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Early detection of plant diseases, prior to symptom development, can allow for targeted and more proactive disease management.
The objective of this study was to evaluate the use of near-infrared (NIR) spectroscopy combined with machine learning for early
detection of rice sheath blight (ShB), caused by the fungus Rhizoctonia solani. We collected NIR spectra from leaves of ShB-
susceptible rice (Oryza sativa L.) cultivar, Lemont, growing in a growth chamber one day following inoculation with R. solani,
and prior to the development of any disease symptoms. Support vector machine (SVM) and random forest, two machine
learning algorithms, were used to build and evaluate the accuracy of supervised classification-based disease predictive models.
Sparse partial least squares discriminant analysis was used to confirm the results. The most accurate model comparing mock-
inoculated and inoculated plants was SVM-based and had an overall testing accuracy of 86.1% (N = 72), while when control,
mock-inoculated, and inoculated plants were compared the most accurate SVM model had an overall testing accuracy of 73.3%
(N = 105). These results suggest that machine learning models could be developed into tools to diagnose infected but
asymptomatic plants based on spectral profiles at the early stages of disease development. While testing and validation in field
trials are still needed, this technique holds promise for application in the field for disease diagnosis and management.

1. Introduction

Plant disease diagnosis can be time-consuming and resource-
intensive, requiring trained personnel to either scout for dis-
ease symptoms in the field or to run laboratory tests ranging
from isolation to more modern molecular identification of
pathogens [1, 2]. Once diseases are detected, management
options may be limited, especially if disease symptoms are
widespread, and/or are cost prohibitive. Approaches that
require minimal training are relatively inexpensive and have
the potential to be used in a rapid and high-throughput man-
ner are attractive alternatives, especially if they are capable of
diagnosing diseased plants prior to the development of
symptoms [3]. Early detection and diagnosis of plant diseases
may allow for targeted disease management, i.e., applying
treatments selectively and only to diseased plants rather than
applying treatments to an entire area where not all plants
may be diseased. This in turn can lead to reductions in the
time and money spent managing for plant diseases, since

only smaller areas would need to be treated. It may also lead
to a reduction in yield losses, if the disease is detected before
it has a chance to spread widely. Methods available currently
for rapid detection include PCR-based approaches. While
there are field-based methods for PCR (e.g., Loop-mediated
isothermal amplification) [4], these methods are not always
available, require active sampling, and may not be amenable
to high-throughput disease diagnosis in the field.

Near-infrared (NIR) spectroscopy is one promising
method for rapid and high-throughput classification of dis-
eased plants, providing a potential tool for passive monitor-
ing of plant diseases. In addition, handheld instruments,
like the one used in the present study, require minimal train-
ing to use and are relatively inexpensive. NIR spectroscopy is
a type of vibrational spectroscopy that examines how light
interacts with a sample over the 750–2500 nm region of the
electromagnetic spectrum [5, 6]. When plants are suffering
from an infection, their metabolism is significantly altered.
Any wholesale changes in plant phytochemistry can, at least
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in principle, be detected by way of chemical fingerprints gen-
erated with NIR spectroscopy and related approaches, as
demonstrated by Fallon et al. [7] for oak wilt, Couture et al.
[8] for potato virus Y, and Gold et al. [9] for potato late
blight. Transmission and reflectance are two ways in which
NIR spectra are collected. With transmission spectroscopy,
the detector and infrared source are placed on opposite sides
of the sample and radiation passing through the sample is
measured, whereas with reflectance spectroscopy the detec-
tor and source are on the same side of the sample and radia-
tion that reflects off the sample is measured. For solid
samples, such as plant tissues, reflectance spectroscopy is
commonly used [5]. Regardless of the method used, each
sample has a unique NIR spectrum, a byproduct of its chem-
ical and physical properties [5]. An added benefit of NIR
spectroscopy is that it requires minimal sample preparation
[6], which can allow for more rapid measurement and subse-
quent classification (e.g., of diseased plants). Finally, NIR
spectroscopy measures chemicals containing the groups
-OH, -NH, and -CH [5, 6], which are found in primary and
secondary metabolites—key components of plants and plant
defenses against pathogens. Variation in NIR reflectance can
also be attributed to differences in the water content of sam-
ples [10, 11]. Plant moisture content is an indicator of plant
health, e.g., by way of desiccation (i.e., wilting) or the forma-
tion of water-soaking lesions (due to vacuole collapse), both
of which are common symptoms of pathogen infection.

