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Grape berry color is an economically important trait that is controlled by two major genes influencing anthocyanin synthesis in the
skin. Color is often described qualitatively using six major categories; however, this is a subjective rating that often fails to describe
variation within these six classes. To investigate minor genes influencing berry color, image analysis was used to quantify berry
color using different color spaces. An image analysis pipeline was developed and utilized to quantify color in a segregating
hybrid wine grape population across two years. Images were collected from grape clusters immediately after harvest and
segmented by color to determine the red, green, and blue (RGB); hue, saturation, and intensity (HSI); and lightness, red-green,
and blue-yellow values (L ∗ a ∗ b ∗) of berries. QTL analysis identified known major QTL for color on chromosome 2 along
with several previously unreported smaller-effect QTL on chromosomes 1, 5, 6, 7, 10, 15, 18, and 19. This study demonstrated
the ability of an image analysis phenotyping system to characterize berry color and to more effectively capture variability within
a population and identify genetic regions of interest.

1. Introduction

The skin and flesh color of grape (Vitis spp.) berries are
important traits that have a large impact on the end use of
the fruit. In both wine and table grapes, fruit color is a critical
breeding target; both noir (“red,” “blue,” or “black”) and non-
noir (“green” or “white”) grapes can be desirable, depending
on the intended use. In table grapes, berry color has been
shown to impact consumer preference [1], while wine grape
color influences the color of the final wine. Berry color is
the visual manifestation of organic compounds known as
anthocyanins within the skin and occasionally flesh, as is
the case with teinturier (French for “to dye” or “to stain”)
grapes. Responsible for blue, red, and purple colors, five
anthocyanins are found in Vitis species: malvidin, petunidin,
peonidin, cyanidin, and delphinidin [2]. These compounds
exist in mono- and diglucoside forms along with acylated
and nonacylated forms, and the proportions of each type
found in fruit can be used to differentiate species [3].

Inheritance of color is neither purely qualitative nor
purely quantitative: though color class (noir vs. nonnoir) is
inherited in a Mendelian fashion, other elements of color

determination, like anthocyanin concentration, seem to be
quantitative and under environmental control. The two-
gene model of color inheritance is currently supported by
molecular evidence, and advances in marker technologies
have allowed the elucidation and mapping of the entire
anthocyanin pathway. Several genes have been identified as
playing a role in color determination; nearly all of them code
for enzymes in the anthocyanin production pathway. PAL,
CHS, CHI, F3H, F3’H, F3’5’H, and DFR are each responsible
for the synthesis of a different precursor in the pathway
[4–7]. LDOX creates the anthocyanins cyanidin and del-
phinidin from leucocyanidin and leucodelphinidin through
oxidation [6], and AOMT methylates these anthocyanins to
create peonidin, petunidin, and malvidin [8]. Two genes not
involved in the pathway itself are VvMYBA1 and VvMYBA2,
both of which are transcription factors responsible for regula-
tion of the anthocyanin pathway by controlling UFGT [9].
Although color variation is largely explained by the haplotype
of these two genes, other variables are still influential. Different
alleles can be present in the diverse germplasm, and unique
color haplotypes exist after a history of mutation and human
selection in grape [10]. Combinations of different haplotypes
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are one factor in color expression and anthocyanin differ-
ences between cultivars, yet some cultivars do not exhibit
the expected color based on their haplotype [11]. Environ-
mental effects on anthocyanin synthesis have been well-
documented. Temperature [12], sun or shade exposure [13],
and plant hormones [14, 15] all contribute to accumulation
or degradation of anthocyanins. Additionally, pH increases
during ripening and differing total acidity levels among culti-
vars impact the visual color of anthocyanins [16]. Ultimately,
although the question of genetic color determination in grapes
is well-understood, the exact biology of final berry color is
complex.

Describing the berry color phenotype can be done in
multiple ways. Some methods are as simple as classifying
fruit as noir or nonnoir, while others classify fruit qualita-
tively based on perceived hue. Example color classes are
described by International Organisation of Vine and Wine
(L’Organisation Internationale de la Vigne et du Vin, OIV)
descriptor code 225, where berries are classified as either
green yellow, rose, red, grey, dark red violet, or blue black
[17]. However, other methods are more quantitative: for
example, measuring the amount of anthocyanin in fruit is
not an exact measure of color itself but provides insight into
the chemical makeup resulting in the final visual color.
Quantifying anthocyanin content may be precise, but it is a
time-intensive process requiring multiple steps and the use
of specialized high-pressure liquid chromatography (HPLC)
or spectrophotometry equipment. Hyperspectral imaging
has been tested as a nondestructive alternative to HPLC, with
relatively high prediction accuracy; however, this requires the
use of expensive hyperspectral cameras [18]. In contrast,
evaluating fruit using visual rating scales is quick, inexpen-
sive, and relatively simple, but the process is difficult when
dealing with fruit that is intermediately colored. For example,
berries somewhere between rose and red are difficult to dis-
tinguish even to an experienced evaluator. Additionally,
environmental variation leads to differences within a cluster
which makes assigning a single score difficult, as sun-
exposed berries can be several shades or even tones darker
than those shaded by the canopy [19]. Some visual-based sys-
tems use a combination of quantitative and qualitative data
to measure fruit color, such as the system used by Carreño
et al. in which a chroma meter was used to measure the light-
ness (L ∗), green-red value (a ∗), blue-yellow value (b ∗), hue
angle, and chroma values of red table grapes [20]. Coupled
with a visual assessment of fruit color, an index (Color Index
for Red Grapes, CIRG) based on these measurements was
proposed to delineate color classes (yellow-green, pink, red,
violet, and dark violet) by numerical value; however, this
value itself was not used for analysis. Image analysis systems
on a field-wide scale have been used to classify fruit color
both as a trait of interest [21] and as a proxy for the fruit
development stage [22]. A quick, technologically simple
way to collect precise data would be ideal for berry color.

