment
is fitted using a least squares approach. The longest value
of the cutting line segment is taken as the leaf width.
The areas of the continuous and segmented trapezoids
are calculated and summed as the area of each leaf. At last,
eight phenotypic traits can be obtained as presented in
Figure 4(i).

2.4.7. Software Development of MVS-Pheno. Data processing
software was developed by integrating the aforementioned
algorithms and implemented using the Point Cloud Library
(PCL) on the Microsoft Visual C++2010 platform. The soft-
ware is compatible with the Windows operating system
(Windows 7 and above) and requires more than 8GB of
memory and a processor faster than 3.2GHz. The software
includes four functional modules: (1) an MVS image acquisi-
tion module for data acquisition and management; (2) a 3D
visualization module for data display and interaction; (3) a
data processing module for point cloud processing, skeleton
extraction, and phenotypic trait calculation; and (4) a pipe-
line recording module for logging the operations of computa-
tional processes.

2.5. Data Management System. Phenotyping platforms gen-
erally acquire a large number of biological datasets, most of
which cannot be processed into agronomic phenotypic traits
immediately; thus, phenotyping databases [47] or informa-
tion management systems [48, 49] are required to support
data management. Huge amounts of data can be generated
using the MVS-Pheno platform (Figure 5), including agro-
nomic information about the designed experiments, MVS
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image sequences acquired during the device use, recon-
structed 3D point clouds of maize shoots, extracted shoot
skeletons, and phenotypic traits derived using the software.
Therefore, a data management system has to be established
for MVS-Pheno to ensure orderly data storage, further pro-
cessing, and management. In practice, a customized database
can be established for any given experiment. Data that
require large storage space, including MVS images, recon-
structed point clouds, and shoot skeletons, are stored in file
directories, organized by agronomic information within sub-
directories. Agronomic information, phenotypic traits, and
the corresponding file paths are stored in the database. Con-
sequently, different data from each procedure could be con-
nected and traced using the database.

3. Materials

A field experiment was conducted utilizing the MVS-Pheno
platform in 2018 at an experimental field at the Beijing Acad-
emy of Agriculture and Forestry Sciences (39°56′N, 116°16′
E). A maize hybrid AiDan268 (AD268) was planted in three
replicate plots on June 4, 2018. The planting density was 6
plants/m2, with a row spacing of 60 cm. At the V5, V15,
and R1 growth stages [39], one shoot was selected from each
plot (i.e., three shoots for each growth stage in total) and
transplanted with their root systems and associated soil into
30 cm diameter, 25 cm deep pots containing soil [35].
Table 4 summarizes the selected shoots. The shoots with pots
were moved indoors, where 3D data were obtained. First,
image sequences were acquired using the MVS-Pheno plat-
form. Then, a 3D scanner (FARO3D X120; FARO, Lake
Mary, FL, USA) was used to acquire 3D point clouds for eval-

uation of 3D models. Finally, a 3D digitizer Fastrak (Polhe-
mus, Colchester, VT, USA) was used to acquire the 3D
feature points of the shoots. As mentioned by Wang et al.
[35], the promising accuracy of 3D digitizing provides a rea-
sonable means of verifying 3D phenotyping approaches.
Herein, phenotypic traits were extracted directly using the
3D digitized data for the accuracy evaluation of phenotypes
derived with the MVS-Pheno platform.

4. Results

4.1. Evaluation of 3D Point Cloud Accuracy. Point clouds
were obtained using a 3D scanner to evaluate the reconstruc-
tion accuracy of maize shoots with the MVS-Pheno plat-
form. Three shoots of the same hybrid (AD268) were
selected from the center of the plot from each of the three
replicates at three different growth stages. The shoots were
scanned using the FARO scanner after MVS image acquisi-
tion. The reconstruction accuracy was evaluated by compar-
ing the point clouds derived by the two approaches [35].
Figure 6 illustrates the visualization of the comparison. The
point clouds reconstructed by MVS-Pheno match well with
the scanned point clouds. Point cloud differences also
existed only in some local areas of the organs. The maxi-
mum distances were 2.0 cm for V5 stage shoots and 5.0 cm
for V15 and R1 shoots (Figure 6). In addition, the recon-
structed point clouds of the V5 stage shoots present better
morphological consistency with the real shoot, while the
quality of the point clouds derived using the FARO scanner
was relatively poor, with many outliers. The comparison
demonstrates that point clouds of maize shoots recon-
structed using MVS-Pheno are satisfactory for different
growth stages, and better results can be obtained with it for
small shoots relative to some 3D laser scanners.