On its own, NIR spectroscopy can be used to understand
the chemical and physical properties of a given sample. How-
ever, in order to use it for rapid classification [12], it must be
combined with some form of predictive modeling, since dif-
ferences in spectral bands (i.e., wavelengths) may not be
obvious. Machine learning (a tool used for artificial intelli-
gence) is one approach for efficiently developing predictive
models, particularly when working with large and complex
datasets [13], such as the chemical fingerprints collected by
spectral methods [14–16]. Support vector machine (SVM),
a type of machine learning algorithm, is a supervised classifi-
cation approach that has been used widely for detection, clas-
sification, and prediction of plant diseases [17]. For example,
SVM has been used to distinguish between healthy and inoc-
ulated sugar beets [18], for disease forecasting of rice blast
[19], and to distinguish between different plant diseases in
multiple plant pathosystems [18, 20]. Therefore, the objective
of this study was to evaluate whether NIR spectroscopy com-
bined with machine learning can be used to classify plants as
infected prior to the onset of disease symptoms.

We focused on one of the most economically important
diseases of rice (Oryza sativa L.), rice sheath blight (ShB),
caused by the fungus Rhizoctonia solani [21]. Early symp-
toms of the disease include the formation of ellipsoidal or
oblong, water-soaked necrotic lesions along the leaf sheath.
Under the right conditions, the fungus can spread upwards
quickly, forming lesions on upper leaf parts, and eventually
cause plant lodging within seven to ten days that may lead
to yield reductions as high as 50% [21, 22]. Since there are
no rice cultivars fully resistant to ShB, management options
are limited to the use of partially resistant cultivars, although
fungicides, cultural practices, and biocontrols are other

options [21, 23, 24]. Still, Singh et al. [23] identified the need
for “smart farming for early disease detection,” highlighting
the use of Unmanned Aerial Systems for early detection of
ShB [25]. A complementary approach using NIR spectros-
copy may be useful for the detection of ShB before the onset
of symptoms (e.g., lesions on the leaf sheath), given that mul-
tispectral sensing was capable of detecting ShB in rice under
moderate to high levels of disease [26] and was also used to
predict ShB severity [25]. In this study, we evaluated the
use of NIR spectroscopy combined with machine learning
as a tool for early detection of ShB in rice. Our results indicate
that this approach can be used to identify infected rice plants
as early as one day following inoculation with R. solani, and
therefore, may be a useful tool for early disease detection in
field settings.

2. Materials and Methods

2.1. Plant Material and Inoculations. Rice cultivar Lemont
was grown and inoculated according to the methods of Jia
et al. [27] with modifications. In brief, seeds were disinfected
with 75% ethanol for one minute and 3% sodium hypochlo-
rite for 30 minutes. After washing with sterilized water five
times, seeds were then germinated on ½ Murashige and
Skoog medium in petri dishes for eight days at 26°C to obtain
uniform seedling growth. Then, six seedlings each were
transferred to one 13 cm diameter pot containing Pro-Mix-
BX growing medium (Premier Tech Horticulture, Quebec,
Canada) and grown in a growth chamber (E15, Conviron,
Winnipeg, Canada) for four weeks. The growth chamber
was maintained at 26°C with 80% humidity and a 12 hr
light/12 hr dark period throughout the duration of the
experiment.