When color information is to be used in genetic mapping
experiments, capturing a large proportion of the population
variance is key. Separating berry colors into two noir/non-
noir or six OIV classes may not be adequate, and minor genes
related to color variation may not be detected in the mapping

process. Evaluation based on a noir vs. nonnoir scale clearly
shows Mendelian inheritance for berry color, and grouping
berries into two classes (either “white, yellow, green, and
amber” or “red and black”) led early researchers to expected
segregation ratios [23]. Additionally, experiments mapping
color-related traits have been able to identify the major
VvMYBA locus on chromosome 2 when using anthocyanin
content, color class, or anthocyanin-related gene expression
as a trait [24–27]. However, a recent study found many
minor quantitative trait loci (QTL) for anthocyanins on sev-
eral chromosomes, suggesting that regulation of berry color
may extend beyond the two major loci [24]. More precise
methods of visual color quantification will help to elucidate
the finer color regulation mechanisms and aid in understand-
ing the extent to which environment influences color in
grape berries. Additionally, automated quantification can be
used in many contexts: for example, more accurate descrip-
tions of color across a range of Vitis species, such as those
found in a germplasm repository. The ability to identify sub-
tle differences in color could allow association mapping stud-
ies to be carried out in populations that are not segregating
for color as measured by OIV descriptor 225 (for example,
clusters that are all rated as rose or red). Image-based color
evaluation can be used to compare color change over time
between genotypes or to compare responses to color-
influencing environmental or chemical factors. Coupling
chemical data with visual color could help uncover relation-
ships between the two and could potentially be used in lieu
of more time-intensive evaluation techniques. Overall, a bet-
ter understanding of berry color, led by improved phenotyp-
ing techniques, will help grape breeders target desirable color
profiles and breed for them more efficiently.

In this study, images of grape clusters were evaluated for
berry color using several color spaces (RGB, L ∗ a ∗ b ∗, and
HSI) to determine the most suitable for characterizing fruit.
This data was used in QTL mapping in order to identify
loci of interest that could be contributing to variation in
fruit color.

2. Materials and Methods

2.1. Experimental Design

2.1.1. Plant Material. Data were collected from a biparental
F1 mapping population, GE1025, that was established from a
cross (MN1264×MN1246) made in 2010. Both parents are
breeding selections in the University of Minnesota wine grape
program; their pedigree is detailed in Teh et al. [28]. This cross
has diverse parentage, including ancestry in at least six Vitis
species (V. vinifera, V. riparia, V. rupestris, V. labrusca, V. aes-
tivalis, and V. berlandieri). Vines are maintained at the Uni-
versity of Minnesota Horticultural Research Center (44°52′
08.1″N 93°38′17.3″W) and trained in a top wire, high-
cordon system. MN1264 has noir-skinned berries (rating of
6, OIV descriptor 225), while MN1246 has nonnoir berries
with rose to red color (rating of 2 to 3, OIV descriptor 225).

Data was collected from clusters produced in 2017 and
2018. At harvest (°Bx > 20; September 21-22 in 2017, August
29-30 in 2018), three representative fruit clusters were taken
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from each fruiting vine in the field (n = 121 in 2017 and
n = 127 in 2018). Clusters were carefully removed from shoots
so that the entire length of the peduncle was preserved. After
harvest, fruit was transported immediately to the laboratory
for image collection.

2.1.2. Image Collection. In a controlled setting, each cluster
was suspended by its rachis using an alligator clip against a
white backdrop. Four images were taken of each cluster with
90° rotations between each image, resulting in twelve images
per genotype. Two fluorescent lights (Philips 34W, 3500K,
Philips Lighting, Somerset, NJ, USA) were used to illuminate
the fruit, and a tripod-mounted Nikon D7200 camera (24.2
megapixels) with a fixed 50mm lens (Nikon, Tokyo, Japan)
was used to capture images with the lens of the camera posi-
tioned 48 cm away from the rachis of the fruit. This design
was based on a previously published imaging setup [29],
and a diagram is provided in Figure 1.

The open source software package gPhoto2 (http://www
.gphoto.org/), a command-line application for Unix-like sys-
tems, was used for image capture, file download, and file
naming. Images were captured in Nikon RAW format (.nef;
Figure 2(a)). An X-Rite ColorChecker Classic color card
(Grand Rapids, MI, USA) and the software package Raw-
Therapee (https://rawtherapee.com/) were used to ensure
correct white balance and color in images; this adjustment
was made by changing the temperature to 3395 and lowering
the tint to 0.777 (Figure 2(b)). Images were batch processed
for color corrections, then compressed and exported as 16-
bit Tagged Image File Format (.tiff) files.

2.1.3. Image Segmentation. Images were segmented into
berry, rachis, and background components by color using
the Food Color Inspector software (http://www.cofilab
.com/portfolio/food-color-inspector/). This semiautomated
method requires the definition of an initial training set,

Figure 1: A diagram of the camera, lighting, and backdrop setup used for image capture (not to scale).