4.2. Evaluation of Extracted Phenotypic Traits. In our previ-
ous study, several phenotypic traits estimated from extracted
skeletons were validated, including plant height, leaf length,
leaf angle, and leaf azimuthal angle [45]. Here, we focus on
leaf width and leaf area. Based on the scale calibration oper-
ation involved in point cloud reconstruction, plant height
was also validated again to ensure that the scaling was

Agronomic 
information

Plant and ear 
height

MVS image 
sequences

3D point clouds 
of maize shoots Shoot skeletons Phenotyping  

traits

Total expanded 
leaf number

Leaf length and 
width Leaf area Leaf angle and 

azimuth Shoot volume Blade growth 
height

Cultivar name Eco-region Growth period Row and plant 
spacing Shoot ID Water or fertilizer 

treatment
Data acquisition 
time and person

Figure 5: Data flow and management in the MVS-Pheno platform database.

Table 4: Morphological description of maize shoots at three growth
stages.

Growth
stage

Days after
sowing

Averaged plant
height (cm)

Fully expanded
leaf number

V5 21 40.1 5

V15 51 180.0 15

R1 81 201.1 22

9Plant Phenomics



correct. Additionally, plant height is measured as the distance
between the natural bend of the uppermost leaves or tassel
[39] to the soil surface in the pot after the shoot is rotated
perpendicular to the horizontal plane. Figure 7 shows the
verification of the three phenotypes using the materials in

Table 4. The plant height correlation (R2) between the mea-
sured and evaluated values was 0.99, which indicates that
the scaling algorithm performs well for estimation. The cor-
relation for leaf width was lower (R2 = 0:87), while the
correlation for the leaf area was higher (R2 = 0:93). The

3D scanned point cloud by 
FARO scanner 

Point cloud reconstruction 
using MVS-Pheno 

Point cloud distance 

2.00 cm

1.00 cm

0.00 cm

5.00 cm

2.50 cm

0.00 cm

5.00 cm

2.50 cm

0.00 cm

V5 

V15 

R1 

Figure 6: Comparison of point clouds of maize shoots at different growth stages derived using a 3D scanner and MVS reconstruction with
images captured using the MVS-Pheno platform.
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correlations suggest that the present approach is acceptable
for estimating leaf width and accurate for estimating the
leaf area.

4.3. Efficiency Performance of MVS-Pheno. The data capture
device of the platform has been used in many experiments
at several ecological sites throughout China, including Qita
farm in Xinjiang, Gongzhuling in Jilin, Sanya in Hainan,
and Tongzhou district in Beijing. During the experiment,
we summarized the time cost of each procedure and the cor-
responding parameter settings of the device for different
growth stages (Table 5). Thus, plant height is the key deter-
mining index for the parameters and time costs. For plant
taller than 250 cm, the shoot must be cut into two seg-
ments, and thus, the time for image acquisition is more
than twice as long than that required for shorter plants.
When the shoots are relatively short (V3 to V6 growth
stages), the data acquisition and 3D reconstruction of three
or four shoots can be conducted together to save time.
Point cloud reconstruction using commercial software
requires nearly 66% to 88% of the total time consumed. If
the point cloud of a shoot is rather complex, manual inter-
vention is required to correct errors in the process of
skeleton extraction and phenotype estimation. The postpro-
cessing operations were conducted on a desktop worksta-
tion (Intel core i7 processor, 3.2GHz CPU, 64GB of
memory, Windows 10 operating system).