A total of 39 pots were prepared and maintained with 13
pots (~78 seedlings) per each of three treatments: control
(noninoculated), mock-inoculated with potato dextrose agar
(PDA) plugs only, and inoculated with R. solani on PDA
plugs. Approximately four-week-old seedlings were inocu-
lated or mock-inoculated at the base of the stem with two
0.7 cm diameter plugs of 60–72 hr old R. solani isolate B2
mycelium grown on PDA, with the mycelial sides of the plugs
placed against the plant stem, or PDA only, respectively.
Control plants were left as they were. Following inoculation,
all pots were covered with a clean 2L plastic soft drink bottle
with the bottom removed and no cap to maintain the level of
humidity necessary for the development of ShB [28]. Pots
were maintained in trays filled with water to approximately
half the height of the tray. To prevent cross-contamination
between samples, pots were separated in different trays based
on treatment, with one exception. One pot from each treat-
ment was placed in one tray due to space limitations within
the growth chamber. Pots were then placed back into the
growth chamber until spectral measurements were collected.
An additional experiment was performed comparing only
control (noninoculated) and inoculated plants (results
reported in the supplementary materials). The same proce-
dure as stated above was followed, with the exception that
there were only 12 pots (~72 seedlings) per treatment
(control and inoculated), and pots from each treatment were
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in separate trays in the growth chamber. The experiment
with three treatments (control, mock-inoculated, and inocu-
lated) occurred from September–October 2019, while the
experiment with two treatments (control and inoculated)
occurred from April–May 2019.

2.2. Collection of Spectral Data. At one day post-inoculation
(dpi), trays containing seedlings were removed from the
growth chamber to collect spectral measurements. Soda bot-
tles were removed from each pot just prior to the collection of
spectral measurements and were replaced once spectral mea-
surements were completed. For each seedling, a spectrum
was collected from the adaxial side of one to two leaves at
approximately mid-leaf or the widest part of the leaf, and
thus away from the site of inoculation at the base of the stem.

NIR spectra were collected with a NeoSpectra micro
handheld spectrometer (SiWare Systems, La Canada, CA,
USA) with a two-second collection time and a spectral reso-
lution of 16 nm as measured at 1550nm. The spectral range
of the instrument was 1348–2551 nm. A two-second back-
ground measurement was collected every pot (approximately
every six seedlings) using a protected gold-coated metallic
mirror (Thorlabs Inc., Newton, NJ, USA). The mirror was
also used to hold leaves in place against the surface of the sen-
sor during the collection of spectral measurements, with the
mirror side facing the sensor in the experiment with three
treatments and the backside of the mirror facing the sensor
in the experiment with two treatments. Spectra were col-
lected, visualized, and exported using SpectroMOST software
(SiWare Systems, La Canada, CA, USA). Trays containing
plants were then placed back into the growth chamber once
all spectral measurements were completed, and remained in
the growth chamber until disease symptoms were measured.

2.3. Disease Phenotyping. The presence or absence of disease
symptoms, including lesion length, was recorded at five and
seven dpi for the experiment with three treatments and at
seven and nine dpi for the experiment with two treatments.
Dates for the detection of disease symptoms were selected
based on the rate of disease development in each experiment,
which varied slightly. Due to the humid conditions within the
soda bottles, fungal growth was observed on PDA plugs from
mock-inoculated plants, although mock-inoculated plants
did not develop any stem lesions after seven days.

2.4. Data Preprocessing and Analysis. Raw NIR spectra from
rice leaves were imported into R version 3.6.0 [29]. Outliers
were detected and trimmed based on the method of Heim
et al. [30] (dfunc = depth:FM, nb = 10, smo = 0:1, trim =
0:06) (packages: “fda.usc” and “fda”) [31, 32]. In brief, spec-
tra were identified as outliers based on the assumption that
the depth of the spectral curve of a sample and the sample’s
outlyingness are inversely related, such that the depth of a
spectral curve of an outlier will be significantly lower [31].
Following outlier detection using a depth-based approach,
additional outliers based on boxplots were identified at the
wavelength 1772nm, which was representative of abnormal
NIR reflectance intensities across the entire spectral curve
for the experiment with three treatments. Using this

approach, samples from the experiment with three treat-
ments with reflectance values at 1772nm less than 150 or
greater than 350 were excluded. In total, 8.0% of spectra
across all treatment groups (N = 389) were removed from
the experiment containing three treatments. In the experi-
ment containing two treatments, spectra that resembled
the backside of the mirror were manually removed prior
to performing outlier detection and trimming. Including
those spectra, 14.8% of spectra across all treatment groups
(N = 210) were removed from the experiment containing
two treatments. Note, spectra from seedlings that failed to
develop disease symptoms were excluded from pre-
processing and subsequent analyses.