(a) (b) (c)

Figure 2: An example of a single genotype with raw (a), color-corrected (b), and segmented (c) cluster images.
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with the color of each component being selected by the
user. After the training set is established, it can be used
to process multiple images of the same individual or geno-
type, depending on the intragenotype or interindividual
variation. Training sets were constructed manually using
one image from a genotype, with 3 × 3 squares of pixels
representative of berry, rachis, and background classes isolated
by hand. With noir (blue- to black-colored) clusters, only one
3 × 3 pixel area selection was used to train each class. With
nonnoir (light-colored) clusters, multiple 3 × 3 pixel areas
were used to train each class; additional berry and rachis class
selections were made until the segmentation was as accurate as
possible. After a training set was constructed, the remaining
images from that genotype were segmented automatically
using the same training set. Images were then visually
inspected for segmentation accuracy. If significant misseg-
mentation was observed using a single training set, each image
was processed again with its own training set. Segmented
images were then exported as 24-bit Portable Network
Graphics (.png) files (Figure 2(c)).

2.1.4. Image Data Extraction. The red (R), green (G), blue
(B), lightness (L ∗), green-red (a ∗), blue-yellow (b ∗), hue
(H), saturation (S), and intensity (I) values of the berry color
class were then extracted from each segmented photo. Aver-
age greyscale and weighted greyscale values were calculated,
where the average greyscale was equal to the mean of the R,
G, and B values for each image, and the weighted greyscale
was calculated using the relative luminance function with a
red weight of 0.299, a green weight of 0.587, and a blue weight
of 0.114. Additionally, cluster color was scored visually using
OIV descriptor no. 225 [15] and sorted into binary noir/non-
noir categories. A flowchart of the image capture, segmenta-
tion, and data extraction process can be seen in Figure 3.

2.2. Statistical Analysis. Data from 121 individuals in 2017
and 127 individuals in 2018 were analyzed using R (https://
www.r-project.org/). Component color values for each color

space were averaged, giving one average value from twelve
images of that genotype. Normality of color data was assessed
using visual inspection of histograms, Q-Q plots, and resid-
ual plots along with a Shapiro-Wilk test for each trait. QTL
mapping was performed using the R package “qtl” [30]. A
previously developed integrated MN1264×MN1246 linkage
map composed of 3024 single nucleotide polymorphism
(SNP) markers was used for QTL analysis [28]. Data from
110 individuals in 2017 and 113 individuals in 2018 were
used in mapping; data from nongenotyped individuals was
omitted. RGB, L ∗ a ∗ b ∗, HSI, and OIV values were used
as phenotypic data, with each channel (red, R; green, G;
blue, B; lightness, L ∗; green-red, a ∗; blue-yellow, b ∗; hue,
H; saturation, S; and intensity, I), average and weighted
grey, OIV score, and noir/nonnoir mapped as separate
traits. Mapping was performed using a nonparametric
method [31] for all traits (due to nonnormal distributions)
except blue (B), which was mapped using simple interval
mapping, and noir/nonnoir, which was mapped using a
binary method.

3. Results

In both years, segregation of fruit color (noir vs. nonnoir) was
not significantly different than the expected 1 : 1 as assessed
by a chi-square test (Table 1). Colors observed ranged from
green-yellow to dark blue; five of the six OIV fruit color clas-
ses were observed in 2017, while only three classes were
observed in 2018 (Table 1).

Each of the three color spaces used (RGB, L ∗ a ∗ b ∗, or
HSI) separates colors into three different constituents. R and
G values were distributed bimodally, both with highly signif-
icant Shapiro-Wilk test results in both years (p < 0:001; indi-
cates a nonnormal distribution) while B values were
distributed normally (p = 0:8355 in 2017 and p = 0:1565 in
2018). L ∗ and b ∗ values were bimodally distributed while
a ∗ was not; all three values were distributed nonnormally
in both years (p < 0:001). H, S, and I were all distributed
bimodally in both years and were significantly nonnormal
(p < 0:001). When PCA was performed and genotypes

Harvested at °Brix > 20
Harvest

fruit

Capture
image

Adjust
image

Segment
image

Extract
data

Three clusters harvested per genotype
2017: n = 121; 2018: n = 127

gPhoto2 software
Four images per cluster
Captured as .nef files

RawTherapee software
Color-corrected
Compressed as .tiff files

Food Color Inspector software
Segmented into rachis, berry, background
Exported as .png files

Values for RGB, L ⁎a⁎b⁎, HSI extracted
from berry class of each image
Average and weighted greyscale calculated

Figure 3: A flowchart of the image capture, segmentation, and data
extraction process.

Table 1: GE1025 population categorized by OIV color score in 2017
and 2018, along with p value for chi-square analysis of a 1 : 1
segregation ratio between noir and nonnoir individuals for each
year. “Noir” refers to blue-black (6) color, while “nonnoir”
includes all others (1-5).

Color (OIV score) 2017 (n = 121) 2018 (n = 127)
Green-yellow (1) 11 23

Rose (2) 40 33

Red (3) 3 0

Grey (4) 1 0

Dark red violet (5) 0 0

Blue black (6) 66 71

Noir individuals 66 71

Nonnoir individuals 55 56

Chi-square p value 0.317 0.183
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plotted and classified as noir or nonnoir, tight clustering of
the noir individuals can be seen in each (Figure 4). In the
RGB color space, noir individuals are separated from non-
noir individuals by the first principal component, and non-

noir individuals are widely distributed. L ∗ a ∗ b ∗ shows
even tighter clustering of noir fruit and nonnoir fruit spread
across most of the second principal component. HSI shows a
distinct difference in noir individual clustering between
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Figure 4: PCA biplot for RGB color in 2017 and 2018. Arrows indicate traits while circles and triangles represent each individual, coded by
color.
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years, with both color types showing more compact cluster-
ing in 2017 as compared to 2018. The biplot showing the
PCA with all color traits combined shows the variables that
most distinctly separate noir and nonnoir individuals: H, B,
and a ∗ are more closely associated with noir fruit, while all
other variables are associated with nonnoir fruit (Figure 5).

