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Early generation breeding nurseries with thousands of genotypes in single-row plots are well suited to capitalize on high throughput
phenotyping. Nevertheless, methods to monitor the intrinsically hard-to-phenotype early development of wheat are yet rare. We
aimed to develop proxy measures for the rate of plant emergence, the number of tillers, and the beginning of stem elongation
using drone-based imagery. We used RGB images (ground sampling distance of 3mm pixel-1) acquired by repeated flights (≥ 2
flights per week) to quantify temporal changes of visible leaf area. To exploit the information contained in the multitude of
viewing angles within the RGB images, we processed them to multiview ground cover images showing plant pixel fractions.
Based on these images, we trained a support vector machine for the beginning of stem elongation (GS30). Using the GS30 as
key point, we subsequently extracted plant and tiller counts using a watershed algorithm and growth modeling, respectively.
Our results show that determination coefficients of predictions are moderate for plant count (R2 = 0:52), but strong for tiller
count (R2 = 0:86) and GS30 (R2 = 0:77). Heritabilities are superior to manual measurements for plant count and tiller count, but
inferior for GS30 measurements. Increasing the selection intensity due to throughput may overcome this limitation. Multiview
image traits can replace hand measurements with high efficiency (85–223%). We therefore conclude that multiview images have
a high potential to become a standard tool in plant phenomics.

1. Introduction

Research in field phenotyping has profited noticeably from
recent advances in image processing which accelerated the
implementation of sensor based crop monitoring. Neverthe-
less, field phenotyping is still regarded as the bottleneck for
urgently needed crop genetic improvement [1]. Resilience
to climate change has become a major issue in crop cultiva-
tion. In 2016 for example, 301 million tons of cereals were
produced in Europe, 44.7% of which was wheat. Wet condi-
tions and lack of solar irradiation in Northern Europe and
hot and dry conditions in Southern Europe led to a loss of
13.5 million tons cereals compared to 2015 [2]. The influence
of changing climatic conditions on the production of agricul-
tural crops in Europe is ambiguous: in Northern Europe, the
duration of the growing season is increasing due to higher
temperatures and the flowering date of wheat has already

advanced two to four days per decade since 1985 [3]. By con-
trast, heat and a reduction in precipitation are reducing the
crop yield in Southern Europe [4]. Furthermore, yield vari-
ability between years is expected to increase due to the aug-
mentation of extreme climatic events.

To ensure stable wheat production, one constantly needs
to adapt the production systems to the changing climatic
conditions, and breeders need to modify and improve wheat
varieties permanently. Nevertheless, wheat yields are stagnat-
ing in Europe [5, 6]. To breed higher yielding wheat varieties,
it is necessary to gain information on how and when the dif-
ferent yield components in a plant are formed [7]. While this
need for reliable information on yield components is known
since decades, the lack of high-throughput field phenotyping
methods has hindered breeders to draw conclusions on
genotype-environment interactions so far. Consequently,
measuring final grain yield on large plots in late breeding
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stages is still regarded as the most effective phenotyping
method. Nevertheless, it is crucial to phenotype earlier
breeding stages in order to increase genetic gain [8]. In these
early breeding stages, small plot sizes prevent robust yield
measures and call for methods that examine single yield
components.

Main yield components for wheat are the number of
plants per square meter, the number of shoots with fertile
ears per plant, and the number and weight of grains per ear
[9]. The number of plants and ear-bearing shoots is related
to plant emergence, tillering intensity, and tiller abortion,
processes that are influenced not only by management deci-
sions such as sowing density but also by environmental
covariates [10]. The potential number of grains per ear—
determined by the formation of the terminal spikelet—is
linked to the time point when stem elongation starts
[11], another process that is highly related to environmen-
tal parameters [12–15]. Evaluating these traits (beginning
of stem elongation, plant, and tiller count) manually is
very time-consuming, laborious, and prone to error.

High-throughput field phenotyping (HTFP) may repre-
sent a solution to the drawbacks of manual methods [1].
The use of color imaging (red, green, and blue (RGB)) in com-
bination with unmanned aerial systems (UAS) or ground-
based system—often called “phenomobiles” [16]—provides
possible HTFP implementations at affordable costs. For
wheat, successful attempts with RGB based methods were
made to estimate plant counts under field conditions using
problem-specific feature extraction (so-called “hand-crafted”
traits) [17–19], machine learning [20], and deep learning
[17]. Nevertheless, all of these methods require images with
very detailed ground sampling distances (GSD < 0:5mm) at
early growth stages, which limits scalability to large breeding
experiments, as such methods cannot yet be applied with the
GSDs achievable with drones.

For the estimation of tiller numbers, methods were
developed that are based on spectral reflectance [21–23]
and RGB indices [24–27]. For these methods, strong empir-
ical correlations between tiller counts and vegetation indices
were found. Nevertheless, none of the studies indicated the
applicability of these methods in breeding. A notable
exception is the work of Jin et al. [26]. The authors esti-
mated ear-bearing shoot counts after harvest using images
of stem residuals, thereby achieving heritabilities of up to
0.8, which indicates a high potential of such methods for
plant breeding.

Remote sensing methods to estimate the growth stage
(GS) beginning of stem elongation (BBCH 30, from now
on referred to as GS30) [28] are rare: Kronenberg et al.
[12, 13] used terrestrial laser scanning height measurements
to determine 15% of final height as proxy for GS30 and
reached a heritability of 0.85. Other published methods to
remotely estimate the beginning of stem elongation are not
known to us.

In UAS-based 2-D imaging, an area on the ground is
captured from multiple angles. Depending on how the data
is processed, different types of information can be extracted
[29]. In a previous work, we developed a method to take
advantage of image overlaps produced in UAS-based pho-

tography and used viewing geometry effects to estimate
plant physiological traits [30]. Comparable approaches, but
with the purpose to enrich training for deep learning, were
simultaneously developed by Liu and Abd-Elrahman [31].
Liu et al. [32] demonstrated in silico that multiview observa-
tions of green fraction measured with RGB sensors may
serve to derive important crop model parameter. In this
study, we built on our previous work presented in Roth
et al. [30].

The aim of this study was to predict plant count, tiller
count, and the beginning of stem elongation using UAS-
derived RGB images in a breeding context, which requires
high-throughput and minimal user interaction. To accom-
plish this, we developed a new remote sensing product: mul-
tiview ground cover images (Figure 1). We then applied
machine learning to predict GS30, and building up on this
growth stage determination method used growth stage-
sensitive parametric crop models to predict plant and tiller
count.