Next, spectra were second derivative transformed (pack-
age: “mdatools”; width of filter window = 15, porder = 2, and
dorder = 2) [33], and data were randomly split into training
(70% of data) and testing (30% of data) sets, while maintain-
ing the proportion of each treatment group in each data set
(package: “caret”) [34] (Table 1, Table S1). Since NIR
spectra are known to contain multicollinear variables,
which may result in model overfitting, variable reduction
was performed using two methods. First, variable selection
using random forests (package: “VSURF”) [35] was used to
identify individual spectral bands that are associated with
the response (i.e., treatments). With VSURF, two sets of
variables are identified: interpretation step and prediction
step. Both sets of variables are related to the response, but
interpretation step variables may have more redundancy
than prediction step variables [36]. Second, spectral
resampling, i.e., signal binning, was used to reduce the
number of total bands included in the analysis from 55 to
11 (package: “prospectr”, bin size = 5) [30, 37]. A bin size of
five was selected to reduce multicollinearity without
adversely impacting model performance (i.e., classification
accuracies) by decreasing the number of bands too severely.

Supervised classification models were developed using
support vector machine (SVM) with scaling (package:
“e1071”) [38] and random forest (package: “VSURF”) [35].
Optimal model parameters for SVM were determined using
10-fold cross-validation (Table 2, Table S2), while default
parameters were used for the random forest models. Model
performance was assessed based on total accuracy from
training and testing sets (package: “MLmetrics”) [39], 10-

Table 1: Sample sizes. Data were randomly split into training (70%
of data) and testing (30% of data) sets for model development and
validation for the experiment containing control, mock-
inoculated, and inoculated seedlings.

Comparison Data set
Total N

Control
Mock-

inoculated
Inoculated

All groups
Training 80 84 89

Testing 33 35 37

Mock vs.
inoculated

Training — 84 89

Testing — 35 37

Control vs.
inoculated

Training 80 — 89

Testing 33 — 37
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fold cross-validated accuracy on the training set (for SVM
only), and for models containing only two treatment
groups, receiver operating characteristic (ROC) curves (for
SVM only) (package: “ROCR”) [40].

Finally, sparse partial least squares discriminant analysis
(sPLS-DA) (package: “mixOmics”) [41] was run to confirm
the identities of important spectral bands across analyses
and experiments. sPLS-DA not only develops a model for
predicting the group of new samples but also identifies bands
that are most predictive or important for discriminating
between groups. Five-fold cross-validation (repeated 50
times) of the training set was used to identify the optimal
number of components (four and three for the experiment
with three and two treatments, respectively) and variables
for each component that discriminated between control
and inoculated groups (mock-inoculated samples were
excluded since the treatment group was only present in the
second experiment). The accuracy of sPLS-DAmodel predic-
tions was assessed based on the proportion of samples cor-
rectly classified in the testing set and based on the balanced
error rate (BER) of prediction of the testing set.

All analyses were based on the spectral range from
1898–2551 nm (55 total bands), which were selected based
on spectral absorbance. Spectra with negative absorbance
values, likely due to detector signal saturation (a result of
external lighting and/or due to the gold-plated mirror
used as the background), were excluded from analysis
(spectra < 1898 nm).

3. Results

3.1. Disease Phenotyping. All inoculated plants developed
symptoms of ShB, i.e., stem lesions, with the exception of
three inoculated plants in the experiment containing only
two treatments, while mock-inoculated and control plants
did not show any symptoms of ShB (Figure 1). The average
proportion ± standard error of inoculated stems covered by
lesions (lesion length in cm/stem length in cm) was 0:70 ±
0:01 and 0:90 ± 0:01 at five and seven dpi, respectively
(N = 76), in the experiment with three treatments, and 0:65
± 0:02 and 0:80 ± 0:03 at seven and nine dpi, respectively

(N = 64, with three seedlings that failed to develop disease
symptoms removed), in the experiment with two treatments.