Differences in color between years were explored using
correlation tests. When considering all fruit in the GE1025
population, Pearson’s correlation coefficients (r) were all sig-
nificant (p < 0:05; Table 2). Values for all but two of the color
channels were strongly correlated between the two years:
with the exceptions of a ∗ (r = 0:24) and B (r = 0:62), correla-
tion coefficients ranged from 0.92 to 1.00. However, these
correlations were lower when only looking at the nonnoir

subset of the population, with correlations ranging from
0.28 (OIV score) to 0.71 (B). Correlations were even lower
when considering the noir segment of the populations, with
two nonsignificant correlations (green-red and hue) and sig-
nificant correlations ranging from 0.37 to 0.57. Overall, these
correlations indicate that some measurements of color were
highly variable between years when considering both noir
and nonnoir fruit.

In 2017, four distinct color QTL were significant at the
genome level on chromosomes 2, 6, 10, and 15 when map-
ping was performed in the whole population (Table 3). The
QTL detected on chromosome 2 of the maternal (MN1264)
and paternal (MN1246) maps was significantly associated
with 12 of the 13 mapped traits. The chromosome 2 QTL
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Figure 5: Combined PCA biplot for RGB, L ∗ a ∗ b ∗, and HSI color in 2017 and 2018. Arrows indicate traits while circles and triangles
represent each individual, coded by color.

Table 2: Pearson correlation coefficients (r) for color components between years (p < 0:05 in all cases). “All” is indicative of the correlation
including all individuals, while “nonnoir” and “noir” only examined those color subsets of the population. Dashes indicate lack of significant
correlation.

Color component r (all; n = 117) r (nonnoir; n = 53) r (noir; n = 64)
Red (R) 0.97 0.51 0.44

Green (G) 0.92 0.46 0.47

Blue (B) 0.62 0.71 0.51

Lightness (L ∗) 0.94 0.49 0.47

Red-green (a ∗) 0.20 0.40 —

Blue-yellow (b ∗) 0.96 0.55 0.40

Hue (H) 1.00 0.36 —

Saturation (S) 0.95 0.60 0.30

Intensity (I) 0.94 0.52 0.48

Weighted grey 0.94 0.49 0.47

Average grey 0.94 0.52 0.48

OIV score 0.98 0.28 —
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was most frequently mapped to marker S2_6921406 at 63 cM
on the maternal map but also mapped to other markers from
60.1 cM (S2_5825563) to 82.0 cM (S2_9126568). On the
paternal map, the QTL was found at 23 cM (S2_5352505).
Variation explained by this QTL ranged from 30.79% to
93.72%, with the paternal QTL accounting for a smaller pro-
portion of variation. On a chromosome-wide level, QTL were
found on chromosome 1 of the maternal map and on chro-
mosomes 2, 7, and 10 of the paternal map (Table 4). The var-
iance explained by these QTL ranged from 5.53% to 29.09%.

In 2018, genome-wide significant QTL were only seen on
chromosomes 2 and 6. No QTL associated with the paternal
map were observed, and variation explained by each QTL
ranged from 12.10% to 92.20%. At a chromosome-wide sig-
nificance level, QTL were found on chromosomes 1 and 18
of the maternal map and chromosomes 2 and 15 of the pater-
nal map. These QTL explained between 7.26% and 23.65% of

variation. Only two QTL significant at a chromosome-wide
level from 2017 were observed again in 2018: those associated
with saturation (S) on chromosome 1 of the maternal map
and OIV on chromosome 2 of the paternal map.

LOD plots for each reported QTL can be seen in
Figures S1-S4.

4. Discussion

A major challenge in phenotyping grape berry color is the
classification of berries into discrete classes despite their sub-
tle inter- and intracluster variations. Unique microclimates
resulting in different exposures to temperature and light, plus
differences in individual developmental processes, lead to
slight color differences which are difficult to quantify. To
more fully capture this variation, image data was analyzed
using several color spaces and values were used to map

Table 3: QTL significant at a genome-wide level using a threshold of α = 0:05 for image-derived color values in the GE1025 population (2017:
n = 110, 2018: n = 113). Parental map specifies the parent from which the QTL originates (maternal: MN1264; paternal: MN1246).

Year Trait Chr Parental map Max LOD Closest marker Position (cM) 1.5 LOD interval (cM) Variance explained (%)

