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The optimal control of sugar content and its associated technology is important for producing high-quality crops more stably and
efficiently. Model-based reinforcement learning (RL) indicates a desirable action depending on the type of situation based on trial-
and-error calculations conducted by an environmental model. In this paper, we address plant growth modeling as an
environmental model for the optimal control of sugar content. In the growth process, fruiting plants generate sugar depending
on their state and evolve via various external stimuli; however, sugar content data are sparse because appropriate remote sensing
technology is yet to be developed, and thus, sugar content is measured manually. We propose a semisupervised deep state-space
model (SDSSM) where semisupervised learning is introduced into a sequential deep generative model. SDSSM achieves a high
generalization performance by optimizing the parameters while inferring unobserved data and using training data efficiently,
even if some categories of training data are sparse. We designed an appropriate model combined with model-based RL for the
optimal control of sugar content using SDSSM for plant growth modeling. We evaluated the performance of SDSSM using
tomato greenhouse cultivation data and applied cross-validation to the comparative evaluation method. The SDSSM was trained
using approximately 500 sugar content data of appropriately inferred plant states and reduced the mean absolute error by
approximately 38% compared with other supervised learning algorithms. The results demonstrate that SDSSM has good
potential to estimate time-series sugar content variation and validate uncertainty for the optimal control of high-quality fruit
cultivation using model-based RL.

1. Introduction

Several studies have been performed to evaluate advanced
cultivation techniques for stable and efficient production of
high-quality crops based on farmers’ experience and intui-
tion [1–4]. For example, water stress cultivation of tomato
plants is a technique that increases their sugar content by
reducing irrigation. The technique requires sensitive irriga-
tion control to provide the appropriate water stress through-
out the cultivation period. A fine balance must be achieved
because insufficient water stress does not improve sugar con-
tent while excessive water stress causes permanent withering.
Such a technique is currently limited to expert farmers, and
there have been some studies conducted to estimate water
stress indirectly from soil moisture or climatic environmental
factors such as temperature, humidity, and sunlight [5–10].

Recent studies have attempted to assess water stress with
deep neural networks by monitoring plant motion caused
by withering [11, 12]. Those studies contributed to the quan-
tification of water stress to improve water stress cultivation to
some extent. However, the purpose of water stress cultivation
is to raise the sugar content, and a technique to directly con-
trol the sugar content flexibly is of interest. In this regard, our
final goal is to develop a method to determine the optimal
action to achieve the desired sugar content of greenhouse
tomato plants at harvest stably and efficiently. In this study,
we aim to develop a plant growth model to estimate time-
series sugar content variation employing reinforcement
learning, as the first step toward the final goal.

Reinforcement learning (RL) [13–15] acquires an opti-
mal strategy through the experience of an agent performing
an action in an environment and has demonstrated high
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flexibility and nontask-dependent representation capabili-
ties. There are two types of RL: model-free RL [16, 17] and
model-based RL [18, 19]. Model-free RL does not use the
environmental information (state transition of the environ-
ment) to predict how the environment changes and what
type of reward is obtainable when the environment is modi-
fied. By contrast, model-based RL uses the information of the
state transition of the environment. Therefore, model-based
RL is better than model-free RL at judging behavior based
on a long-term plan with regard to a future state. Namely,
model-based RL is expected to perform well in determining
optimal actions to achieve the desired sugar content at
harvesting.

The training of model-based RL involves two steps: (1)
modeling an environment and (2) planning to learn the opti-
mal policy for the model. In this paper, we focus on modeling
an environment and developing a plant growth model for the
optimal control of water stress cultivation. The model-based
RL’s environmental model is often a probabilistic model eval-
uated based on the standard deviation, because the plant
states and the surrounding environment data are time-
series data and generally contain a significant amount of
noise [20]. The noise is affected not only by external fac-
tors but also by internal factors such as nonlinearly dis-
tributed plant growth. For example, nondestructively
measured sugar content data based on spectroscopy varies
depending on the location of the measurement point on a
fruit because of the uneven internal structure of a fruit.
Thus, we need to select a robust model that can properly
handle such noisy data.

Among probabilistic models, the generative model is
known as the most suitable for plant growth modeling,
because generative models assign low probability to outliers.
By contrast, discriminative models process the training data-
set without considering the effects of noise. The generative
model not only is robust to noise but also has good character-
istics for predicting future states [20] and for generalization
performance [21].

When model-based RL is used for the optimal cultivation
of high sugar content fruits, it is necessary to predict future
plant conditions from the cultivation environment based on
present conditions. Moreover, it is important that the model-
ing method can be applied to different plant varieties and
specific environments as well as to various environments.
Therefore, we use the generative model to achieve high gen-
eralization performance of plant growth modeling, which
requires predictability of the future states. In particular, we
try to make the generative models much more robust and
flexible by using sequential deep generative models com-
bined with a state-space model (SSM, a typical generative
model for time-series data) and because deep neural net-
works have fewer restrictions.

The variational autoencoder (VAE) [22] is a deep gener-
ative model for nonsequential data, and the parameters are
optimized via stochastic gradient variational Bayes (SGVB)
[23]. The stochastic recurrent networks (STORN) [23] are
highly structured generative processes that are difficult to fit
to deterministic by combining the elements of the VAE.
Additionally, STORN is able to generate high-dimensional

sequences such as music by including recurrent neural
networks (RNN) in the structure of VAE and represents
stochastic sequential modeling by inputting a sequence inde-
pendently sampled from the posterior to a standard RNN.
The variational RNN (VRNN) was proposed by Chung
et al. [24] as a model similar to STORN. The main difference
is that the prior of the latent variable depends on all previous
information via a hidden state in the RNN. The introduction
of temporal information has been shown to help in modeling
highly structured sequences. VAE is also applied for optimal
control. Watter et al. [25] addressed the local optimal control
of high-dimensional nonlinear dynamic systems.Considering
optimal control as the identification of the low-dimensional
latent space, their proposed model Embed to Control (E2C)
is trained while compressing high-dimensional observations
such as images. Their results showed that E2C exhibits strong
performance in various control tasks. Krishnan et al. [26]
modeled the change of a patient’s state over time using tempo-
ral generative models called Deep Kalman Filters (DKF).
Unlike previous methods, DKF incorporates action variables
to express factors external to patients, such as prescribing
medication or performing surgery. In particular, structured
variational inference is introduced in DKF to cater to the
unique problems of living organisms, such as considering that
a patient’s states vary slowly and that external factors may
have long-term effects on patients. These phenomena are sim-
ilar to plant growth modeling.