4.4. Data Management System Interface. Data in the MVS-
Pheno data management system is organized at three levels,

and a tree directory guides the users in finding the data of
interest. The first level is the experiment level. Users can
add their experimental name as a subdirectory under the
main directory, named DataHome (Figure 8). When this
addition is conducted, a subdatabase is constructed and the
acquired data have to be copied into this directory. Mean-
while, the corresponding database (constructed when acquir-
ing the MVS images) has to be added into the database of the
data management system. The second level is the plot level.
Data in each plot are organized in an independent folder,
and all the plot data are stored in the experimental folder.
Individual plants are considered as the basic data unit in
the data management system. Thus, the shoot samples in
each plot are the third level of the system. In addition, when
right clicking the DataHome button or the button for each
experiment name, statistical information of the selected
(sub-)database is shown to the user, including the total plot
number, total shoot number, total storage, and data process-
ing progress. Users can thus find the general information
about the data and the data processing process by checking
the statistical information.

When a shoot sample is selected in the directory or is
searched for in the query dialog, the data is shown in the
main screen of the interface. The data include three parts:
raw data, point clouds, and phenotypes (Figure 8). The first
part shows the raw image sequences and the corresponding
information for the selected shoot (Figure 8(a)). Detailed
information includes the shoot ID, cultivar name, density,
position, growth period, data acquisition date, fertilizer and
water treatments, person who acquired the data, and other
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Figure 7: Comparison of plant height, leaf width, and leaf area derived using the phenotypic trait extraction algorithm in MVS-Pheno.

Table 5: Efficiency description of MVS-Pheno platform, including the time cost of data acquisition and processing and the corresponding
parameter settings of the device for four growth periods of maize with different shoot sizes.

Sample ID
Sample description Parameter settings of the device Time cost (s)

GP PHR (cm) CO CN RoB (cm) SRH (cm) IAT PCRT SET PET TT

1 V6 40-60 No 1 50 60 60 403 140 2 605

2 V9 80-120 No 2 70 150 60 896 180 3 1139

3 V13 130-160 No 2 100 200 60 1060 220 3 1343

4 R1 190-250 No 3 150 300 60 1644 240 3 1947

5 R1 250-400 Yes 2 150 200 120 3288 300 10 3718
∗GP: growth period; PHR: plant height range; CO: cutoff; CN: camera number; RoB: radius of beam; SRH: supporting arm height; IAT: image acquisition time;
PCRT: point cloud reconstruction time; SET: skeleton extraction time; PET: phenotype extraction time; TT: total time.
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notes. Raw images were named according to the camera ID
plus the acquisition time. For example, an image with the file
name “B9-21-16”was acquired at 9:21:16 by camera B. When

the MVS reconstruction is conducted, the second part, the
“Point cloud and skeleton” dialog, is activated. In this part,
three views present the reconstructed point cloud, the point

(a)

(b)

(c)

Figure 8: Interfaces of the data management system developed for the MVS-Pheno platform.
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histogram along plant height, and the extracted skeleton of
the shoot (Figure 8(b)). The third part presents a list of the
extracted phenotypic traits and the statistical information
about the selected shoot. Determined values are given
directly in the list, such as plant height, total leaf number,
and leaf age. For phenotypes that contain many values, such
as leaf length, the average value of all the extracted leaf
lengths is presented in the list. When selecting to view this
averaged value, the detail parameters and the corresponding
line chart will be presented in the right widget on this inter-
face (Figure 8(c)). Finally, the phenotypes and point cloud
distribution histogram can be output as an independent file
for further analysis and applications.