The prediction of these traits was embedded in a
HTFP strategy inspired by van Eeuwijk et al. [33]. Fea-
ture extraction from images was followed by automatized
spatial correction of plot values using geospatial coordi-
nates and subsequent modeling of the growth dynamics.
We finally tested the quality of our methods as breeding
tools by assessing repeatability, heritability, and relative
efficiency.

2. Methods

2.1. Plant Material and Experimental Sites. Experiments were
performed in two consecutive years (2018 and 2019) in a
total of three year-site combinations, i.e., at two experimen-
tal sites: the field phenotyping platform site of ETH Zurich
“FIP” [34] (Lindau Eschikon; Switzerland; 47.449 N, 8.682
E; 556m a.s.l.) and the plant breeding site of Delley Samen
und Pflanzen AG (Delley, Switzerland; 46.918 N, 6.979 E;
500m a.s.l.). In the following, the year-site combinations
are called “FIP18” and “FIP19” for the FIP site, and “Del-
ley19” for the Delley site. The experiments were part of the
regular testing of advanced breeding material of Agroscope
(Nyon, Switzerland)/Delley Samen und Pflanzen AG (Del-
ley, Switzerland) and consisted of 36 elite winter wheat
genotypes per year-site. Because of the variety testing char-
acter, the set for 2018 differed from the set for 2019 by five
genotypes.

Year-sites consisted of plots (experimental units in a row-
range arrangement with spatial coordinates) enriched with
block factors and genotypes. Here, we define range as the
sowing direction, i.e., the sowing machine moves within rows
across ranges. Details about the experimental designs, soil,
and management can be found in Supplementary Materials
C (available here).

Meteorological data was obtained from a weather station
next to the experimental field (50m) for the site FIP and from
a public Agrometeo weather station (http://www.agrometeo
.ch/, Agroscope, Nyon, Switzerland) in proximity (800m)
for the site Delley. Air temperature T was recorded 0.1 meter
above the ground every ten minutes and averaged per hour to
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Th. From this data, growing degree days (GDDs) [35] were
calculated in dependency of days after sowing (DAS) as

GDD DASð Þ = 〠
DAS

d=1
〠
24

h=1

Td,h − Tbase
24

, Td,h > Tbase,

0, Td,h ≤ Tbase,

8<: ð1Þ

where Tbase was assumed to be 0 °C [36].
In addition to GDD, the GDD difference relative to the

beginning of stem elongation (ΔGDDGS30) was calculated as
the difference between actual GDD and GDD needed to
reach GS30 for each specific plot (GDDGS30):

ΔGDDGS30 = GDD −GDDGS30, ð2Þ

where negative ΔGDDGS30 values indicate time points before
and positive values time points after the beginning of stem
elongation.

2.2. Manual Reference Measurements. Three categories of
manual measurements were taken: measurements that were
performed at all three year-sites (beginning of stem elonga-
tion), measurements taken at year-sites FIP18 and FIP19
(shoot count, plant count, and freezing damage), and mea-
surements taken only at year-site FIP19 (phyllochron). Below,
we give details on measurements following this sequence.

2.2.1. All Year-Sites: Beginning of Stem Elongation. GS30 was
determined by destructively measuring the distance between
the basal node and the first extending node for three to five
representative plants per time point and plot. When this dis-
tance reached ten millimeters, the plant was defined to be in
the stem elongation stage [28, 37]. This ground truth data was

collected three times between April 13 and April 19, 2018, for
FIP18 for one replication; eight times between March 29 and
April 22, 2019, for FIP19 for two replications; and 15 times
between March 25 and April 10, 2019, for Delley19 for two
replications. Since the beginning of stem elongation phase at
FIP18was very short and only threemeasurement dates could
be performed, themeasured distance between the first and the
basal nodes was linearly interpolated to estimate the day when
the stem elongation started. In contrast, for FIP19 and Del-
ley19, estimated days correspond directly to measurement
time points. As the measurement intervals for all measure-
ments were between two and three days, the measurements
presumably have the same uncertainty in days, which corre-
sponds to approximately 20 to 30 GDDs.

2.2.2. FIP18 and FIP19: Plant Count, Shoot Count, and
Freezing Damage. To count plants and shoots and capture
their spatial context, plots were subdivided in 20 subseg-
ments each for one replication per year-site. A segment cen-
tered in the fourth sowing row of each plot with a length of
1m was defined. The two ends of this segment were marked
with micro ground control points (GCPs) by pegging
wooden sticks into the soil (Figure 2(b)). Each segment was
then further divided in subsegments with a size of 0:05 ×
0:125m each using a displaceable yard stick (Figures 2(b),
2(d), and 2(e)).

Plant counts in subsegments were performed once per
year-site at a stage where tillers were still distinguishable
from main shoots. For FIP18, this was March 9, 2018, and
for FIP19, February 13, 2019.

Shoots were counted manually in each subsegment and
were defined as having emerged when the pseudostem was
clearly visible. Shoot count measurements at the subsegment
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Figure 1: Phenotyping strategy including preprocessing, feature extraction, time point traits, spatial correction, dynamic modeling, and
finally intermediate level traits. Graphs represent exemplary visualizations of the applied methods (LA: apparent leaf area; SVM: support
vector machine).
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level of one replication were performed at ten time points
for FIP18 and at six time points for FIP19; for FIP18
between March 14 and April 20, 2018; and for FIP19
between February 13 and April 23, 2019. In addition, to
allow in-year repeatability calculations, shoot counts at seg-
ment level (1m row) instead of subsegment level were per-
formed for two replications of year-site FIP19 on March 28
and April 22, 2019.

Not all shoots initiated during the tillering phase may
result in final ear-bearing shoots as tiller abortion is com-
mon in wheat [38]. In order to provide an estimate of
abortion effects, ear-bearing shoots were counted manually
per subsegment for year-site FIP18 shortly before harvest
(July 9, 2018).

Due to very low temperatures between February 18 and
March 3, 2018, some varieties suffered freezing damage,
which was recorded on plot level on March 15, 2018, accord-
ing to a score scale [39]. The scoring numbers ranged from 1

for excellent resistance to freezing to 9 for poor resistance to
freezing.

To have an estimate of leaf area variations at early growth
stages, measurements of leaf length from collar to tip (L) and
maximum width (W) were performed onMarch 25, 2018, on
each most expanded leaf per subsegment. Leaf area (LA) was
then calculated using the approach proposed by Miralles and
Slafer [40]: LA = L ×W × 0:835.