The methods described above require a comparatively
large-scale dataset to model complex generative processes.
On the other hand, creating a large-scale dataset for the
time-series sugar content of fruits is not temporally or finan-
cially easy because it is necessary to use a sensor to make gen-
tle contact with the fruit manually. In addition, because
measurements are performed manually, it is necessary to
establish the methods based on various considerations such
as measurement time, position, repetition of measurements,
and measurement of the surrounding tomatoes to reduce
the variance of the measurement value. By contrast, it is
common to measure the fruit juice of representative fruits
at the time of harvest (destructive measurement). Once
the destructive measurement is performed, it is not possible
to measure the same fruit over time. For these reasons, the
data collection interval required for sugar content is longer
than that of automatically sensed data such as temperature,
humidity, and solar radiation. In particular, creating a
large-scale dataset for time-series crop condition and qual-
ity is also not easy using manual measurements because of
the workload and cost factors. Thus, it is important to
develop a suitable method even though the amount of avail-
able data is not large.

In this study, we propose a novel sequential deep genera-
tive model called a semisupervised deep state-space model
(SDSSM) to evaluate such defective data. SDSSM is similar
to DKF in that a deep neural network is used for enforcement
of the representation capability of SSM. On the other hand,
the major difference is that SDSSM is trained by semisuper-
vised learning to achieve a balance between high generaliza-
tion performance and high representation power, even if
some types of training data are sparse.
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2. Materials and Methods

2.1. Plant Growth Model

2.1.1. Overview of SDSSM. Based on the general SSM, we
assume the following generative processes for plant growth
modeling:

pθ zt ∣ zt−1, utð Þ =N z ; μz zt−1, utð Þ, σz zt−1, utð Þð Þ, systemmodelð Þ,
ð1Þ

pθ xt ∣ zt , stð Þ =N x ; μy zt , stð Þ, σy zt , stð Þ
� �

, observationmodelð Þ,
ð2Þ

where zt and xt are latent variables and observed variables,
respectively, at time step t. The probabilistic models are
shown in Figure 1. In our task, the latent variable zt denotes
the plant states. We assume that the water content and the
duration of plant growth, which are particularly strongly
related to sugar content, are plant states.

Regarding these two states as single-type states with
continuous variation, we set a normal distribution to the
latent variables zt according to the previous studies of
deep generative models, where a normal distribution was
adopted for continuous values. The observed variables xt
indicate the sugar content and are assumed to follow a
normal distribution considering the continuous variation
of sugar content. Moreover, we introduce the action vari-
ables ut , rt , and st to the system model and observation
model, respectively.

The action variable ut is added to the process of the state
transition considering that plant states vary according not
only to previous states but also with external factors such as
temperature. In fact, the accumulated temperature is well-
known in the agricultural domain as the growth indicator
for plants. The action variable st is added to the process of
the emission because sugar is produced via photosynthesis
based on a plant’s state and its surrounding environmental
variables such as carbon dioxide (CO2) concentration. The
detailed settings of each random variable are discussed in
Section 2.2.2.

Training the generative model based on Equations (1)
and (2) using SGVB requires a large amount of data owing
to the assumption of the complex generative process: there
are implicitly two types of states in the single latent space,
and the state transition and emission of the observation are
strongly nonlinear. Deep generative models trained by semi-
supervised learning have recently demonstrated significantly
improved generalization capabilities in comparison to previ-
ous methods and perform very well even for very small
datasets [21, 27, 28].

In particular, conditional VAE (CVAE) is a typical deep
generative model trained by semisupervised learning, and
the generative model and learning algorithm are based on
VAE. VAE learns the parameters simultaneously with the
inference of the latent states using only observations. On the
other hand, CVAE introduces labels for observations as latent
variables to improve the quality of prediction by exploring
information in the data density. However, CVAE does not
assumemissing observations. To explore missing observations
efficiently, we take a different approach to CVAE by applying a
probabilistic model of SDSSM, as shown in Figure 1(a). For-
mally, we assume the following generative model:

pθ zt ∣ zt−1, utð Þ =N z ; μz zt−1, utð Þ, σz zt−1, utð Þð Þ, systemmodelð Þ,
pθ xt ∣ zt , stð Þ =N x ; μx zt , stð Þ, σx zt , stð Þð Þ, observationmodelð Þ,
pθ yt ∣ zt , rtð Þ =N y ; μy zt , rtð Þ, σy zt , rtð Þ

� �
, observationmodelð Þ,

ð3Þ

where yt is an additional observed variable that follows a nor-
mal distribution and is generated from the same latent variable
zt as is xt , and rt is the action variable added to the emission of
the observation yt . Thus, we assume that observation yt is a
generative process similar to observation xt . The difference
between observations appears through the nonlinear func-
tions having different forms and inputs. In particular, shar-
ing latent variables allows one to infer the latent states
complementarily to the other observations, even when one
observation is missing. Therefore, SDSSM learns the com-
plex latent space as efficiently as other deep generative
models, even when the training dataset includes few obser-
vations. Here, the functions μz , σz, μy,σy, μx, and σx are
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Figure 1: Graphical representations of proposed models.
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arbitrary nonlinear functions parameterized by deep neural
networks (DNNs) as follows:

μz = DNNz zt−1, utð Þ, log σz = DNNz zt−1, utð Þ,
μx = DNNx zt , stð Þ, log σx = DNNx zt , stð Þ,
μy = DNNy zt , rtð Þ, log σy = DNNy zt , rtð Þ,

ð4Þ

where DNNz, DNNx, and DNNy are deep neural networks
that have weight matrices wz, wx, and wy, respectively. Thus,
the parameters of the generative model are θ = fwz ,wx,wyg.
According to Kingma and Welling [29], we assume that μz,
μx, and μy denote the mean and σz, σx, and σy indicate a diag-
onal covariance matrix. To ensure definite positivity, the out-
puts from deep neural networks for the diagonal covariance
matrix are taken using their logarithm.