3.2. NIR Spectra. Average raw and second derivative trans-
formed spectra for each treatment group can be found in
Figure 2 (for the experiment with control, mock-inoculated,
and inoculated seedlings) and Figure S1 (for the experiment
with control and inoculated seedlings only). Spectra were
comparable between the two experiments, although the
average intensity of the spectral reflectance was higher in
the experiment containing control, mock-inoculated, and
inoculated seedlings. There was no observable difference
in the overall shape of NIR spectra between treatment

Control Mock-inoculated Inoculated

Figure 1: ShB symptomatic rice plants. Representative examples of
control, mock-inoculated, and inoculated Lemont rice seedlings at
seven days post-inoculation.

Table 2: SVM model parameters. Support vector machine (SVM)
optimal parameters for the experiment containing three
treatments (control, mock-inoculated, and inoculated seedlings).

Comparison Model Kernel Cost Gamma

All groups

Second derivative Linear 100 —

VSURF Radial 100 0.05

Resampled Radial 100 0.05

Mock vs. inoculated

Second derivative Radial 100 0.05

VSURF Radial 100 0.05

Resampled Radial 100 0.05

Control vs. inoculated

Second derivative Linear 100 —

VSURF Linear 0.1 —

Resampled Linear 0.1 —
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Figure 2: Rice NIR spectra. Average (a) raw and (b) second
derivative transformed near-infrared spectra from 2551–1348 nm
for control (grey), mock-inoculated (green), and inoculated (blue)
Lemont rice seedlings at one-day postinoculation.

4 Plant Phenomics



groups, although differences were observed in the average
intensity of NIR reflectance in some spectral regions (e.g.,
~1854–1300nm and ~ 1854–1564 nm, for the experiment
with three and two treatments, respectively) (Figure 2,
Figure S1). However, this region was characterized by
negative absorbance values and subsequently was excluded
from the machine learning analysis.

3.3. Variable Selection and Classification Models. The accu-
racy of classifications from SVM varied depending on the
model (i.e., all groups, mock-inoculated versus inoculated,
or control versus inoculated) and whether or not a variable
reduction method, e.g., VSURF (Table 3, Table S3) or
spectral resampling, was used (Table 4, Table S4). The
trimmed spectral range from 1898–2551 nm contained 55
total bands. With spectral resampling, this was reduced
to 11 bands, and with VSURF, the number of bands

varied from as few as four (control versus inoculated
comparison in the experiment with three treatments) to 33
(interpretation step variables, all groups comparison)
(Table 3, Table S3). Across all analyses, only one VSURF-
selected band (2442nm) was shared at the prediction step.

When comparing mock-inoculated and inoculated
plants, both SVM models based on resampled variables and
VSURF prediction step selected variables yielded models
with greater than 80% total accuracy for the 10-fold cross-
validated training set and the testing set. In both instances,
models were better at accurately classifying spectra from
inoculated plants. Similar levels of total accuracy (from
60.4–86.8% for the testing data set) for the SVMmodels were
observed for the experiment containing only two treatments
(control and inoculated seedlings), with the exception of the
SVM model built based on the VSURF-selected bands from
the experiment containing three treatments (exp. 2). In that

Table 3: VSURF-selected bands. Variable selection using random forests- (VSURF-) selected bands at prediction and interpretation steps for
the experiment containing three treatments (control, mock-inoculated, and inoculated seedlings). Prediction step variables used for support
vector machine (SVM) classification models.

Comparison
Selected bands (nm)

Prediction step Interpretation step

All groups
2442, 2054, 2427, 2153, 2356,

2165, 2225, 1982

2442, 2054, 2427, 2153, 2043, 2356, 2165, 2370, 2328, 2033, 2384, 2141, 2176, 2342,
2315, 2119, 2212, 2412, 2275, 2130, 2188, 2225, 2200, 2398, 2302, 2086, 2064, 2075,

2288, 2108, 1992, 2022, 1982

Mock vs.
inoculated

2130, 2442, 2275, 2141, 2153,
2328, 2097, 2427, 2200

2130, 2442, 2275, 2141, 2153, 2176, 2328, 2165, 2108, 2288, 2119, 2097, 2427, 2200

Control vs.
inoculated

2119, 2370, 2033, 2442 2119, 2370, 2033, 2442

Table 4: SVM classification performance. Support vector machine (SVM) classification performance for the experiment containing three
treatments (control, mock-inoculated, and inoculated seedlings).