2.2.3. FIP19: Phyllochron and Plant Emergence. Phyllochron
(defined as “the interval between similar developmental
stages of leaves on the same culm”; [41]) and time point of
plant emergence were determined using leaf stage measure-
ments. The main stems of three plants per genotype were
marked in early spring, and leaf stages following Haun [42]
were determined weekly from February 18 to April 18, 2019.
Linear regressions were used to extract genotype specific phyl-
lochron and time point of emergence from leaf stage data.
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Figure 2: Field experiment at the FIP site viewed from the corner of Lot 3 with a visualization of resulting ground sampling distance (GSD)
for images taken by the FIP and UAS (a), segment and subsegment labeling in field with micro ground control points with 20mm diameter at
borders of a 1m row and yard stick with marked 0.05m subsegment (b), coded ground control points with 0.5m diameter (c), images taken
by the FIP dolly from 3m distance with a GSD of 0.6mm (d, e), and equivalent multiview images based on images taken by the UAS from
28m distance with a GSD of 3mm (f, g) displaying plant pixel fractions. These fractions indicate the probability of pixels to show plant
parts. Fractions close to one correspond to dense canopies or plant parts close to the ground; values close to zero correspond to soil parts;
intermediate values correspond to erect or sparse plant parts.
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2.3. Remote Sensing Campaigns

2.3.1. UAS Campaigns. Fields at all three year-sites FIP18,
FIP19, and Delley19 were prepared with crosswise GCP
arrangements with 12 × 18m spacing, and GCP positions
were measured using a GNSS differential global position sys-
tem (R10, Trimble Ltd., Sunnyvale, U.S.A.) with swipos-
GIS/GEO RTK (real time kinematic) correction (Federal
Office of Topography Swisstopo, Wabern, Switzerland),
resulting in a horizontal accuracy of 8mm and a vertical
accuracy of 15mm. Coded round GCPs with a diameter of
0.5m were used at the four corners of fields (Figure 2(c)),
while at all other positions, uncoded squared GCPs with size
0:2 × 0:2m were placed. Both coded and uncoded GCPs con-
sisted of UV prints on aluminum DIBOND plates (Mydis-
plays GmbH, Burscheid, Germany) placed 0.1m above the
ground using 0.55m long soil anchor bolts (KSF E 89x550-
E60 and KSF G 66x550-1xM8, Krinner GmbH, Walperswil,
Switzerland).

For image acquisition, a mirrorless interchangeable-lens
camera with a full frame sensor of 6000 × 4000 pixel (Sony α
9 Model ILCE-9, Sony Corporation, Tokyo, Japan) equipped
with a prime lens with a focal length of 55mm and a maxi-
mum aperture of f/1,8 (Sonnar T∗ FE 55mmF1,8 ZA, Sony
Corporation, Tokyo, Japan) was mounted on a Matrice 600
Pro drone (SZ DJI Technology Co. Ltd., Shenzhen, China)
using a Ronin-MX gimbal (SZ DJI Technology Co. Ltd.,
Shenzhen, China) to minimize off-nadir views and rotation
blur effects. Flight planning was performed using PhenoFly
Planning Tool [43], while DJI GS Pro (SZ DJI Technology
Co. Ltd.) served as an autopilot for flight implementation.
Camera and flight parameters were set as follows: shutter
speed 1/16,000 s, ISO lower than 6,400, aperture between
f/2.8 and f/7.1 (depending on illumination conditions), flight
height 28m, flight speed 1.8m s-1, percent end lap 92%, and
percent side lap 75%. These settings led to a GSD of 3mm,
restricted motion blur to ≤5%, reduced the signal-to-noise
ratio to <27 dB [44], and ensured a GCP recover frequency
of >70% for photos that showed one or more GCPs. Accord-
ing to PhenoFly Planning Tool [43], views of the plot centers
had zenith angles in a range of 0-20° with the highest fre-
quencies at 10°. Azimuth angles had the highest frequencies
around 110° and 70° with local minima at 90° and a global
minima at 0° (row direction); recovery rates were at 40
images per plot center and GCP (Supplementary Materials
B, Figure 12).

For FIP18, 13 flights were performed between March 14
and May 1, 2018; for FIP19, 12 flights were performed
between February 26 and April 18, 2019; and for Delley19,
eight flights were performed between February 14 and April
11, 2019.

2.3.2. FIP Campaigns. At the site FIP, the field phenotyping
platform FIP [34] was operated on a regular basis. The sys-
tem captured high-resolution RGB images with a GSD of
0.6mm taken at 3m distance to the ground with a EOS 5D
Mark II sensor equipped with a 35mm lens (Canon Inc.,
Tokyo, Japan). These images served as basis to manually
identify the exact spatial position of single plants, a prerequi-

site to optimize watershed parameters for the plant count
method (Section 2.5.2, Equations (10) and (11)).

As a preparation for manual plant identification in
images, RGB images taken at seven consecutive dates in
2018 (March 5 to April 19, 2018) and three consecutive dates
in 2019 (October 31, 2018; November 12, 2018; and February
22, 2019) were georeferenced using the position of micro
GCPs marking the border of 1m segment rows (see Section
2.2.2). A custom Python 3.6 script (e.g., [45]) was used to
allow the user to identify and click positions of single plants
in FIP images (source code available, see Section Additional
Points, Point A1). After marking plant positions, captured
image coordinates were translated to plot coordinates to sim-
plify further processing with UAS-based multiview images
(see the following section).

2.4. Multiview Image Generation. All UAS campaigns were
processed in a custom developed, uniform workflow that
consisted of four major steps (Figure 3(a)): (1) camera expo-
sure position and orientation determination; (2) identifica-
tion of plots in individual images; (3) segmentation of
individual images in pixel classified as plant or soil; and (4)
aggregation of plot-based image cutouts to multiview
images. In the following, each of these steps is described in
detail (source code available, see Section Additional Points,
Point 1–3).

2.4.1. Camera Exposure Position and Orientation
Determination. Individual oblique images from UAS flight
campaigns were preprocessed with the structure-from-
motion (SfM) software Agisoft PhotoScan Professional 1.4.2
and Agisoft Metashape 1.5.2 (Agisoft LLC, St. Petersburg,
Russia) in order to derive exposure station position and ori-
entation (Figure 3(a)). For the sparse point cloud processing,
“keypoint limit” was set to 40,000 and “timepoint limit” to
4,000. Automatic GCP detection was used in an automated
two-step process: first, coded GCPs were detected and
matched with known coordinates using coded names. This
step led to a roughly georeferenced point cloud. Second,
uncoded GCPs were detected and matched with known coor-
dinates of the closest uncoded GCPs. This second step led to
a precisely georeferenced point cloud.