2017

Red (R)
2 Maternal 52.9 S2_9126568 81.0 61.0-87.0 89.08

2 Paternal 8.79 S2_5352505 23.0 11.0-27.0 30.79

Green (G)
2 Maternal 52.7 S2_6921406 63.0 61.0-85.0 88.99

2 Paternal 9.24 S2_5352505 23.0 17.0-25.4 32.08

Blue (B)
6 Maternal 4.66 S6_6834834 33.0 0.0-40.0 15.78

15 Maternal 4.80 S15_18026522 93.7 89.0-111.9 16.21

Lightness (L ∗) 2 Maternal 52.8 S2_6921406 63.0 61.0-86.0 89.04

2 Paternal 8.98 S2_5352505 23.0 17.0-25.4 31.34

Green-red (a ∗) 2 Maternal 17.6 S2_5825563 60.1 59.3-86.0 52.14

10 Paternal 9.03 S10_2470325 1.0 0.0-25.0 31.48

Blue-yellow (b ∗) 2 Maternal 53.3 S2_9126568 82.0 62.0-88.0 89.26

Hue (H) 2 Maternal 52.9 S2_6921406 63.0 61.0-82.0 89.08

Saturation (S) 2 Maternal 52.9 S2_6921406 63.0 59.0-82.0 89.08

Intensity (I) 2 Maternal 52.8 S2_6921406 63.0 61.0-85.0 89.04

Weighted grey 2 Maternal 52.8 S2_6921406 63.0 61.0-86.0 89.04

2 Paternal 8.8 S2_5352505 23.0 17.0-25.4 30.82

Average grey 2 Maternal 52.8 S2_6921406 63.0 61.0-85.0 89.04

OIV 2 Maternal 66.1 S2_7271746 63.4 61.0-84.0 93.72

Noir/nonnoir 2 Maternal 32.8 S2_9126568 79.0 61.0-82.0 74.67

2018

Red (R) 2 Maternal 50.5 S2_9126568 79.0 78.0-83.0 87.23

Green (G) 2 Maternal 50.6 S2_9126568 79.0 78.0-83.0 87.28

Blue (B) 6 Maternal 3.16 S6_2546367 5.0 0.0-37.0 12.10

Lightness (L ∗) 2 Maternal 50.6 S2_9126568 81.0 78.0-83.0 87.28

Green-red (a ∗) 2 Maternal 9.5 S2_5825563 60.1 58.0-82.0 32.02

Blue-yellow (b ∗) 2 Maternal 49.0 S2_9126568 81.0 62.0-84.0 86.42

Hue (H) 2 Maternal 50.3 S2_9126568 81.0 64.2-83.0 87.13

Saturation (S) 2 Maternal 51.1 S2_9126568 81.0 61.0-87.0 87.54

Intensity (I) 2 Maternal 50.9 S2_9126568 81.0 78.0-83.0 87.44

Weighted grey 2 Maternal 50.6 S2_9126568 81.0 78.0-83.0 87.28

Average grey 2 Maternal 50.9 S2_9126568 81.0 78.0-83.0 87.44

OIV 2 Maternal 62.6 S2_9126568 81.0 78.0-84.0 92.20

Noir/nonnoir 2 Maternal 30.0 S2_9126568 79.0 78.0-83.0 70.55
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possible QTL influencing color in a diverse segregating F1
population. MN1264, the maternal parent, produces noir
fruit and is donating at least one functional allele at each of
the two VvMYBA loci to its progeny. The paternal parent,
MN1246, produces red-skinned fruit and must be heterozy-
gous at at least one of the color-determining loci. The geno-
types segregated in a 1 : 1 ratio for noir to nonnoir, which
supports the two-gene model of color currently in use. The
distributions of color values also reflected these two major
classes of color; the bimodal distributions represented noir
and nonnoir fruit. Each color space was adept at separating
noir fruit from nonnoir fruit, as evidenced by PCA. However,
each space performed differently when it came to separating
fruit within each group. The color spaces RGB and HSI both
showed clustering of noir and nonnoir fruit, and both sepa-
rated fruit within the groups using two principal compo-
nents. Noir fruit showed more variation in 2018 than in
2017 when using the HSI color space, while RGB performed
similarly in both years. L ∗ a ∗ b ∗ was not able to separate
noir fruit due to homogeneous a ∗ and b ∗ values between
fruit, making it the least suitable color space for berry color
classification.

For nearly every visual color trait measured, a strong
QTL from the maternal parent was detected on chromosome
2. Each likely colocalizes with the VvMYBA1 or VvMYBA2
gene(s), those responsible for determination of noir or non-
noir fruit color. The most frequent site of a logarithm of odds
(LOD) value maximum was a marker located at 63 cM,
with 1.5 LOD confidence intervals ranging from 51 cM to
87 cM. In 2017, a QTL for red (R) on the paternal map was
observed with a confidence interval that overlapped with
the V. vinifera LDOX gene region [6]. QTL significant on a
chromosome-wide level identified regions of interest where

multiple color traits had high LOD values, such as marker
S2_5352505 at 23 cM on chromosome 2 of the paternal par-
ent (MN1246) map or marker S1_12013218 near the begin-
ning of chromosome 1 on the maternal parent (MN1264)
map. Several of these major and minor QTL have been
reported in a study of anthocyanin-related traits performed
by Costantini et al. [24], where significance was also assessed
on a chromosome-wide basis. Though anthocyanin and color
are not synonymous, loci reported in these results overlapped
with those reported in [24]. This includes the loci on mater-
nal chromosomes 2 and 6 and paternal chromosomes 2 and
10 on a genome-wide level and on maternal chromosome 1
and paternal chromosome 2 on a chromosome-wide level.
The apparent relationship between observed color and mea-
sured anthocyanin suggests that image-based phenotyping
techniques are successful in identifying loci of interest. Dif-
ferences between years were seen in the QTL results: a QTL
for blue (B) on chromosome 15 and one for green-red (a ∗)
on chromosome 10 were detected in 2017 but not in 2018.
This was likely due to the greater variation observed in visual
color in 2017, where a greater number of color classes were
seen. Additionally, differences were seen in the results for
putative QTL significant at a chromosome-wide level; only
two of the 18 observed QTL occurred in both years. It is likely
that environmental differences caused by weather during vér-
aison and ripening contributed to both of these variations, as
August 2017 (véraison) was cooler and wetter than August
2018 (Table S1). Low temperatures increase anthocyanin
accumulation, so this may be one explanation for the
greater number of rose, red, and grey nonnoir individuals
in 2017. The difference in QTL observed between years is
evidence for genotype-by-environment interaction
occurring for this trait, and continuing to study berry color

Table 4: QTL significant at a chromosome-wide level using a threshold of α = 0:05 for image-derived color values in the GE1025 population
(2017: n = 110, 2018: n = 113). Parental map specifies the parent from which the QTL originates (maternal: MN1264; paternal: MN1246).