Comparison Model Data set Accuracy 10-fold CV accuracy
Proportion correctly classified

Control Mock-inoculated Inoculated

All groups

Second derivative
Training 0.822 0.708 0.825 0.786 0.854

Testing 0.733 — 0.788 0.600 0.811

VSURF
Training 0.830 0.664 0.775 0.810 0.899

Testing 0.714 — 0.576 0.600 0.946

Resampled
Training 0.866 0.644 0.813 0.905 0.876

Testing 0.657 — 0.606 0.600 0.757

Mock vs. inoculated

Second derivative
Training 1.000 0.757 — 1.000 1.000

Testing 0.806 — — 0.829 0.784

VSURF
Training 0.890 0.832 — 0.810 0.966

Testing 0.861 — — 0.829 0.892

Resampled
Training 0.936 0.809 — 0.881 0.989

Testing 0.847 — — 0.800 0.892

Control vs. inoculated

Second derivative
Training 0.911 0.811 0.850 — 0.966

Testing 0.886 — 0.848 — 0.919

VSURF
Training 0.763 0.746 0.688 — 0.831

Testing 0.643 — 0.485 — 0.784

Resampled
Training 0.710 0.704 0.650 — 0.764

Testing 0.643 — 0.545 — 0.730
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instance, testing and cross-validated training total accuracies
were 60.4% and 57.9%, respectively. Classification models
from random forests were not as accurate as SVM-based clas-
sification models (Table 5, Table S5), although the testing
accuracy was only slightly reduced (79.2%–80.6%, N = 72)
for the mock-inoculated versus inoculated comparison
(Table 5). Receiver operating characteristic (ROC) curves
were also generated to assess SVM model classification
performance for those models only comparing two
treatments—mock-inoculated versus inoculated (Figure 3)
and control versus inoculated (Figure 4, Figure S2).

Finally, spectral features and regions identified as being
important by VSURF were confirmed using sPLS-DA. The
ability to identify presymptomatic infected rice plants was
also confirmed using sPLS-DA. Several bands identified as
being important for distinguishing between groups were
shared between VSRUF and sPLS-DA analyses (e.g., 2153,
2200, and 2288 nm) (Table 3, Table S3, Table S6). In
addition, 64% of samples in the testing set were correctly
classified using sPLS-DA in both experiments (Table 6).

4. Discussion

Presymptomatic disease detection based on NIR spectral
profiles was achieved for rice plants artificially inoculated
with the fungus R. solani under growth chamber conditions.
NIR spectra were collected one day following inoculation,
three days before symptoms first developed, and in tissues
away from the site of inoculation. This suggests that systemic
changes are occurring inside the plant following pathogen
infection, and that NIR spectroscopy combined with
machine learning is sensitive enough to detect those changes.
As a result, this approach shows great promise as a tool for
early detection of this and likely other economically impor-
tant plant diseases.

While there were no obvious differences in the average
spectral profiles of control, mock-inoculated, or inoculated
plants from 1898–2551nm (the NIR region of focus for this

study), the SVM model based on VSURF-selected variables
correctly identified 94.6% of inoculated plants in the testing
(validation) set. For models built using only inoculated and
control plants, the overall testing accuracy ranges were com-
parable across the two experiments; 64.3–88.6% and 60.4–
86.8% for the experiments containing three and two treat-
ments, respectively. SVM models built using second deriva-
tive transformed NIR spectra from 1898–2551 nm had
higher total testing accuracies compared to SVM models
built using bands selected by VSURF or from resampled data,
except for the mock-inoculated versus inoculated compari-
son. The ability to classify plants based on inoculation status
using NIR spectra was also evaluated using random forest
(VSURF). Random forest models could be used to classify
rice based on NIR spectra, although these models were not
as accurate as SVM models, perhaps due in part to the fact
that parameters for SVM models were optimized, while
default parameters were used for VSURF models. Further-
more, the levels of accuracy in our study are in-line with
other studies describing spectroscopy as a tool for early dis-
ease detection. For example, Rumpf et al. [18] and Arens
et al. [42] used hyperspectral data to classify infected sugar
beets prior to the development of visible symptoms of Cercos-
pora leaf spot. Accuracy levels in these studies ranged from
65–80% [18] to 98.5–99.9% [42].