For the first flight campaign per year-site, the SfM pro-
cess was continued with dense point cloud processing to get
a digital surface model of the soil. The processing settings
were “quality” to “high” and “depth filtering” to “mild.”Mesh
and digital elevation model (DEM) were generated using a
GSD of 3mm, “surface type” was set to “height field”, inter-
polation was enabled, and a DEM and a RGB orthomosaic
were exported as geoTiff. The DEM was further smoothed
using a moving window median filter with window size 5 ×
5. For all other campaigns, the SfM process was terminated
after sparse point cloud processing, as DEM and orthomosaic
were not needed for further processing.

2.4.2. Identification of Plots in Individual Images. Once for
each year-site, measured coordinates of the field corners were
used to generate polygons that represent shapes of individual
plots minus a buffer of 0.25m. The buffer served two distinct
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purposes: (1) it should prevent sampling the wrong plot due
to inaccurate positioning of plot polygons in images, and (2)
it should prevent sampling image parts where plots overlap
due to viewing geometry effects. The minimum buffer size
B thereby corresponds to

B = tan
AOV
2

� �
hcanopy + Eref , ð3Þ

where AOV is the maximum angle of view of the imaging
system, hcanopy the canopy height, and Eref the georeferencing
precision. Using a buffer size of 0.25m therefore allows to
monitor canopies with a maximum height of 0.41m if using
an imaging system with 40°AOV and assuming a georeferen-
cing precision of 0.1m [46], as done in this study. Subse-
quently, the RGB orthomosaic of the first campaign was
used to manually adjust positions of plots and therefore inte-
grate positioning shifts during sowing.
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beginning of stem elongation (GS30, d) feature extraction methods.
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For all campaigns, after exposure station estimation, an
approach similar to Roth et al. [30] was used to generate plot
masks for each individual oblique image. In contrast to Roth
et al. [30], we replaced the forward ray-tracing process with a
custom Agisoft Metashape Python script that reverses the
process. The script takes plot polygons in geojson format
and a DEM as input, evaluates Z coordinates of plot corners
using the DEM, and back projects XYZ world coordinates of
plot polygon corners to images, thereby producing individual
masks for each image. Image masks were saved as geojson
files that contained plot identification numbers as attributes.

2.4.3. Segmentation of Individual Images in Pixel Classified as
Plant or Soil. For image segmentation in plant and soil pixel,
we trained a random forest classifier using predictors based
on 12 bit RGB values, four additional 12 bit color spaces,
and two color indices. As wheat leaves in early stages are only
a few millimeters wide, images with a GSD of 3mm will con-
tain major fractions of mixed pixels. The built-in RGB Bayer
matrix of digital cameras will further intensify this effect, as
only every second green value of pixel positions corresponds
to a true measurement. Therefore, only pixel positions that
correspond to green pixels in the Bayer matrix were taken
for training and prediction, and red and blue values were
interpolated for these pixel positions using the values of
two corresponding adjacent pixels. Complementary color
spaces (XYZ, sRGB, HSV, and La∗b∗) and plant-sensitive
color indices (ExR and ExG; [30]) were derived as additional
predictors for these green pixel positions.

The random forest classifier was implemented and
trained with 380 samples from three different campaigns
using the Python module scikit-learn [47]. The number of
estimators was set to 55, minimum split size to 4, minimum
forest leaf size to 6, maximum number of features per deci-
sion to 6, and maximum depth per decision tree to 95.

Our approach of using only green pixel positions for
training and prediction resulted in missing values in the pre-
dicted image at blue and red pixel positions. These missing
value positions were filled performing a morphological
“opening” operation using a 3 × 3 pixel window, which addi-
tionally reduced noise in images. The resulting segmented
binary images (segImg) were saved in the TIFF format.

2.4.4. Aggregation of Plot-Based Image Cutouts to Multiview
Images. As the next step, segmented images containing the
same plot were collected and processed jointly. Thereby,
pixels outside plot borders were masked first. Then, to facili-
tate further processing, pixels were resampled with threefold
resolution (to reduce quality loss and artifacts caused by
round-off errors) in a coordinate system with parallel axes
to plot borders (plot coordinate system):

segImgres x, yð Þ = segImg M
x

y

" # !
, x ∈ 1, 2,⋯,

3 × plotl
GSD

� �
,

y ∈ 1, 2,⋯,
3 × plotw
GSD

� �
,

ð4Þ

where plotl and plotw represent the length and width of the
plot in millimeters, GSD the ground sampling distance, M
the affine transformation matrix from a plot coordinate sys-
tem to an image coordinate system, and segImgres the
resampled image. The change to a plot coordinate system
thereby eliminated the overhead of geospatial allocation:
while processing georeferenced images requires geographic
information system- (GIS-) related software, processing
images in plot coordinates can be done using any image pro-
cessing software.

In a final step, all resampled images of each plot showing
pixel classified as plant or soil were summed up pixel-wise
and the result was divided by the number of images:

mvImg x, yð Þ = 1
nImg

〠
nImg

i=1
segImgres,i x, yð Þ, ð5Þ

where nImg is the number of oblique images (some of them
close to nadir) for the corresponding plot. This process
resulted in an image showing intensity values in the range of
zero to one, the multiview ground cover image, further called
multiview image mvImg (Figures 3 (a3) and 2(f)–2(g)).

2.5. Feature Extraction. In order to parameterize growth
stage-dependent models for the prediction of plant and shoot
counts based on physical appearance, the growth stage itself
needs to be determined beforehand. Therefore, we first
choose a machine learning approach based on statistical
values extracted from multiview images to predict beginning
of stem elongation (Figure 3(d)). Building up on this predic-
tion, two individual models were built for the other traits: for
plant count, we used a combination of spatial feature extrac-
tion and growth modeling (Figure 3(b)). In contrast, a com-
bination of arithmetical calculation and growth modeling
(Figure 3(c)) was used for shoot count. For implementation
details on each approach and source code, please refer to
the Section Additional Points (Point 4) below.

2.5.1. Beginning of Stem Elongation. Feature extraction for
the determination of the time point of GS30 was done using
a machine learning approach based on visible ground cover
in multiview images. The approach was based on the
assumption that structural changes in the pseudostem erec-
tion phase will correlate with changes related to the begin-
ning of stem elongation [48] (Figure 3 (d1)). These
structural changes will lead to a change in the distribution
of pixel fraction percentiles in multiview images (Figure 3
(d2)) following

mvGCi =
1
n
〠
n

j=1

1, mvImg jð Þ > i,

0,

(
ð6Þ

wheremvGCi is a pixel fraction percentile with the threshold
i—now called multiview ground cover percentile, j represents
a specific pixel on the multiview image, and n represents the
total number of pixels. We therefore presumed that the
change in multiview ground cover percentile distribution
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can be used to train a support vector machine regressor
(Figure 3 (d3)).