2.1.2. Learning SDSSM Using SGVB. We maximize the
marginal log-likelihood based on the labeled dataset (Dl)
and the unlabeled dataset (Du) to optimize the parameters
θ and φ in the generative model. The labeled dataset
(Dl = fðx

tðlÞ1
, y

tðlÞ1
, u

tðlÞ1
, s

tðlÞ1
, r

tðlÞ1
Þ ⋯ ðx

tðlÞm
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tðlÞm
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tðlÞm
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tðlÞm
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tðlÞm
Þg)

does not include missing values, whereas the unlabeled
dataset (Du = fðy

tðuÞ1
, u

tðuÞ1
, s

tðuÞ1
, r

tðuÞ1
Þ⋯ ðy

tðuÞn
, u

tðuÞn
, s

tðuÞn
, r

tðuÞn
Þg)

includes missing values of observations xt . Note that the
labeled data is xt . Here, the superscript l represents labeled
and the superscript u represents unlabeled. We treat xt in
the labeled dataset as observed variables and xt in the unla-
beled dataset as latent variables. In the following, we omit
the dependence of p and q on ut , vt , st , and rt . The marginal
log-likelihood on the labeled dataset is as follows:

Logpθ x1:T , y1:Tð Þ = log
ð
pθ x1:T , y1:T ∣ z1:Tð Þdz1:T : ð5Þ

Note that we describe x1, x2,⋯, xT at each time step t
(t = 1, 2,…, T) as x1:T . Following the principle of SGVB,
we maximize the evidence lower bound (ELBO) with
respect to parameters θ and φ instead of maximizing the
marginal log-likelihood directly. We derive a labeled
ELBO L lðx, y ; θ, φÞ by introducing the recognition model
into Equation (14) and using Jensen’s inequality:

Logpθ x1:T , y1:Tð Þ ≥ log
ð
qφ z1:T ∣ x1:T , y1:Tð Þ pθ x1:T , y1:Tz1:Tð Þ

qφ z1:T ∣ x1:T , y1:Tð Þ dz1:T

= −L l x, y ; θ, φð Þ,
ð6Þ

where qφ is the posterior approximation of latent variable
zt , called the recognition model. In general, SGVB approx-
imates the true posterior without factorization. There is an
assumption that the true posterior distribution is factor-
ized to a simpler form using a mean-field approximation
in the framework of variational inference. Relaxing the
constraint contributes to the improvement of the repre-
sentation capability.In the case of sequential data, the

Kullback–Leibler (KL) divergence terms in ELBO often
have no analytic form. The gradients of the KL terms
are derived by sampling estimation so that insufficient
sampling leads to high-variance estimations [26]. Frac-
caro et al. [30] derived low-variance estimators of the
gradients using true factorization of the posterior dis-
tribution according to the Markov property. On the
basis of their work, we factorize the recognition model
as follows:

p z1:T ∣ x1:T , y1:Tð Þ =
YT
t=1

p zt ∣ zt−1, xt:T , yt:Tð Þ: ð7Þ

We set the initial latent state to zero: z0 = 0. The
studies mentioned above derived a similar form, such
that a latent state at time step t is conditioned by pre-
vious latent states and by the sequential observations
and action variables from time step t to T . In our
case, the form (including the future sequence of obser-
vations xt) cannot be calculated owing to the assump-
tion that the observations are missing. However,
Krishnan et al. [26] demonstrated that the sequence
from the initial time step 0 to time step t contains
sufficient information. Drawing on their work, we fac-
torize the recognition model as follows:

qφ z1:T ∣ x1:T , y1:Tð Þ =
YT
t=1

qφ zt ∣ zt−1, x1:t , y1:tð Þ: ð8Þ

Based on the decomposed recognition models, the
labeled ELBO L lðx, y ; θ, φÞ is defined as follows:

−L l x, y ; θ, φð Þ = 〠
T

t=1
Eqφ ztð Þ log pθ yt ∣ ztð Þ + log pθ xt ∣ yt , ztð Þ½ �

− βKL qφ z1ð Þ pθ z1ð Þk
� �

− 〠
T

t=2
Eqφ zt−1ð Þ βKL qφ ztð Þ pθ zt ∣ zt−1ð Þk

� �h i
,

ð9Þ

where qφðztÞ = qφðzt ∣ zt−1, xt , ytÞ. The expectations with
respect to qφðztÞ and qφðzt−1Þ in Equation (9) are esti-
mated via Monte Carlo sampling after applying the
reparameterization trick. KL denotes a Kullback–Lei-
bler divergence. All KL terms in Equation (9) can be
computed analytically. Additionally, we add the weight
coefficient β for the KL divergence and gradually
increase it from a small number during training to
facilitate flexible modeling by the explicit avoidance of
restrictions.In the unlabeled dataset, we are interested
in the marginal log-likelihood log pθðy1:TÞ, which is
derived by marginalizing out not only zt but also xt .
We obtain an unlabeled ELBO from the marginal log-
likelihood in the same way as we obtained the labeled
ELBO. The unlabeled ELBO is decomposed as follows
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by applying d-separation to the graphical model:

Logpθ y1:Tð Þ ≥∬qφ z1:T , x1:T ∣ y1:Tð Þ log pθ x1:T , y1:T , z1:Tð Þ
qφ z1:T , x1:T ∣ y1:Tð Þ dz1:Tdx1:T

=∬qφ z1:T ∣ x1:T , y1:Tð Þqφ x1:T ∣ y1:Tð Þ

� log pθ x1:T , y1:T , z1:Tð Þ
qφ z1:T ∣ x1:T , y1:Tð Þqφ x1:T ∣ y1:Tð Þ dz1:Tdx1:T :

ð10Þ

Unlike the labeled dataset, an unlabeled ELBO has
two recognition models, qφðz1:T ∣ x1:T , y1:TÞ and qφðx1:T ∣
y1:TÞ, because the two latent variables, zt and xt , are
included. The former has the same form as the recogni-
tion model of the labeled ELBO. On the other hand, the
latter is factorized as follows, following a similar
approach to the labeled dataset:

qφ x1:T ∣ y1:Tð Þ =
YT
t=1

qφ xt ∣ yt:Tð Þ: ð11Þ

Using this decomposed recognition model, an unla-
beled ELBO is eventually defined as