Year Trait Chr Parental map Max LOD Closest marker Position (cM) Variance explained (%)

2017

Red (R) 1 Maternal 3.63 S1_12013218 0.9 13.75

Green (G) 1 Maternal 3.62 S1_12013218 0.9 13.72

Blue-yellow (b ∗) 1 Maternal 5.88 S1_12013218 0.9 21.31

Hue (H) 7 Paternal 4.98 S7_1435517 2.7 18.37

10 Paternal 5.80 S10_2470325 0.0 21.05

Saturation (S) 1 Maternal 3.64 S1_22128396 19.7 13.79

Intensity (I) 2 Paternal 8.21 S2_5352505 23.0 28.44

Average grey 2 Paternal 8.18 S2_5352505 23.0 28.35

OIV 2 Paternal 4.68 S2_5352505 23.0 17.36

Noir/nonnoir 1 Maternal 1.36 S1_12013218 0.9 5.39

2018

Green (G) 2 Paternal 4.43 S2_5352505 23.0 16.52

Green-red (a ∗) 15 Paternal 5.76 S15_12895291 39.8 20.92

18 Maternal 6.62 S18_2451141 5.4 23.65

Hue (H) 1 Maternal 4.22 S1_22128396 19.7 15.80

Saturation (S) 1 Maternal 4.49 S1_23506714 24.0 16.72

2 Paternal 4.69 S2_5352505 23.0 17.40

OIV 2 Paternal 5.47 S2_5352505 23.0 19.98

Noir/nonnoir 2 Paternal 1.85 S2_5352505 23.0 7.26
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over a number of years could help elucidate its impact.
However, the repeated emergence of these two QTL despite
environmental variation indicates their status as loci of
interest. It is likely that the use of quantitative color
measurements, rather than qualitative categorization,
helped in detecting these minor QTL.

One unique aspect of this mapping population was the
range of its color diversity (Figure 6). A wide range of colors
was observed in both years, which was ideal for identifying
smaller-effect loci along with the previously known major
QTL. The diversity of colors observed among nonnoir fruit
reflected their differing anthocyanin profiles. Some were
yellow-green (OIV descriptor 225, rating of 1) and had a
lower anthocyanin content, some were pink-to-red (OIV
descriptor 225, ratings of 2, 3, and 4) with higher anthocya-
nin content, and some showed variability among and within
berries, as skin color differed depending on sun exposure
(Figure 7). This is represented in the PCA, where each visual
color space is able to show separation between nonnoir indi-
viduals. Environmental effects on anthocyanin synthesis
have been well-documented, with temperature [12], sun or
shade exposure [13], and plant hormones [14, 15] all contrib-
uting to accumulation or degradation of anthocyanins. This
is in addition to genetic effects, including the large-effect
VvMYBA1 and VvMYBA2 loci, and loci of smaller effect
identified elsewhere in the genome. Genotype-by-
environment interactions are also likely, with nonnoir indi-
viduals displaying differently colored fruit between different
environmental conditions as demonstrated between the two
years. All of these likely influenced and resulted in fruit that
exhibited considerable variation, even between clusters on
the same plant or berries within the same cluster. Measuring
color using numeric values helped alleviate this issue by hav-
ing the capacity to quantify differences between fruit that
would otherwise fall into the same category of visual color.
For example, fruit described as “rose” could vary in the degree
to which they were red or green, while the automated method
was able to quantify that variation using different color space
values. A challenge that still remains is the way to best deal
with berries that exhibit multiple colors. In our pipeline and
analysis, colors were defined by the average color values for

pixels classified as “berry” in a segmented grape cluster image.
In the future, fruit could also be rated by its color extremes
(most blue/red area, most green area) or by the pixel color that
occurred most frequently within berries in order to compare
variation within and between genotypes.

An advantage of our phenotyping platform is its low cost
and ease of use. For each image, a user only has to select one
to a few areas of pixels within berries to return the average

Figure 6: A wide range of berry colors was observed in GE1025, with clusters ranging from yellow-green (left) to blue black (right). OIV
descriptor 225 score is listed above each cluster.

Figure 7: Examples of color variability from within a single cluster.
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color of an entire cluster. The equipment required (camera,
tripod, and lighting) is inexpensive and can be set up in many
environments, with the ability to move if needed: for exam-
ple, acquiring images near where the fruit is harvested, as
opposed to transporting the fruit back to a lab for imaging.
Although information about berry chemical composition
cannot necessarily be collected using image analysis, further
research investigating the relationship between anthocyanins
and visual color could identify whether chemistry informa-
tion could be inferred. Similarly, spectrophotometric or
hyperspectral data in conjunction with images could aid in
understanding whether specific compounds contributed to
or affected visual color. As mentioned previously, the wide
range of color observed in GE1025 lent to the ability to iden-
tify minor QTL. Particularly, an advantage of evaluating such
a diverse population is the potential for marker development
for use in marker-assisted selection. Rather than selecting for
simply noir or nonnoir fruit, markers could be developed to
select for particular hues. Visual color is a high-value trait
in both wine and table grapes, and continued research from
different angles will help give a fuller picture of the complex
mechanisms behind its control. The potential to use
marker-assisted selection for specific colors in a grape-
breeding program would increase efficiency, with the pre-
dicted progeny performance (i.e., color) at the seedling stage
instead of after fruits are produced. This could save years of
time, effort, and vineyard space, along with the cost associ-
ated with each.