To validate the approach and determine prediction
errors, ten equally distributed multiview ground cover per-
centile values (Equation (6)) in the range of 10 to 100 were
extracted for each plot and time point and complemented
with ΔGDDGS30 based on manual GS30 measurements
(Section 2.2.1). With these predictor and response pairs (fil-
tered for a range of ±20ΔGDDGS30), a regressor support vec-
tor machine was trained in R [49] using the packages kernlab
[50] and caret [51]. Based on a prior hyperparameter tuning,
cost was set to 32 and gamma to 0.125. Tenfold cross-
validations for genotype-based training/test splits and 3-
fold cross-validations for year-site-based training/test splits
followed training.

The custom developed phenotyping data processing
infrastructure used in our research group (CroPyDB) is
based on Python. To implement the developed approach as
a high-throughput method and determine repeatability and
heritability values, we trained a regressor support vector
machine in Python using scikit-learn [47] with the same
hyperparameter and training data set as for the validation
and performed predictions for all year-sites. GS30 prediction
error was defined as

EGS30 = GS30 − dGS30, ð7Þ

where GS30 corresponds to the manual reference measure-

ment in GDD and dGS30 to the estimated value in GDD.

2.5.2. Plant Count. To extract plant count numbers from
multiview images, a spatial approach based on local maxima
and watershed area sizes was used. The three underlying con-
cepts of this approach are as follows:

(1) It was assumed that a certain multiview ground cover
percentile (mvGCi) correlates well with plant counts
(Nplants) (Figure 3 (b1) and (b2):

Nplants ≈ a ×mvGCi + b, ð8Þ

where a and b are parameters of the linear regression to pre-
dict plant counts. Nevertheless, the exact intensity percentile
is expected to be sensitive to physical appearance of plants
and therefore year effects. Additionally, the performance of
multiview ground cover percentiles as the predictor for plant
count will depend on the growth stage of plants and therefore
days to GS30.

(2) It was assumed that local maxima counts in multiview
images correlate with true plant counts (Figure 3 (b1)
and (b)):

Nplants ≈ f localmax Ipeak, dmin, mvImg
� �

, ð9Þ

where f localmax extracts the number of local maxima with
plant pixel fractions higher than Ipeak and distances larger

than dmin from each other. However, the approach was sus-
pected to be sensitive to clumping of plants, where multiple
adjacent plants may result in a single local maximum.

(3) To overcome the disadvantages of concept one and
two, we combined both using watershed regions: if
utilizing the best multiview ground cover percentile
i as threshold to build watershed regions, the size of
the region may correlate well with the sum of plants
in that region in dependence of the growth stage
(Figure 3 (b4) and (b5)):

A1,⋯, Anf g = f watershed Ipeak, dmin, i, mvImg
� �

, ð10Þ

N̂plants = 〠
n

j

aW × Aj + bW , ð11Þ

where An are the areas of all watershed regions of mvImg that
consist of plant pixels with factions larger than i around
peaks with minimal plant pixel fractions Ipeak and minimum
distance dmin. Parameters aW and bW are the slope and inter-
cept of the linear regression, respectively, to predict plant
counts based on watershed region sizes.

To get true plant counts for each watershed region, loca-
tions of plants manually identified in high-resolution FIP
images (Section 2.3.2) were used to determine which set of
plants corresponds to which watershed region. Conse-
quently, we could fit a linear model (Equation (11)) to water-
shed region sizes and corresponding manual plant counts in
these regions and evaluate the parameters aW and bW for five,
ten, and 15 days before GS30.

A plant count prediction method based on Equations
(10) and (11) and evaluated parameters aw and bW was
implemented in Python using the package scikit-learn [47].
Using this method, plant count predictions were performed
for all year-sites. Plant count prediction error Eplants was
defined as

Eplants =Nplants − N̂plants, ð12Þ

where Nplants corresponds to the manual reference measure-

ment and N̂plants to the estimated value.

2.5.3. Shoot Count. Feature extraction for shoot counts was
done using an arithmetic approach based on the apparent
leaf area: depending on the distance between a leaf part and
the ground, the footprint characteristics in multiview images
will differ (Figure 3 (c1)). Nevertheless, summing up pixel
intensities of multiview images will correspond to an estima-
tion of leaf area (Figure 3 (c2)). The apparent leaf area LA per
plot was estimated from multiview images as

LA = 〠
n

j=1
mvImg jð Þ2, ð13Þ
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where j represents a specific pixel on the multiview image
and n the total number of pixels. Image values were squared
before summing up to compensate for a skewed distribution
of zenith angles towards off-nadir views, which is typically
found in UAS-based images [30, 43].

After leaf area calculation, shoot counts were derived
from LA based on physiological constrains of tiller and leaf
development [52] (Figure 3 (c3)):

(1) The number of leaves on main stems (Nl,MS)
depends on the phyllochron (P) and on GDD at
emergence (t0):

Nl,MS = P × GDD − t0ð Þ = f1 GDDð Þ: ð14Þ

In this study, P and t0 are regarded to have no significant
differences in the elite genotype set (see e.g., Duan et al. [25];
Ochagavía et al. [53] and Section 3.1). Nl,MS can therefore be
expressed as a function of GDD only (f1).

(2) The number of leaves on the nth tiller (Nl,Tin)
depends on the tiller number (nTi) and number of
leaves on the main stem:

Nl,Tin = a ×Nl,MS − b × nTi = f2 GDD, nTið Þ, ð15Þ

where Abichou et al. [52] consider a and b as genotype-
independent constants, by what Nl,Tin can be expressed as a
function of GDD and nTi only (f2).

(3) If assuming that leaves in early growth stages before
the beginning of stem elongation have all the same
area Al (see Section 3, Figure 4(d)), the leaf area of a
canopy (leaves on main shoots and tillers) can be
expressed in the dependency of the number of main
stems NMS, number of tillers NTi, number of leaves
for the nth tiller Nl,Tin , and leaf area Al as

LA =NMS × Al × Nl,MS + 〠
NTi

n=1
Nl,Tin

 !
: ð16Þ

When inserting Equations (14) and (15) into (16),

LA =NMS × Al × f1 GDDð Þ + 〠
NTi

n=1
f2 GDD, nTið Þ

 !
, ð17Þ

it becomes obvious that LA can be expressed as a function of
the number of shoots NS (as sum of NMS and NTi) and GDD:

LA = f NMS,NTi, GDDð Þ = f NS, GDDð Þ: ð18Þ

Based on a visual inspection of manual reference mea-
surement data, we approximated the relationship between

LA, number of shoots (NS), and growth stage (GDD) by a
logistic function:

LA =
Asym

1 + exp xmid − log1p NSð Þð Þ/scalð Þ , ð19Þ

where log1p returns the natural logarithm of one plus the
input. The asymptote Asym can be fixed to the LA value that
corresponds to the maximal canopy cover value. We assumed
a maximum canopy cover of 90% [54] for all genotypes based
on the observation that values above 50% are very unlikely
before GS30 and genotype specific variations in the asymp-
tote therefore neglectable (Supplementary Materials B,
Figure 9). To meet the requirements of Equation (18), the
other two parameters xmid and scal therefore need to be in
dependence to the growth stage. If assuming linearity, xmid
and scal may be expressed in dependence to ΔGDDGS30 as

xmid = axmid × ΔGDDGS30 + bxmid, ð20Þ

scal = ascal × ΔGDDGS30 + bscal, ð21Þ
where axmid, bxmid, ascal, and bscal are slopes and intercepts of
the linear regressions. We estimated these parameters using a
nonlinear fit of Equation (19) to ΔGDDGS30 groups with an
aggregation window of ±12:5 GDD.

A shoot count prediction method based on Equations
(19), (20), and (21) and evaluated values for axmid, bxmid,
ascal, and bscal was implemented in Python, and shoot count
predictions were performed for all year-sites. Shoot count
prediction error Eshoots was defined as

Eshoots =NS − N̂S, ð22Þ

where NS corresponds to the manual reference measurement
and N̂S to the estimated value.

2.6. Spatial Correction and Repeatability Calculation of Time
Point Traits. After preprocessing of data (Section 2.4) and
feature extraction (Section 2.5), calculated time point traits
were spatially corrected. This correction yielded repeatability
values and corrected plot-based trait values (Figure 1). For
the spatial correction, spatial modeling of the R package
SpATS [55] was applied to all time points and measurements
that included at least two replications. The model thereby
corresponds to

Y = PSANOVA x, yð Þ∣Rx + Ry +G, ð23Þ

following the syntax proposed by Piepho et al. [56].
PSANOVA is a smoothed bivariate surface defined over x
and y coordinates in a metric coordinate system (EPSG:3395,
WGS 84/World Mercator), Rx is the row effect, Ry is the
range effect, G is the genotype effect, and “|” separates fixed
from random effects. For the bivariate surface, the SpATS
parameter number of segments (determining the number of
internal knots of the surface) was chosen according to the
number of plots in each direction, row, and range, multiplied
with 2/3.
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Correction was done for all plots in all year-sites (4 × 36
plots for FIP19 and Delley19, 2 × 353 plots for FIP18). Cor-
rected plot-based values were calculated as the sum of best
linear unbiased estimations (BLUEs) and residuals. Repeat-
ability was determined per time point using generalized her-
itability [57] with the package SpATS.

2.7. Dynamic Modeling and Repeatability Calculation of
Intermediate Level Traits. Corrected time point traits were
further processed after spatial correction to yield intermedi-
ate level traits. The term “intermediate level trait” in this
research refers to plot and year-site-specific parameters that

summarize nondestructive repeated measurements on the
same observational unit, i.e., a plot in our case. This concept
refers to the one proposed by van Eeuwijk et al. [33] with the
exception that the intermediate level traits were derived on a
plot level rather than on a genotype level.

Different methods for dynamic modeling were chosen for
the three different traits: for plant counts, the median of three
spatial corrected time point measurements was taken. For
shoot counts, an inverse exponential model was fitted to plot
based time point data:

NS,t =NS − exp −a × ΔGDDGS30ð Þ, ð24Þ
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Figure 4: Manual reference measurements of plant counts (a), phyllochron (b), plant emergence time point (c), leaf area of single leaves
around GDD 440 (d), beginning of stem elongation (GS30) (e), contour plot of shoots per plant at specific growing degree days (GDDs)
around stem elongation and at harvest (f), and contour plot of shoots per plant for different measured plant densities, specific GDDs, and
at harvest (g). The boxes in (b, c, d) show the 25 and 75% percentiles, the solid line represents the median, the whiskers show the 5 and
95% percentile, and the violins show the kernel density distribution. Contours in (f, g) are density contours, dashed lines—1 : 1 lines.
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where NS,t corresponds to the number of shoots at a specific
time point, NS to the final shoot count before cessation (tiller
abortion), and a to the tillering rate (Supplementary Mate-
rials B, Figure 10). Since training data for the development
of the shoot count method were in a range of −200 ≤ ΔGD
DGS30 < 0, values outside this range were filtered out before
fitting Equation (24) to the data in order to prevent extrapo-
lation. For year-site Delley19, not enough time points were
left after filtering. Therefore, NS was calculated as the median
of tiller counts NS,t and estimations for a skipped.

After fitting Equation (24), the extracted parameters final
shoot count NS and tillering rate a were further processed
with plant count estimations to estimate final shoot count
per plant and tillering rate per plant instead of area
(Figure 1). Prediction errors for NS and a were calculated
by additionally fitting Equation (24) to the manual reference
measurement data in order to extract reference values for a
and NS.

To determine the exact timing of beginning of stem elon-
gation, a linear regression was fitted per plot to estimated
values in the range ΔGDDGS30 ± 20:

dΔGDDGS30 = a × GDD + b: ð25Þ

Values from campaigns having a repeatability lower than
0.5 were filtered out before fitting Equation (25) to the data.
GS30 was then determined by evaluating the intersection of
the right-hand side of Equation (25) with zero, GS30 = −b/a
(Supplementary Materials B, Figure 11).

For all methods, prediction errors were calculated for
rows of one meter, and Pearson’s correlations were calculated
on the same level. Repeatability was evaluated using the R
package lme4 [58] to fit a linear mixed model and based on
generalized heritability. The model used was

Y = R∣G, ð26Þ

where R is the replication effect, G is the genotype effect, and
“|” separates fixed from random effects.

2.8. Heritability Calculation. After intermediate level trait
extraction per year-site, generalized heritabilities over multi-
ple year-sites were calculated using the R package lme4 [58]
to fit a linear mixed model [57]. Different models were used
for two cases:

(1) Multiple replications, multiple years: Y = Yr/R ∣ G.

(2) One replication, multiple years: Y = Yr ∣G

In the two cases, Yr is the year effect, R is the replication
effect, G is the genotype effect, “|” separates fixed from ran-
dom effects, and “/” indicates nesting of factors. Generalized
heritability was calculated for plots of the common set of 36
genotypes. Consequently, 2 × ð353 − 36Þ plots showing non-
common genotypes at year-site FIP18 were filtered out before
heritability calculation. In addition to the calculation for four
replications, HTFP data sets were reduced to two and one

replication, to make the resulting heritability values compa-
rable to manual reference measurements.