−Lu x, y ; θ, φð Þ = 〠
T

t=1
Eqφ xt ∣ytð Þ −L l x, y ; θ, φð Þ +H qφ xt ∣ ytð Þ

h ih i
,

ð12Þ

where H½qφðxt ∣ ytÞ� denotes the entropy of the recognition
model qφðxt ∣ ytÞ. The unlabeled ELBO Luðx, y ; θ, φÞ
includes the labeled ELBOL lðx, y ; θ, φÞ, and all probability
models except for the recognition model qφðxt ∣ ytÞ are
shared by the labeled ELBO and unlabeled ELBO. An
expectation in the unlabeled ELBO is estimated via Monte
Carlo sampling from the recognition model qφðxt ∣ ytÞ. We
derive an objective function by summing the labeled and
unlabeled ELBOs as follows:

J =〠
Dl

L l x, y ; θ, φð Þ +〠
Du

Lu x, y ; θ, φð Þ + αEDu
−log qφ xt ∣ ytð Þ
h i

,

ð13Þ

where α denotes a small positive constant. Because the rec-
ognition model qφðxt ∣ ytÞ has only an unlabeled ELBO, it
does not acquire label information during training. In
accordance with Krishnan et al. [26], we add a regression
term to the objective function to train the recognition
model using both the labeled dataset and the unlabeled
dataset. The objective function is differentiable owing to
the differentiable labeled and unlabeled ELBOs, and the
parameters θ and φ are optimized simultaneously by sto-
chastic gradient descent via back-propagation.

2.1.3. Extension of SDSSM. We propose two additional types
of extensions to SDSSM depending on some assumptions of
the latent space. We call the SDSSM described above a con-

tinuous SDSSM (Cont-SDSSM) to distinguish it from the
other two models. There are two main plant states that are
strongly related to sugar content.

The first is the growth stage [31]. The products of photo-
synthesis, such as organic acid and sugar content, are accu-
mulated in the fruit, and the ratio of accumulated
components varies depending on the growth stage with
the transition in metabolism. Therefore, the growth stage
is considered essential for plant growth modeling. Second,
the sugar content also varies depending on the water con-
tent in the plant because insufficient water content often
suppresses photosynthesis. Regarding these complicated
state transitions with continuous variation, Cont-SDSSM
uses single latent variables that follow a normal distribu-
tion. We have to consider the appropriate distribution to
model the complex transitions and highly structured gener-
ative processes based on a plant’s growth and surrounding
environmental data.

As another approach for modeling the plant states, we
design a simpler model called discrete SDSSM (Disc-
SDSSM), which represents only the growth stage without
considering the water content. In Disc-SDSSM, the forms
of generative model, recognition model, and objective func-
tion are the same as those in Cont-SDSSM. The major differ-
ence is that the latent states follow a categorical distribution
because the growth stage is defined as the plant growth class
before the harvest, e.g., the flowering stage and ripening
stage, which implies discrete growth. We use a Gumbel-
Softmax distribution as the posterior of the latent states
zt (instead of a normal distribution) to obtain differentia-
ble categorical samples via the categorical reparameteriza-
tion trick [32]. Formally, the generative model is defined
as follows:

pθ zt ∣ zt−1, utð Þ = Cat z ; πz zt−1, utð Þð Þ, systemmodelð Þ,
pθ xt ∣ zt , stð Þ =N x ; μx zt , stð Þ, σx zt , stð Þð Þ, observationmodelð Þ,
pθ yt ∣ zt , rtð Þ =N y ; μy zt , rtð Þ, σy zt , rtð Þ

� �
, observationmodelð Þ,

ð14Þ

where πz is an arbitrary nonlinear function parameterized
by deep neural networks as follows: πz = NNzðzt−1, utÞ.As a
different approach to representing plant states, we design a
generative model called two latent SDSSM (2L-SDSSM), as
shown in Figure 1(b). 2L-SDSSM uses two types of latent
variables, zt and dt , to clearly separate the two plant states.
The generative model is defined as follows:

pθ zt ∣ zt−1, utð Þ =N z ; μz zt−1, utð Þ, σz zt−1, utð Þð Þ, systemmodelð Þ,
pθ dt ∣ dt−1, vtð Þ = Cat d ; πd dt−1, vtð Þð Þ, systemmodelð Þ,
pθ xt ∣ zt , stð Þ =N x ; μx zt , stð Þ, σx zt , stð Þð Þ, observationmodelð Þ,
pθ yt ∣ zt , rtð Þ =N y ; μy zt , rtð Þ, σy zt , rtð Þ

� �
, observationmodelð Þ,

ð15Þ

where zt denotes the water content in the plants, dt
denotes the growth stage, and vt is an action variable
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playing the same role as the action variable ut in Cont-
SDSSM. The random variables zt and dt are mutually
independent latent variables that follow a normal distribu-
tion and category distribution, respectively. We sample
random latent variables dt from a Gumbel-Softmax distri-
bution via the categorical reparameterization trick, which
is similar to our handling of Disc-SDSSM. The labeled
and unlabeled ELBOs have different forms owing to differ-
ences in the generative model as follows:

−L l x, y ; θ, φð Þ = 〠
T

t=1
Eqφ ztð Þ,qφ dtð Þ log pθ xt ∣ ztð Þ + log pθ yt ∣ ztð Þ½ �

− Eqφ zt−1ð Þ,qφ dt−1ð Þ βKL qφ ztð Þ pθ zt ∣ zt−1ð Þk
� �h

+ βKL qφ dtð Þ pθ dt ∣ dt−1ð Þk
� �

�,

Lu x, y ; θ, φð Þ = 〠
T

t=1
Eqφ xtð Þ −L l x, y ; θ, φð Þ +H qφ xtð Þ

h ih i
,

ð16Þ

where qφðztÞ = qφðzt ∣ zt−1, xt , ytÞ, qφðdtÞ = qφðdt ∣ dt−1, xt , ytÞ,
and qφðxtÞ = qφðxt ∣ ytÞ.