5. Discussion

5.1. Field-Grown Shoot Phenotyping. Plant phenotyping aims
at assessing the morphological and physiological
performance of plants with various genotypes in different
environments. As field environments are complex and
changeable, and it is the actual environment that most plants
experience, field-based phenotyping has been increasingly
recognized as the only approach capable of delivering the
requisite trait expression data for numbers of plants or pop-
ulations in real-world cropping systems [50]. Thus, field phe-
notyping technologies are very important for plants. Though
UAV remote sensing [12] is applicable for large-scale field
phenotyping with high efficiency, the resolution is lower than
ground phenotyping platforms and only canopy-scale traits
can be obtained. Field phenotyping infrastructures [10, 13]
are also capable of acquiring time series phenotypic data with
higher resolution. However, plant organs grown at the mid-
dle and bottom of the canopy are sheltered from the upper
organs, which prevents estimating fine-scale phenotypes of
individual plants in the field. Meanwhile, these infrastruc-
tures are position limited with expensive construction costs.
It is not feasible to obtain fine-scale phenotypes for breeding
and cropping experiments with many plant populations
across several ecoregions. Manned ground vehicles (MGVs)
have become popular and provide reasonable solutions for
field plant phenotyping. Semicontrolled crop-sensing plat-
forms, such as tractor-based platforms [51], carry sensors
within or above plants to acquire data. This eliminates the
constraint of phenotyping position compared with infra-
structures. Nevertheless, MGVs are also unable to extract
the fine-scale phenotypes of individual plants. Most large-
scale phenotyping studies at the individual plant level are
conducted with pot-grown plants cultivated carefully in con-
trolled environments [11, 29]. However, results from con-
trolled environments are far removed from the situations
plants experience in the field and are thus difficult to extrap-
olate to the field [52]. Therefore, high-throughput phenotyp-
ing solutions for individual field-grown plants are required.
The portability of the MVS-Pheno platform enables pheno-
typing of field-grown maize shoots at any experimental site.
Meanwhile, the device is low-cost and feasible for most insti-
tutes. Compared with the aforementioned approaches, the
MVS-Pheno platform is a more cost-effective solution for
fine-scale phenotyping of individual plants. However, this

solution is destructive and only semiautomatic (i.e., plants
must be transplanted into pots and moved to the platform
manually); thus, in situ continuous monitoring of specific
maize shoots is difficult, and manual transplants during the
data acquisition process are needed.

5.2. Comparison with MVS-Based Phenotyping Platforms.
MVS-based 3D reconstruction has become a popular
approach for low-cost plant phenotyping. The MVS-Pheno
platform offers an automatic way to acquire the image
sequences of plant organs or shoots. Compared with manual
imaging [32, 34], the most used approach to acquire MVS
images, the MVS-Pheno platform is highly automated and
liberates manpower in the data acquisition process, especially
for tall shoots. Humans do not need to climb a ladder or hold
a supporting pole with a camera to acquire the MVS images
of tall shoots. Image acquisition for tall shoots is also a diffi-
cult problem for other low-cost MVS-based phenotyping
platforms [37, 38, 53]. In addition, the data acquisition effi-
ciency of the platform is another advantage over other similar
platforms. For a normal size shoot, approximately 60 seconds
are required to acquire all the necessary images using MVS-
Pheno, while the PlantScan Lite platform [37] requires 30
minutes. This high data acquisition efficiency is quite impor-
tant for plant phenotyping, especially for experiments con-
taining a large number of samples, such as those involving
recombinant inbred line populations [29]. In some pheno-
typing solutions for individual plants, the phenotyping plat-
form has a fixed sensor and rotates the shoot on a turntable
[54], which can cause leaves to shake on the turntable,
thereby leading to data artifacts. In contrast, MVS-Pheno
rotates the camera, thus leaving the shoot static. This
approach reduces the noise caused by the slight movement
of organs. However, a relatively larger space is needed com-
pared with approaches that rotate shoots rather than cam-
eras. Besides the automatic image acquisition hardware of
this platform, MVS-Pheno also provides a matching data
acquisition console, data processing and phenotype extrac-
tion software, and a data management system. This novel
integration facilitates the application of the platform by
users with various backgrounds, with a focus on agricultural
users and plant breeder. Compared with the aforemen-
tioned MVS-based phenotyping solutions, MVS-Pheno is
much more efficient and convenient to use and solves key
practical issues.