To examine the transferability of results between experi-
ments, the VSURF-selected variables from the experiment
containing all three treatments were used to classify plants
from the experiment containing only two treatments. Since
spectra were collected in slightly different manners, data
from the two experiments were not combined. The SVM
model based on these variables could correctly classify con-
trol and inoculated plants in the testing set only 60.4% of
the time. This lower accuracy could be explained by differ-
ences in the manner in which we collected spectral data
across the two experiments, but also could be attributed
to variation in environmental conditions across the two
experiments [43]. This includes variation in the ambient

Table 5: VSURF classification performance. Variable selection using random forests (VSURF) classification performance based on bands
selected at prediction and interpretation steps (Table 3) for the experiment containing three treatments (control, mock-inoculated, and
inoculated seedlings).

Comparison Model Data set Accuracy
Proportion correctly classified

Control Mock-inoculated Inoculated

All groups

Prediction
Training 1.000 1.000 1.000 1.000

Testing 0.562 0.515 0.457 0.703

Interpretation
Training 1.000 1.000 1.000 1.000

Testing 0.600 0.485 0.457 0.838

Mock vs. inoculated

Prediction
Training 1.000 — 1.000 1.000

Testing 0.792 — 0.743 0.838

Interpretation
Training 1.000 — 1.000 1.000

Testing 0.806 — 0.743 0.865

Control vs. inoculated

Prediction
Training 1.000 1.000 — 1.000

Testing 0.657 0.485 — 0.811

Interpretation
Training 1.000 1.000 — 1.000

Testing 0.657 0.485 — 0.811

6 Plant Phenomics



environmental conditions under which spectra were col-
lected and also the environmental conditions under which
plants were grown and inoculated. For instance, even though
plants were grown under the same growth chamber condi-
tions, we observed differences in the rate of disease develop-
ment between experiments. Since the development of ShB is
influenced by humidity and temperature [21, 44, 45], envi-
ronmental conditions likely varied slightly between the two
experiments. It is also possible that environmental variation
influenced the physiology of the plant and thus their spectral
profiles, and subsequently the results of our machine learning
analysis. While this may explain in part the different selection

of variables by VSURF, it did not impact our ability to build
and validate accurate models for classifying infected plants
prior to symptom development.

To our knowledge, this is the first study to use NIR
spectroscopy to classify ShB-infected rice prior to the devel-
opment of symptoms, although a study by Wang et al. [11]
used NIR spectroscopy to detect differences in the severity
of ShB infections. They found that rice reflectivity changed
as ShB damage increased, and postulated that changes in
reflectance, particularly between 1900 and 2000 nm, could
be associated with water loss [11]. Even though we did not
observe any pronounced differences between the average
NIR spectral profiles of inoculated and control plants
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Figure 3: ROC curves. Receiver operating characteristic (ROC)
curves for training (left) and testing (right) sets for the SVM
classification model for mock-inoculated and inoculated seedlings
based on (a) second derivative transformed spectra, (b) spectral
bands selected by VSURF, and (c) resampled spectra for the
experiment containing control, mock-inoculated, and inoculated
seedlings.
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Figure 4: ROC curves. Receiver operating characteristic (ROC)
curves for training (left) and testing (right) sets for the SVM
classification model for control and inoculated seedlings based on
(a) second derivative transformed spectra, (b) spectral bands
selected by VSURF, and (c) resampled spectra for the experiment
containing control, mock-inoculated, and inoculated seedlings.
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between 1900 and 2000 nm, VSURF and sPLS-DA identified
several bands in that region (e.g., 1916, 1944, 1953, and
1982 nm), which are also close in position to 1940 nm, a band
known to be associated with water [46]. Therefore, our ability
to identify presymptomatic plants may be linked to early
changes in plant moisture content in infected compared to
healthy rice plants. Early changes in the physiochemistry of
rice plants following infection with R. solani may also be
linked to changes in starch, cellulose, protein, and nitrogen
content. Bands at 2097, 2200, and 2288 nm were identified
as being important for classifying samples across analyses
(VSURF and sPLS-DA) and experiments and are close to
bands associated with those groups as reported by Curran
(e.g., 2100, 2180, 2240, and 2300 nm) [46]. Furthermore,
changes in the expression of cell-wall degrading genes and
cellulose-degrading enzymes in R. solani are known to occur
in the early stages of plant infection [47]. Since we recorded
spectra at one-day following inoculation, it is possible that
we detected changes in spectral reflectance associated with
the R. solani pathogenesis process.