2.2. Experiments

2.2.1. Experimental Dataset. We grew tomato plants
(Solanum lycopersicum L.) in a greenhouse at the Shizuoka
Prefectural Research Institute of Agriculture and Forestry
in Japan from August 28 to November 18, 2017. There were
16 cultivation beds in the greenhouse, as shown in
Figure 2(c), and we cultivated 24 individual tomato plants
in each cultivation bed, as shown in Figure 2(a). The toma-
toes were grown by three-step dense-planting hydroponic
cultivation. Under the three-step dense-planting hydroponic
cultivation (Figure 2(b)), the quantity and timing of irriga-
tion greatly affects the quality (sugar content) of tomatoes.

To collect data, we installed sensors in the greenhouse to
measure the temperature, humidity, solar radiation, CO2
concentration, and stem diameter. The stem diameter was
measured by laser displacement sensors (HL-T1010A, Pana-
sonic Corporation) of the target tomato plants. The stem
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Stem diameter sensor

5 6

1 2

7 8

3 4

13 14

9 10

15 16

11 12
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…
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…

Sensors for 
temperature, humidity, and solar radiation

Sensor for 
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Framework

Cultivation
bed

(a) Overhead view of a cultivation bed (b) Layout of measuring equipment for targeted tomato plants

(c) Overhead view of horticulture beds

Figure 2: Experimental environment.
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diameter decreases with exposure to high solar radiation in
the daytime and increases with decreased exposure to solar
radiation in the evening. In addition, the maximum daily
stem-shrinkage of the stem diameter is susceptible to a
vapor-pressure deficit [33]. All sensor data were collected
every minute, and the daily averaged values were used for
the model inputs. In addition, we measured the sugar content
of the fruits of the target tomato plants on which the stem
diameter sensors were installed. The sugar content was
measured every three days by a hand-type near-infrared
spectrometer (CD-H100, Chiyoda Corporation), and the
measurements were conducted in each step of the three-
step dense-planting hydroponic cultivation. We used the
average sugar content value of 10 time measurements for
each fruit in which stem diameter sensors were installed.

2.2.2. SDSSM Variable Settings. The three models
(Cont-SDSSM, Disc-SDSSM, and 2L-SDSSM) used for the
estimation of sugar content are analyzed through compara-
tive evaluations. This is to reveal the performance of the pro-
posed SDSSM. The variables for the proposed models are
listed in Table 1. In this paper, each variable of the proposed
three models is set as listed in Table 1; xt is sugar content, yt is
stem diameter; vector ut is temperature, solar radiation,
vapor-pressure deficit (VPD), the elapsed date from flower-
ing, and accumulated temperature (which is the total temper-
ature from the flowering date to the present); and vector st is
the CO2 concentration, solar radiation, and step ID of three-
step dense-planting hydroponic cultivation to indicate to
which step of the tomato the data belong. The action vari-
ables rt are not used in any models in this experiment. The
settings of each variable in Disc-SDSSM are similar to those
of Cont-SDSSM. The difference is that vt includes the elapsed
date from flowering and the accumulated temperature.
2L-SDSSM has similar settings to Cont-SDSSM, and the
differences are that ut includes temperature, solar radia-
tion, and VPD, while vt includes the elapsed date from
flowering and the accumulated temperature.

An overview of the information flow at time step t in the
graphical model (Figure 1) of the proposed method is shown
in Figure 3 by using probability distributions. In addition,
Figure 4 shows the inputs and outputs of each probability
distribution for the neural network architectures. Cont-
SDSSM and Disc-SDSSM include five types of neural
networks corresponding to five types of probability distribu-

tions: pθðxtÞ, pθðytÞ, pθðztÞ, qφðxtÞ, and qφðztÞ. 2L-SDSSM
has seven types of neural networks corresponding to its
seven types of probability distributions: pθðxtÞ, pθðytÞ,
pθðztÞ, pθðdtÞ, qφðxtÞ, qφðztÞ, and qφðdtÞ.

These seven types of neural networks have the same basic
architecture: a hidden layer converts the input nonlinearly,
and then the outputs are converted to a mean vector and
diagonal covariance log-parameterization matrix through a
single separate hidden layer. The neural networks have hid-
den layers structured as follows: fully connected layers, recti-
fied linear unit (ReLU) layers [34], and batch normalization
layers [35]. The neural networks that emit latent states zt or
dt use a long short-term memory (LSTM) [36, 37] as the first
hidden layer instead of a fully connected layer. In this case,
LSTM has a forget gate, input gate, and output gate, which
makes it possible to consider long-term time series. There-
fore, LSTM is used as the first hidden layer. All hidden layers
have 128 units, and all weights are initialized using He et al.’s
initialization [38] to accelerate convergence. All random var-
iables of Cont-SDSSM follow a normal distribution. On the
other hand, the random latent variabledtis categorically dis-
tributed. This is because categorical distribution has only
one parameter, π; Disc-SDSSM and 2L-SDSSM have two
consistent hidden layers without the branch structure used
for Cont-SDSSM.

2.2.3. Experimental Conditions. We verified the performance
of the proposed methods through two types of evaluations. In
the first evaluation, we compared semisupervised SDSSMs
to supervised SDSSMs trained using only labeled data via
supervised learning to verify the effectiveness of our semi-
supervised learning approach. In this experiment, the
supervised Cont-SDSSM, Disc-SDSSM, and 2L-SDSSM
are called Cont-SV (SV denotes supervised), Disc-SV,
and 2L-SV, respectively. In addition, the semisupervised
Cont-SDSSM, Disc-SDSSM, and 2L-SDSSM are called
Cont-SSV (SSV denotes semisupervised), Disc-SSV, and
2L-SSV, respectively.

In the second evaluation, we compared semisupervised
SDSSMs with typical deep neural networks, the multilayer
perceptron (MLP) and stacked LSTM (sLSTM). This is to
investigate the performance of the proposed models for the
optimal estimation of sugar content. We expected that the
proposed models fit all of the observed data rather than local

Table 1: Variables in the proposed models.