5.3. Effects of Environmental Factors on the Platform. The
MVS-Pheno platform can be used beyond indoor environ-
ments, including in temporary tents near field sites or
directly in fields under calm weather. In such cases, environ-
mental conditions are essential factors that affect the usage of
theMVS-Pheno platform. Herein, we discuss the influence of
three major factors, including (1) wind, (2) illumination, and
(3) ground texture. (1) Theoretically, 3D reconstruction
requires the target plant to remain static during the data
acquisition process. Two successive images captured under
a gentle breeze exhibit differences in pixels captured, causing
reconstruction errors, especially for the leaf blades. Experi-
ments have demonstrated that the tips of blades cannot be
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reconstructed when the wind speed is greater than 1.6m/s
(Figure 9(a)). Therefore, the platform works best in the
absence of wind. (2) Illumination is another key factor affect-
ing the reconstruction accuracy of MVS. It is better to con-
duct image acquisition under natural light. Weak, strong,
dim, or uneven lighting should be avoided. Poor illumination
may lead to color distortion and/or deficiency of point clouds
and even fail to generate point clouds (Figure 9(b)). There-
fore, outdoor data acquisition should be conducted in cloudy
weather when possible, and indoor acquisition should use
flood lights if possible. (3) The ground texture also affects
the accuracy of MVS reconstruction during data postproces-
sing. MVS reconstruction also includes the ground, and it
requires that the background images have as rich a texture
as possible. Therefore, rough, nonreflective, and textured
ground may improve reconstruction accuracy. Trials have
shown that chaotic backgrounds can actually produce better
quality 3D reconstructions. In practice, the use of black-and-
white grid calibration plates placed on the ground as a refer-
ence effectively improves the quality of reconstructed point
clouds (Figure 9(c)).

5.4. Potential Application for Plant Phenotyping. Plants grow
fast (i.e., a leaf emerges and expands about every three days at
the early growth stage of maize), and long-term data acquisi-
tion staggered across different growth stages can create mean-
ingless data for comparative analysis. Thus, effective data
acquisition approaches are essential for high-throughput
phenotyping. Because data acquisition of large-scale popula-
tions can be accomplished in a short time using MVS-Pheno,
data can be acquired in a timely manner, with postprocessing
conducted later. This data acquisition and postprocessing
approach demands high-quality acquired data, and the
homogeneity of multiview images around each shoot using
MVS-Pheno is rather promising. Compared with expensive

3D scanners [35], MVS-Pheno is low-cost and thus feasible
for use by most research teams.

Because the only physical limitation of the MVS-Pheno
platform is that the shoot must fit within the device and have
relatively few self-occlusions, it is apparently suitable for
automatically acquiring image sequences for shoots of many
other plant species, including wheat [55], soybean [38], and
tobacco. Point clouds can be reconstructed using the
acquired images. The only difference is that the empirical set-
tings of the device parameters are distinct for various plants.
For example, to obtain more morphological details of wheat
shoots, more images at each layer are required. Regarding
the phenotype extraction processes of the platform, however,
the algorithms are not applicable to other plant species, as the
software was custom-developed for maize according to its
morphological characteristics.

The data management system is an important compo-
nent of the MVS-Pheno platform. It facilitates data classifi-
cation, storage, management, and usage. The database is
scalable, and subdatabases can be customized for specific
experiments. The data management system provides pow-
erful support for further big data research on plant phe-
nomics [56].

5.5. Future Improvements. The platform still needs to be
improved to enable more convenient usage. Accordingly,
the device will be developed to reduce its weight in order to
facilitate transport and assembly. The postprocessing pro-
grams, in particular the skeleton extraction process for phe-
notype calculation, would benefit from optimization to
improve its computational efficiency. Owing to the manual
interfaces with and usage of third-party software, the post-
processing is segmented into several times. Accordingly, we
aim to develop an integrated solution for individual plant
phenotyping, with the ultimate objective of offering an online

(a) (b) (c)

Figure 9: Illustration of environmental factors on MVS-Pheno. The points at the tip of the blade are lost when the wind speed is 2m/s during
data acquisition (a). Reconstructed shoot, with color distortion and point deficiency, using the images acquired under poor illumination (b).
The use of black-and-white grid calibration plates benefits the quality of reconstructed point clouds.
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solution that realizes full automation, including data acquisi-
tion, processing, and analysis.
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