2.9. Relative Efficiency Calculation. Using HTFP methods to
replace manual measurements in breeding programs follows
the concept of indirect selection [59, 60]. The efficiency of
indirect selection can be evaluated using relative efficiency
(RE) estimations:

RE =
hHTFP · rG
hmanual

, ð27Þ

where hHTFP is the square root of the heritability of the HTFP
method, hmanual the square root of the heritability of the cor-
responding manual reference method, and rG the genotypic
correlation between the corresponding methods [59]. To
estimate rG, we used the plot-based, phenotypic correlations
for all available year-sites rall (see Section 3, Figure 5).

3. Results

3.1. Insights Based on Manual Reference Measurements. Plant
count measurements at the site FIP performed in 2018 and
2019 revealed that the homogeneity of plant emergence var-
ied between the years (Figure 4(a))—emergence in 2018 was
more homogeneous with few subsegments containing more
than two plants, while in 2019, higher plant counts per sub-
segment were frequent. Leaf stage measurements in 2019 at
the site FIP showed that phyllochron variation in the exam-
ined genotype set was small: values ranged from 54 to 98
GDD, while 50% of all values were in a narrow band between
70 and 80 GDD (Figure 4(b)). The time point of plant emer-
gence based on leaf stage determination showed similar nar-
row ranges with 50% of all values between 75 and 140 GDD
(Figure 4(c)). Leaf areas of most expanded single leaves
ranged from 200 to 500mm2 with 50% of all values between
300 and 380mm2 (Figure 4(d)). Ranges for beginning of stem
elongation time points varied largely between sites and years:
while at year-sites Delley19 and FIP19 the beginning of stem
elongation spanned a period of 20 days, at year-site FIP18, all
genotypes reached stem elongation within a period of less
than ten days (Figure 4(e)).

Final ear-bearing shoots per plant at harvest at FIP18
were—based on the visual assessment of Figure 4(f)—most
closely related to shoot counts at the beginning of tillering,
representing almost 1 : 1 the final number of spikes ( ~GDD
400; March 10, 2018; GS 21-24). During the tillering phase,
considerably more tillers were produced for almost all plots,
visually indicating an overproduction of shoots towards the
beginning of stem elongation ( ~GDD 700; April 20, 2018;
GS30). The number of shoots per plant covaried to some
extent with plant counts towards beginning of stem elonga-
tion, but not at earlier phases or at harvest (Figure 4(g)).

3.2. Feature Extraction Model Parameterization. For plant
counts, further details on the preliminary parameter estima-
tion steps using approaches one and two (ground cover per-
centile and local maxima) can be found in Supplementary
Materials E. The consequent combined watershed approach
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confirmed that the year effect was, in contrast to approaches
one and two, not significant (Supplementary Materials B,
Figure 8d; Supplementary Materials A, Table 3).

For the shoot count method, parameters scal and xmid
were extracted using nonlinear fits to ΔGDDGS30 groups.
ANOVA tests for scal and xmid confirmed that the year
effect was not significant but the dependency on ΔGDDGS30
was essential (Table 1). Plotting xmid and scal versus ΔGD
DGS30 revealed that assuming linearity (Equations (20) and
(21)) was justified (Supplementary Materials B, Figure 9c-d).

3.3. Accuracy of Intermediate Level Traits in Comparison with
Manual Measurements. After feature extraction, time point
traits were further processed to intermediate level traits. In
the following, we present prediction errors, RMSEs, relative
RMSEs (rRMSEs), determination coefficients (R2), and
cross-validations for all year-sites that included reference
measurements for the specific traits.

For the plant count method, prediction errors were well
centered around zero (Figure 5(a)). The RMSE for FIP18
was 11.8 plants m-1 (rRMSE = 23:3%) and for FIP19 17
plants m-1 (rRMSE = 33:7%). The inferior performance for
FIP19 was also reflected in a moderate R2 (0.25) in compari-
son to a strong R2 for FIP18 (0.73), while the overall R2 was
reasonably strong (0.52). Overall RMSE was 14.8 plants m-1

(rRMSE = 29:2%).
The dynamic modeling of shoot counts supplied two

parameters: the tillering rate (a) and final shoot count (NS)
(Figures 5(b) and 5(c), Equation (24)). Errors for tillering rates
were small for 50% of all rows, but a group of outliers formed
at an error of 0.02 tiller GDD-1m-1. Plotting predicted values
against reference measurements revealed that outliers had
predicted rates close to zero (Supplementary Materials B,
Figure 10b) which indicates a lack of tillering dynamic in
the measurement period. RMSE was at 0.0089 tiller GDD-1

m-1 (rRMSE = 42:9%). The R2 was moderate (0.25).

Prediction errors for final shoot counts before cessa-
tion were well centered around zero with a RMSE of 23
shoots m-1 (rRMSE = 17:0%). The R2 was strong (0.86).

Characteristics of beginning of stem elongation predic-
tion errors showed well-centered prediction errors for the
year-sites FIP18 and FIP19 and a slight underestimation for
year-site Delley19 (Figure 5(d)). RMSEs were at 51 GDD
for Delley19, 35 GDD for FIP18, and 24 GDD for FIP19.
The overall RMSE was at 39 GDD. Although ranges of pre-
diction errors and RMSEs for the different year-sites were
comparable, the R2revealed severe mismatches for FIP18
(0.008), but a moderate linear association for Delley19
(0.27) and a reasonably strong association for FIP19 (0.49).
Tenfold cross-validations for genotype based training/test
splits and threefold cross validations for year-site based trai-
ning/test splits revealed RMSEs in the range of 52 to 90 GDD
and rRMSEs between 10.6 and 18.5% (Table 2).
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Figure 5: Prediction errors and determination coefficients (R2) for plant count estimations (a), shoot dynamics modeling (b, c), and
beginning of stem elongation (GS30) (d). The boxes show the 25 and 75% percentiles, the solid line represents the median, the whiskers
show the 5 and 95% percentile, and the violins show the kernel density distribution; r is Pearson’s correlation.

Table 1: ANOVA of linear models for parameters scal and xmid of
the logistic leaf area versus tiller count model. Given are degrees of
freedom (Df), sum of squares (Sum Sq), mean of squares (Mean
Sq), F statistics (F value), and significance (Pr ð>FÞ).