Variable Cont-SDSSM Disc-SDSSM 2L-SDSSM

xt Sugar content Sugar content Sugar content

yt Stem diameter Stem diameter Stem diameter

ut
Temperature, solar radiation, VPD, elapsed date1,

accumulated temperature2
Elapsed date1, accumulated

temperature2
Temperature, solar radiation, VPD

vt — —
Elapsed date1, accumulated

temperature2

st CO2 concentration, solar radiation, step ID
CO2 concentration, solar

radiation, step ID
CO2 concentration, solar radiation,

step ID
1Number of days after flowering. 2Summation of daily temperatures from the flowering date to the present.
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data because the KL terms in ELBO perform a regularization
function. On the other hand, both MLP and sLSTM which
were trained on a small dataset can easily result in overfitting.
Therefore, we applied dropout [39] to each layer in the MLP
and sLSTM to reduce overfitting.

We trained each model using the collected tomato data-
set. We divided the dataset into training data, validation data,
and test data to train and evaluate the models appropriately.
In addition, to validating the robustness of the proposed
methods, cross-validation was conducted using data sets of
16 cultivation beds divided into four patterns, as shown in
Table 2. The hyperparameters were tuned by using random
sampling. The hyperparameter such as learning rate, optimi-
zation algorithms, dimension size of latent variables for
SDSSMs, sequence length, and dropout rate were the same
for all the compared models.

When training SDSSMs, we gradually increased the
weight coefficient for the KL terms in ELBO by 0.0001 after
each epoch (starting from 0 to 1). The mean absolute error
(MAE), root mean squared error (RMSE), relative absolute
error (RAE), and relative squared error (RSE) were used as
the error indicators. In this study, all the models were tuned
using the validation data, and the models which showed the
lowest MAE were selected as the best models with the most
optimal hyperparameters. In this experiment, we imple-
mented all source codes using Python. We used Chainer
[40] to implement a deep neural network architecture and
scikit-learn [41] to preprocess the dataset. This evaluation
was performed on a PC with an Intel Core i7-5820K Proces-
sor, GeForce GTX 1080, and 64GB of memory. The training

process time depends largely on the values of the hyperpara-
meters, the tuning method, and the number of epochs. For
example, when we used the training data for pattern C in
Table 2, which had the largest number of test labeled contents
for training, it took approximately 4.6 s to complete 1 epoch,
so it took approximately 1 h to create one model converge.
Regarding the inference time, it took approximately 5.33 s
to infer the test data in 2L-SDSSM when it was repeatedly
measured 100 times using the same test data (pattern C in
Table 2).

3. Results and Discussion

Figure 5 shows the average errors of each supervised SDSSM
(Cont-SV, Disc-SV, and 2L-SV), the semisupervised SDSSMs
(Cont-SSV, Disc-SSV, and 2L-SSV), MLP, and sLSTM for
the four types of test data. The results demonstrate that all
semisupervised SDSSMs reduced the estimation errors for
all error indicators. In particular, the MAE of Cont-SV is
1.25, whereas that of Cont-SSV is 0.78; the MAE reduction
rate of Cont-SSV versus Cont-SV is approximately 38%. Sim-
ilarly, the MAE reduction rates of the semisupervised
SDSSMs versus the supervised SDSSMs are approximately
30% for Disc-SSV and 9% for 2L-SSV. Moreover, both the
RAE and RSE of all semisupervised SDSSMs are less than 1.
Therefore, all semisupervised SDSSMs perform better than
the naive models which output the average of the true values
as the estimation values. The MAEs of typical deep neural
networks, such as MLP and LSTM, are larger than those of
Cont-SSV and less than those of Disc-SSV and 2L-SSV.

(a) Cont-SDSSM and Disc-SDSSM (b) 2L-SDSSM

t
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ut–1 vt–1 st

zt dt yt xt
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Figure 3: Overview of information flow at time step t of the proposed models.
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Although the error indicators of MLP and sLSTM appear to
better than other models, further analysis is needed.

Figure 6 shows the true values, estimated values, and
standard deviations of estimated values of time-series sugar
content in the area 10 output by supervised SDSSMs, semisu-
pervised SDSSMs, MLP, and sLSTM trained on dataset
pattern A. The standard deviations of Cont-SDSSM and
2L-SDSSM are so low that they are not clearly visible. The
results show that our semisupervised approach (Cont-SSV,
Disc-SSV, and 2L-SSV) estimates the sugar contents better
because of the improved generalization performance.

Although there are few sugar content data before October
(the other dataset patterns show a similar tendency because
we collected sugar content data in the same manner over
the entire area), the semisupervised SDSSMs clearly identify
the variation patterns in other periods with their effective
use of unlabeled data. From middle October to late October
in Figure 6, although each supervised SDSSM (Cont-SV,
Disc-SV, and 2L-SV) appears to be able to estimate better
compared to the semisupervised SDSSMs, each supervised
SDSSM’s RMSE in Figure 5 is higher than that of each
semisupervised SDSSM.
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Linear-128

Linear-128 Linear-128

LSTM-128

Linear-128 Linear-128

Linear-128

Linear-128 Linear-128

Linear-128

Linear-128 Linear-128
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Log(𝜎x)2

Figure 4: Network architectures showing each neural network in the proposed models.

Table 2: Data used for cross-validation.

Dataset pattern
Training (data size (labeled size)

(cultivation bed no.))
Validation (data size (labeled size)

(cultivation bed no.))
Test (data size (labeled size)

(cultivation bed no.))

A 2,241 (382) (3, 4, 5, 6, 7, 11, 13, 14, 15) 747 (123) (8, 12, 16) 996 (167) (1, 2, 9, 10)

B 2,241 (345) (1, 5, 7, 8, 9, 13, 14, 15, 16) 747 (131) (2, 6, 10) 996 (154) (3, 4, 11, 12)

C 2,241 (361) (1, 2, 3, 4, 7, 9, 10, 11, 15) 747 (123) (8, 12, 16) 996 (189) (5, 6, 13, 14)