This study used a semiautomated image segmentation
process to quantify berry color in a population of diverse
hybrid wine grapes. Color data isolated from images was
used to confirm major color QTL and identified new
minor QTL affecting color. Using several different color
spaces allowed variation to be explored in multiple ways,
and L ∗ a ∗ b ∗ was found to be the least suitable color
space for differentiating within the noir and nonnoir color
classes. Continuing to explore visual color, including its
relationship with anthocyanins and other chemical com-
pounds, will help increase the understanding of the envi-
ronmental and genetic effects on this economically
important trait.

Data Availability

All images are stored in the Data Repository for the Univer-
sity of Minnesota (DRUM) and are available in entirety upon
request at http://hdl.handle.net/11299/202560. The image
processing MATLAB script is publicly available at https://
www.github.com/underhillanna/GrapeImageAnalysis.

Disclosure

A. N. Underhill's current address is USDA-ARS Grape
Genetics Research Unit, Geneva, NY, USA.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

Authors’ Contributions

MC proposed the research topic; MC, CH, and AU designed
the experiment; AU carried out the experiment and analyses;
AU drafted the manuscript; and MC and CH provided feed-
back on the analysis and manuscript.

Acknowledgments

The authors give their thanks to research vineyard managers
John Thull, Jennifer Thull, and Colin Zumwalde for main-
taining our populations, to undergraduate assistants Stien
Iverson and David Tork who helped with data collection,
and to Dr. Soon Li Teh and Dr. James Luby, who curated
the GE1025 linkage map. This work was supported by the
VitisGen2 project, which is funded by a Specialty Crop
Research Initiative (SCRI) Competitive Grant [Award No.
2017-51181-26829] of the United States Department of
Agriculture-National Institute of Food and Agriculture
(USDA-NIFA). Funding was also provided by the Minnesota
Agricultural Experiment Station.

Supplementary Materials

Table S1: mean August weather data in Excelsior, MN
(44°52′08.1″N 93°38′17.3″W; weather station KMNEX-
CEL9) for 2017 and 2018. High, average, and low tempera-
tures are daily means; daily precipitation is a monthly
average. Figures S1–S4: see attached material; LOD plots
corresponding to Tables 3 and 4 for QTL significant at
genome-wide and chromosome-wide levels. (Supplementary
Materials)

References

[1] M. Weisong, L. Chengcheng, T. Dong, and F. Jianying, “Chi-
nese consumers’ behavior and preference to table grapes,” Brit-
ish Food Journal, vol. 118, no. 1, pp. 231–246, 2016.

[2] C. L. Owens, “Pigments in grape,” in Pigments in Fruits and
Vegetables, pp. 189–204, Springer, 2015.

[3] Z. Liang, B. Wu, P. Fan et al., “Anthocyanin composition and
content in grape berry skin in Vitis germplasm,” Food Chemis-
try, vol. 111, no. 4, pp. 837–844, 2008.

[4] P. K. Boss, C. Davies, and S. P. Robinson, “Expression of
anthocyanin biosynthesis pathway genes in red and white
grapes,” Plant Molecular Biology, vol. 32, no. 3, pp. 565–569,
1996.

[5] S. Kobayashi, N. Goto-Yamamoto, and H. Hirochika, “Retro-
transposon-induced mutations in grape skin color,” Science,
vol. 304, no. 5673, p. 982, 2004.

[6] F. Sparvoli, C. Martin, A. Scienza, G. Gavazzi, and C. Tonelli,
“Cloning and molecular analysis of structural genes involved
in flavonoid and stilbene biosynthesis in grape (Vitis vinifera
L.),” Plant Molecular Biology, vol. 24, no. 5, pp. 743–755, 1994.

[7] J. Bogs, A. Ebadi, D. McDavid, and S. P. Robinson, “Identifica-
tion of the flavonoid hydroxylases from grapevine and their
regulation during fruit development,” Plant Physiology,
vol. 140, no. 1, pp. 279–291, 2006.

[8] P. Hugueney, S. Provenzano, C. Verriès et al., “A novel cation-
dependent O-methyltransferase involved in anthocyanin

10 Plant Phenomics

http://hdl.handle.net/11299/202560
https://www.github.com/underhillanna/GrapeImageAnalysis
https://www.github.com/underhillanna/GrapeImageAnalysis
http://downloads.spj.sciencemag.org/plantphenomics/2020/8086309.f1.docx
http://downloads.spj.sciencemag.org/plantphenomics/2020/8086309.f1.docx


methylation in grapevine,” Plant Physiology, vol. 150, no. 4,
pp. 2057–2070, 2009.

[9] S. Kobayashi, M. Ishimaru, K. Hiraoka, and C. Honda, “Myb-
related genes of the Kyoho grape (Vitis labruscana) regulate
anthocyanin biosynthesis,” Planta, vol. 215, no. 6, pp. 924–
933, 2002.

[10] A. Azuma, “Genetic and environmental impacts on the bio-
synthesis of anthocyanins in grapes,” The Horticulture Journal,
vol. 87, no. 1, pp. 1–17, 2018.