In conclusion, NIR spectroscopy, combined with machine
learning, shows great potential as a tool for early detection of
the presymptomatic state of infected plants. Specifically, we
demonstrated that rice infected with R. solani can be detected
as early as one day following inoculation, in tissues away from
the site of inoculation, and prior to symptom development.
Early detection of ShB may allow for more rapid and targeted
disease management, saving both time and money. In addi-
tion, the tool has the capacity to be used in a high-
throughputmanner (current collection times are only two sec-
onds per leaf) and could be used in combination with
unmanned aerial vehicles (UAVs or drones). Since the current
study examined only growth chamber grown and artificially
inoculated rice, future studies should focus on evaluating the
use of NIR spectroscopy combined with machine learning as
a tool for ShB detection in field settings and for differentiating
between multiple biotic and abiotic stressors.
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Supplementary Materials

Figure S1: NIR spectra. Average (a) raw and (b) second deriv-
ative transformed near-infrared spectra from 2551–1348 nm
for control (grey) and inoculated (blue) Lemont rice seed-
lings at one day post-inoculation from the experiment con-
taining only control and inoculated seedlings. Figure S2:
ROC curves. Receiver operating characteristic (ROC) curves
for (left) training and (right) testing sets for the SVM classi-
fication models for control and inoculated seedlings based
on (a) second derivative transformed spectra, (b) variables
selected by VSURF (exp. 1), (c) variables selected by VSURF
(exp. 2), and (d) resampled spectra for the experiment con-
taining only control and inoculated seedlings (exp. 1). Table
S1: Sample sizes. Data were randomly split into training
(70% of data) and testing (30% of data) sets for model devel-
opment and validation for the experiment containing only
control and inoculated seedlings. Table S2: Optimal SVM
parameters. Support vector machine (SVM) optimal param-
eters for the experiment containing only control and inocu-
lated seedlings. Table S3: VSURF-selected bands. Variable
selection using random forests- (VSURF-) selected bands at
prediction and interpretation steps. Prediction step variables
used for support vector machine (SVM) classification models
for the experiment containing only control and inoculated
seedlings. Table S4: SVM classification performance. Support
vector machine (SVM) classification performance for the
experiment containing only control and inoculated seedlings.
Note, classification performance is indicated for models using
VSURF prediction step variables from the experiment only
comparing control and inoculated seedlings (exp. 1) and

Table 6: Prediction performance of sPLS-DA for control vs. inoculated samples. Sparse partial least squares discriminating analysis (sPLS-
DA) prediction performance of the testing set. Bands (Table S6) selected during model calibration using the training set for experiment one
(Exp. 1; experiment with two treatments) and experiment two (Exp. 2; experiment with three treatments).

Experiment No. components BER
Proportion correctly classified

Control Inoculated Total

Exp. 1 (2 treatments) 3 0.359 0.643 0.640 0.642

Exp. 2 (3 treatments) 4 0.362 0.545 0.730 0.643
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variables selected from the experiment which also contained
mock-inoculated seedlings (exp. 2; Table 3, “Control vs. Inocu-
lated”). Table S5: VSURF classification performance. Variable
selection using random forests (VSURF) classification perfor-
mance based on bands selected at prediction and interpretation
steps (Table S3) for the experiment containing only control and
inoculated seedlings. Table S6: sPLS-DA-selected bands. Bands
selected for each component of the sparse partial least squares
discriminant analysis (sPLS-DA) model for the experiment
with two treatments (Exp. 1) and the experiment with
three treatments (Exp. 2) for the control versus inoculated
treatments comparison. (Supplementary Materials)
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