D 2,241 (381) (1, 3, 4, 5, 9, 11, 12, 13, 14) 747 (131) (2, 6, 10) 996 (161) (7, 8, 15, 16)
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Figure 6: True and estimated values of the sugar content (brix) with the standard deviations for supervised SDSSMs, semisupervised
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SDSSMs also output the variance and the estimation
values. The averages of the standard deviations of the esti-
mated values for all test plots in Table 2 are approximately
0.076 for Cont-SV, 0.28 for Disc-SV, 0.082 for 2L-SV, 0.17
for Cont-SSV, 1.04 for Disc-SSV, and 0.12 for 2L-SSV. In

particular, the standard deviation of Disc-SSV is larger than
those of the others, as clearly shown in Figure 6. A large stan-
dard deviation indicates output instability in the estimation
for sugar content. The instability, however, is not a significant
problem in a model for model-based RL when the standard
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Figure 7: Scatter plots of standard deviations and absolute errors of supervised SDSSMs and semisupervised SDSSMs.
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deviation and estimation error are positively correlated. This
is because the agent of the model-based RL explores an envi-
ronmental model while considering the uncertainty of the
estimation based on the standard deviation of the estimation
value. Therefore, estimating the uncertainty correctly allows
the agent to learn efficiently. MLP and LSTM look like they
produce the same tendency as the supervised SDSSMS, and
the estimated values in the period during October are rela-
tively close to the true values, resulting in small errors, as

shown in Figure 6(d). Considering only the numerical
values, the MLP and LSTM look like they produce higher
estimates than the supervised SDSSMs. However, as can be
seen from Figure 6(d), the MLP and LSTM are overfitted
to a particular dataset in the period after October even
though dropout was applied in both cases, and the generali-
zation performance is low.

Figure 7 shows scatter plots of the standard deviations
and the absolute errors for the compared models with the test
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dataset of pattern A in Table 1. Our proposed method is
based on a generative model, which outputs both estimation
values and standard deviations. Therefore, our proposed
methods can evaluate the uncertainty of estimates by using
the standard deviation. These results indicate that Cont-
SSV and Disc-SSV significantly improve the correlation coef-
ficient compared to supervised SDSSMs such as Cont-SV and
Disc-SV. The correlation coefficient of 2L-SSV is still nega-
tive and is likely to cause incorrect exploration, although
2L-SSV slightly improves the correlation coefficient com-
pared to 2L-SV. Conceivably, the significantly high correla-
tion of 0.47 for Disc-SSV demonstrates that its standard
deviations can assist agents to better seek an appropriate
model and promote learning of the optimal control to
achieve high sugar content.

Figure 8 shows the principal component and stem diam-
eter or the difference in stem diameter (DSD) in the model
learned using the dataset of pattern A in Table 1 as a scatter
diagram on the x-axis and y-axis, respectively. The DSD is
one of the water stress indicators and is expressed as the dif-
ference between the maximum stem diameter (SD) observed
thus far and the current stem diameter (SDi) as follows:
DSDi =max ðSD0,⋯, SDiÞ − SDi. The maximum value con-
tinuously updates with plant growth. By calculating the
decrease from the maximum stem diameter, the variation
due to plant growth is ignored, and only the amount of water
stress can be quantified from the stem diameter. This figure
demonstrates that each principal component of the semisu-
pervised Cont-SSV has a higher correlation with the stem
diameter and DSD compared with Cont-SV. In particular,
in Cont-SSV, the stem diameter has a significantly high cor-
relation of approximately -0.9 with the first component, as
shown in Figure 8(b), and DSD has a significantly high corre-
lation of approximately 0.52 with the second component, as
shown in Figure 8(h). This result suggests that Cont-SSV rep-
resents both plant growth and plant water content in the
latent space owing to the reasonable inference achieved by
using two observation variables sharing latent variables in
our semisupervised learning model.

Additionally, the latent space is represented as a linear
combination of these two plant states. This result confirms
the assumption that the two types of latent variables are inde-
pendent of each other. Cont-SSV and Disc-SSV have differ-
ent natures, and Cont-SSV has better estimation accuracy,
but Disc-SSV estimates the uncertainty better.

The results indicate that our three types of proposed
models (Cont-SSV, Disc-SSV, and 2L-SSV) work better than
the same models with supervised learning and other typical
deep neural networks. In particular, Cont-SSV has good
potential to estimate sugar content with high accuracy and
valid uncertainty. Considering the appropriate representa-
tion of the latent states, it is believed that Cont-SSV will per-
form well as an environmental model of model-based RL for
the optimal control of sugar content.

4. Conclusion

We have proposed a novel plant growth model using a semi-
supervised deep state-space model (SDSSM) for model-based

reinforcement learning to determine the optimal control of
sugar content. There have been several studies on tomato
growth modeling [42, 43], but we could not find any similar
study for modeling time-series tomato sugar content. SDSSM
is a sequential deep generative model that uses structured
variational inference to model the slow dynamics of living
organisms (such as plant growth). In particular, SDSSM
was trained using our semisupervised learning method that
complementarily infers the latent states by introducing two
observation variables to efficiently utilize sugar content data
which is difficult to collect.

Additionally, we designed three types of SDSSMs under
different assumptions regarding each latent space. The exper-
imental results demonstrated that the introduction of two
observation variables sharing latent variables improved the
generalization performance and enabled all SDSSMs to track
the variation of sugar content appropriately. Moreover,
tomatoes grown during the experiment had a maximum brix
rating of 10.73 and minimum brix rating of 4.67. The average
brix rating was 6.81. The highest accuracy model is 0.78 in
MAE; thus, our model has a potential to estimate time-
series sugar content variation with high accuracy.

We have designed a combined model (2L-SDSSM); how-
ever, the combined model was not the highest accuracy
model. Therefore, we still need to consider other ways to
combine the two models more appropriately, i.e., assuming
the independence of two latent states. In a future study, we
intend to improve the 2L-SDSSM which is the combination
of two different latent variables. Furthermore, we will
improve time-series data (sensor data of the temperature,
humidity, solar radiation, CO2 concentration, stem diameter,
and plant growth) in a greenhouse different from that used in
this study. We will continue to verify the performance of our
model by comparing our model with typical machine learn-
ing and typical deep neural networks.