[11] A. R. Walker, E. Lee, J. Bogs, D. A. J. McDavid, M. R. Thomas,
and S. P. Robinson, “White grapes arose through the mutation
of two similar and adjacent regulatory genes,” The Plant Jour-
nal, vol. 49, no. 5, pp. 772–785, 2007.

[12] W. M. Kliewer and R. E. Torres, “Effect of controlled day and
night temperatures on grape coloration,” American Journal of
Enology and Viticulture, vol. 23, no. 2, 1972.

[13] W. M. Kliewer, “Effect of day temperature and light intensity
on coloration of Vitis vinifera L. grapes,” Journal of the Amer-
ican Society of Horticultural Science, vol. 95, pp. 693–697,
1970.

[14] C. Davies, P. K. Boss, and S. P. Robinson, “Treatment of grape
berries, a nonclimacteric fruit with a synthetic auxin, retards
ripening and alters the expression of developmentally regu-
lated genes,” Plant Physiology, vol. 115, no. 3, pp. 1155–1161,
1997.

[15] I. Kataoka, A. Sugiura, N. Utsunomiya, and T. Tomana, “Effect
of abscisic acid and defoliation on anthocyanin accumulation
in Kyoho grapes (Vitis vinifera L. x V. labruscana Bailey),”
Vitis, vol. 21, no. 4, pp. 325–332, 1982.

[16] F. J. Heredia, E. M. Francia-Aricha, J. C. Rivas-Gonzalo, I. M.
Vicario, and C. Santos-Buelga, “Chromatic characterization
of anthocyanins from red grapes—I. pH effect,” Food Chemis-
try, vol. 63, no. 4, pp. 491–498, 1998.

[17] OIV, Second edition of the OIV descriptor list for grape varieties
and Vitis species, OIV, 2009.

[18] M. P. Diago, J. Fernández-Novales, A. M. Fernandes, P. Melo-
Pinto, and J. Tardaguila, “Use of visible and short-wave near-
infrared hyperspectral imaging to fingerprint anthocyanins in
intact grape berries,” Journal of Agricultural and Food Chemis-
try, vol. 64, no. 40, pp. 7658–7666, 2016.

[19] A. Azuma, H. Yakushiji, Y. Koshita, and S. Kobayashi, “Flavo-
noid biosynthesis-related genes in grape skin are differentially
regulated by temperature and light conditions,” Planta,
vol. 236, no. 4, pp. 1067–1080, 2012.

[20] J. Carreño, A. Martínez, L. Almela, and J. A. Fernández-López,
“Proposal of an index for the objective evaluation of the colour
of red table grapes,” Food Research International, vol. 28, no. 4,
pp. 373–377, 1995.

[21] A. Kicherer, K. Herzog, M. Pflanz et al., “An automated field
phenotyping pipeline for application in grapevine research,”
Sensors, vol. 15, no. 3, pp. 4823–4836, 2015.

[22] Z. Pothen and S. Nuske, “Automated assessment and mapping
of grape quality through image-based color analysis,” IFAC-
PapersOnLine, vol. 49, no. 16, pp. 72–78, 2016.

[23] B. H. Barritt and J. Einset, “The inheritance of three major fruit
colors in grapes,” Journal of the American Society for Horticul-
tural Science, vol. 94, pp. 87–89, 1969.

[24] L. Costantini, G. Malacarne, S. Lorenzi et al., “New candidate
genes for the fine regulation of the colour of grapes,” Journal
of Experimental Botany, vol. 66, no. 15, pp. 4427–4440, 2015.

[25] Y. F. Huang, Y. Bertrand, J. L. Guiraud et al., “Expression QTL
mapping in grapevine-revisiting the genetic determinism of
grape skin colour,” Plant Science, vol. 207, pp. 18–24, 2013.

[26] A. Fournier-Level, L. le Cunff, C. Gomez et al., “Quantitative
genetic bases of anthocyanin variation in grape (Vitis vinifera
L. ssp. sativa) berry: a quantitative trait locus to quantitative
trait nucleotide integrated study,” Genetics, vol. 183, no. 3,
pp. 1127–1139, 2009.

[27] D. Lijavetzky, L. Ruiz-García, J. A. Cabezas et al., “Molecular
genetics of berry colour variation in table grape,” Molecular
Genetics and Genomics, vol. 276, no. 5, pp. 427–435, 2006.

[28] S. L. Teh, J. Fresnedo-Ramírez, M. D. Clark et al., “Genetic dis-
section of powdery mildew resistance in interspecific half-sib
grapevine families using SNP-based maps,” Molecular Breed-
ing, vol. 37, no. 1, p. 1, 2017.

[29] M. P. Diago, J. Tardaguila, N. Aleixos et al., “Assessment of
cluster yield components by image analysis,” Journal of the Sci-
ence of Food and Agriculture, vol. 95, no. 6, pp. 1274–1282,
2015.

[30] K. W. Broman, H. Wu, Ś. Sen, and G. A. Churchill, “R/qtl:
QTL mapping in experimental crosses,” Bioinformatics,
vol. 19, no. 7, pp. 889-890, 2003.

[31] L. Kruglyak and E. S. Lander, “A nonparametric approach for
mapping quantitative trait loci,” Genetics, vol. 139, no. 3,
pp. 1421–1428, 1995.

11Plant Phenomics


	Evaluating and Mapping Grape Color Using Image-Based Phenotyping
	1. Introduction
	2. Materials and Methods
	2.1. Experimental Design
	2.1.1. Plant Material
	2.1.2. Image Collection
	2.1.3. Image Segmentation
	2.1.4. Image Data Extraction

	2.2. Statistical Analysis

	3. Results
	4. Discussion
	Data Availability
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