Appendix

A. Plant Growth Model Design

A.1 State-Space Model. The state-space model (SSM) is a gen-
erative model that represents time series based on two types
of models: one is the systemmodel and the other is the obser-
vation model. SSM models a sequence of observed variables
x1, x2,⋯, xT and a corresponding sequence of latent vari-
ables z1, z2,⋯, zT at each time step t (t = 1, 2,⋯, T). The
probabilistic model is shown in Figure 9(a), and a general
expression of the model is

zt ~ p zt ∣ zt−1, θð Þ, systemmodelð Þ,
xt ~ p xt ∣ zt , φð Þ, observationmodelð Þ,

ðA:1Þ

where the system model is the conditional probability distri-
bution of the latent state zt conditioned on the previous
latent state zt−1 and the observation model is the conditional
probability distribution of xt conditioned on the correspond-
ing latent state zt at time step t. The variables θ and φ denote
the parameter vectors of the system model and the observa-
tion model, respectively. The system model is initialized by
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z0 = pðz0Þ. We use available arbitrary probability distribu-
tions in both the system model and the observation model.
Some SSMs with specific distributions and constraints have
unique names. For example, one of the simplest models,
called a linear Gaussian model (LGM) [44], can be written
mathematically as

zt+1 = Atzt + ϵt , ϵt ~N 0,Qð Þ, systemmodelð Þ,
xt = Btzt + ωt , ωt ~N 0, Rð Þ, observationmodelð Þ,

ðA:2Þ

where vector ϵt and vector ωt are random variables repre-
senting the state and observation noises, respectively. In
addition, xt and zt are vectors. Both of these noises are inde-
pendent of each other, the corresponding latent state zt , and
the conditional probability distribution of xt: Both of these
noise sources are a Gaussian distribution with zero covari-
ance matrix representing the mean Q and R, each inde-
pendent of the time step. At and Bt denote coefficient
matrices. LGMs can fit with time-series data and are uti-
lized for many applications whose observations and latent
states have a linear transition and a normal distribution,
respectively.

Additionally, there are methods available to model time-
series data with nonlinear transitions, e.g., the extended
Kalman filter [45] and the quadrature particle filter [46].
Raiko et al. [47] and Valpola and Karhunen [22] attempted
to estimate an intractable posterior of the complex generative
model using nonlinear dynamic factor analysis, which is
impractical for large-scale datasets owing to the inherent
quadratic scale regarding observed dimensions. Recently,
Kingma and Welling [29] introduced stochastic gradient
variational Bayes (SGVB) and a learning algorithm named a
variational autoencoder (VAE) to obtain a tractable posterior.

A.2 Variational Autoencoder. The variational autoencoder
(VAE) [22] is a deep generative model for nonsequential
data. The parameters are optimized via SGVB [23], and
the probabilistic model is shown in Figure 9(b). In partic-
ular, conditional VAE (CVAE), as shown in Figure 9(c), is
a typical deep generative model trained by semisupervised
learning [21]. The N in the plate (the part surrounded by
the frame) shown in Figure 9 means thatNnodes are omit-
ted and only the representative nodes are shown in
Figures 9(b) and 9(c). The details will be discussed later

in this section. In the VAE, the generative process can be
written mathematically as

z ~ p zð Þ,
x ~ pθ x ∣ zð Þ:

ðA:3Þ

The latent variable z is obtained from a prior pðzÞ. The
observed variable x is drawn from a probability distribu-
tion pθðx ∣ zÞ conditioned on z with the parameter vector
θ, and the posterior pθðz ∣ xÞ is assumed to be intractable.
The parameter is estimated simultaneously with the latent
states through maximization of the following marginal
log-likelihood:

Logpθ xð Þ = log
ð
pθ x ∣ zð Þp zð Þdz: ðA:4Þ

When the posterior is intractable, the standard
expectation-maximization (EM) algorithm and variational
inference do not work well because the EM algorithm
needs to compute the posterior and variational inference
requires closed-form solutions of the expectations of the
joint probability density function. Additionally, sampling-
based EM algorithms require sufficient time to obtain the
posterior when the data size is large. In SGVB, the approx-
imate posterior qφðz ∣ xÞ with parameter φ is introduced,
and we consider the following evidence lower bound
(ELBO) Lðx ; θ, φÞ as would be the case for the variational
inference. ELBO is an objective function used to optimize
the parameters θ and φ.

L x ; θ, φð Þ = Eqφ z∣xð Þ log pθ x ∣ zð Þ½ � −KL qφ z ∣ xð Þ p zð Þk
� �

:

ðA:5Þ

KL denotes a Kullback–Leibler divergence. In addition,
parameter φ denotes the parameter of qφðz ∣ xÞ that
approximates pθðxÞ. In fact, in the VAE, φ represents the
neural network’s weights and bias, and these parameters
are optimized via back-propagation. The difference in varia-
tional inference is the use of differentiable Monte Carlo

(b) VAE (c) CVAE(a) General SSM

z

x

N N

x

yz…… zt–1

xt–1

zt zt+1

xt+1xt

Figure 9: Graphical models of SSM, VAE, and CVAE.
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expectations instead of applying the mean-field assumption.
Formally, the reformulation of the ELBO is as follows:

L x ; θ, φð Þ ≅ 1
L
〠
L

l=1
logpθ x ∣ z lð Þ

� �
−KL qφ z ∣ xð Þ p zð Þk

� �
,

ðA:6Þ

where z is sampled via a reparameterization trick
(zðlÞ = μ + σεðlÞ and ϵðlÞ ~Nð0, IÞ) to acquire a differentiable
ELBO instead of sampling from the posterior qφðz ∣ xÞ
(which is not differentiable with respect to φ). Specifically,
the reparameterization trick represents a sampling z ~ qφ
ðz ∣ xÞ as a deterministic transformation gφðϵ, xÞ by adding
a random noise ϵ ~ pðϵÞ to input x. By using the repara-
meterization trick, the expectation term can be written
mathematically asEqφðz∣xÞ½ f ðzÞ� ≅ 1/L∑L

l=1 f ðgφðϵðlÞ, xÞÞwhere
f ðzÞ = log pθðx ∣ zÞ and ϵðlÞ ~ pðϵÞ. This expectation is differ-
entiable with respect to θ and φ. For example, when a latent
variable z is distributed according to a Gaussian distribution
Nðz ∣ μ, σ2Þ, the ELBO is as follows:

Eqφ z∣xð Þ log pθ x ∣ zð Þ½ � ≅ 1
L
〠
L

l=1
logpθ x ∣ z lð Þ

� �
: ðA:7Þ

The likelihood pθðx ∣ zÞ and posterior qφðz ∣ xÞ are repre-
sented by neural networks, and the parameters are optimized
via back-propagation.
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