Df Sum Sq Mean Sq F value Pr >Fð Þ
Parameter: scal

ΔGDDGS30 1 0.62 0.62 35.61 0.0001

Year 1 0.01 0.01 0.70 0.4198

ΔGDDGS30 : Year 1 0.01 0.01 0.68 0.4241

Residuals 12 0.21 0.02

Parameter: xmid

ΔGDDGS30 1 1.19 1.19 63.24 0.0000

Year 1 0.01 0.01 0.33 0.5775

ΔGDDGS30 : Year 1 0.01 0.01 0.68 0.4266

Residuals 12 0.23 0.02
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3.4. Repeatability of Time Point Traits in Comparison with
Manual Measurements. Preprocessing, multiview segmenta-
tion, and feature extraction generated plot-based values for
34 measurement time points at three year-sites. In the follow-
ing, we present repeatability values of HTFP methods for all
time points and compare them—if available—with repeat-
ability values of manual reference measurements.

Repeatabilities for the multiview image based plant
count method were high for all three year-sites and three
time points per year-site and ranged between 0.84 and
0.96, except for the first campaign for FIP18 with a repeat-

ability of 0.54 (Figure 6(a)). Subsequent analyses revealed
operational problems for the corresponding underlying
flight: the camera trigger sequence was interrupted for some
flight lines, which partially led to lower overlaps. Neverthe-
less, we decided to keep the flight campaign in our data set
to demonstrate the advantage of dynamic modeling based
on repeated measurements.

For the leaf area estimation method that served as a proxy
for shoot counts, repeatability was increasing over time for
FIP18 and FIP19 and reached values of up to 0.96, while
the values for Delley19 stayed at a constant high level

Table 2: Cross-validation (CV) results for training of beginning of stem elongation support vector machine. Results are root mean squared
errors (RMSEs) in growing degree days (GDDs) and relative root mean squared errors (rRMSEs).

Training Test Test type RMSE rRMSE

All data All data 10-fold CV 52.6 10.9%

Genotype subset Unseen genotypes 10-fold CV 51.7 10.6%

Year-site subset Unseen year-sites 3-fold CV 85.3 17.7%

Genotype subset in FIP18/FIP19 subset Unseen genotypes in Delley19 10-fold CV 89.8 18.5%

Genotype subset in FIP18/Delley19 subset Unseen genotypes in FIP19 10-fold CV 80.8 18.4%

Genotype subset in FIP19/Delley19 subset Unseen genotypes in FIP18 10-fold CV 79.7 16.7%

Time point traits: Delley19 Time point traits: FIP18 Time point traits: FIP19
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Figure 6: Repeatability values for time point traits before dynamic modeling (a) and year-site repeatability values for intermediate level traits
based on time point traits after dynamic modeling (b). Intermediate level traits were calculated using different dynamics functions (see Section
2.7): for plant count, the median of time point plant count estimations, for shoot dynamics an inverse exponential model with parameters final
shoots and tillering rate based on estimated shoot numbers using time point leaf area estimations, and for growth stage 30 (GS30) the
intersection of a linear regression of time point GS30 index values with zero.
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between 0.88 and 0.96, except one low value at 0.49. After fil-
tering for the corresponding range of -200 to 0 ΔGDDGS30,
remaining values used for the dynamic modeling ranged
between 0.88 and 0.96. Repeatabilities for manual shoot
counting in 2019 at the site FIP were at 0.49 for the first mea-
surement during the tillering phase and 0.67 for a second
measurement after beginning of stem elongation. Hence,
repeatabilities for manual reference measurements with two
replications were lower than for the corresponding HTFP
measurements with four replications. Nevertheless, HTFP
leaf area estimation was only a proxy for shoot counts and
comparability is therefore limited.

Repeatabilities for the multiview image based beginning
of stem elongation method varied over time and year-sites:
for Delley19, high values between 0.81 and 0.93 were calcu-
lated for later growth stages, while values for early measure-
ments remained lower between 0.64 and 0.83. For FIP18,
repeatabilities were all in the same range of 0.64 to 0.83
except for two lower values below 0.5 at early growth stages.
For FIP19, values for early growth stages were lower than
those for later stages but generally between 0.63 and 0.83,
except for two low repeatability values below 0.5. Repeatabil-
ities for manual GS30 measurements with two replications
were at 0.89 for Delley19 and 0.78 for FIP19 and hence com-
parable to HTFP measurements with four replications.

3.5. Repeatability of Intermediate Level Traits in Comparison
with Manual Measurements. Dynamic modeling resulted in
plot-based values (see Section 2.7). In the following, we pres-
ent repeatability results based on these plot-based values.

Repeatabilities for HTFP plant counts after dynamic
modeling were high for all three year-sites (0.87 to 0.98)
(Figure 6(b)). Repeatability of HTFP shoots per area estima-
tions for the different year-sites ranged between 0.55 and 0.7.
HTFP estimations were thereby comparable to manual shoot
count measurements performed after beginning of stem
elongation: HTFP repeatability for FIP19 (0.65) corresponds
well to the one of manual measurements (0.67). When com-
bining shoot estimations with plant counts to yield shoots per
plant estimations, repeatabilities for Delley19 (0.8) and FIP18
(0.63) increased, but dropped for FIP19 (0.43).

Tillering rate values were only available for FIP18 and
FIP19, while for Delley19, not enough time point measure-
ments were available. All repeatabilities for FIP18 were close
to zero, but repeatability for tillering rate per area for FIP19
was at 0.62 and tillering rate per plant at 0.51.

For the beginning of stem elongation, repeatability values
for all year-sites were high (0.94 for Delley19, 0.97 for FIP18,
and 0.92 for FIP19) and comparable to manual reference
measurements (0.89 for Delley19, 0.78 for FIP19).

3.6. Heritability and Relative Efficiency of High-
Throughput Traits

3.6.1. Heritability in Comparison with Manual Measurements
with the Same Number of Replications. Based on plot-based
intermediate level trait values of all three year-sites, heritabil-
ity was calculated for HTFP methods as well as manual refer-
ence measurements. To allow direct comparison with

manual reference measurements, replication numbers for
HTFP methods were reduced to two and one replication for
multiyear-site heritability calculation (Figure 7(a)).

For the plant count estimation method, the heritability
based on one replication per year-site was 0.56, while the her-
itability for the manual reference measurements was zero.
Heritability for the shoots per area estimation method with
one replication was 0.3 and thus higher compared to the
manual method (0.11), and the same applied for the shoots
per plant method (0.1 versus zero). For tillering rate with
one replication, HTFP and reference methods showed zero
heritabilities. For the beginning of stem elongation estima-
tion trait with two replications, the heritability of manual ref-
erence measurements (0.88) was superior to the one of the
HTFP method (0.71).

3.6.2. Increased Heritability due to Throughput. Throughput
allowed increasing replication and year-site numbers for the
HTFP methods. This advantage had clear effects on heritabil-
ity (Figure 7(a)). For plant counts, shoots per area, and begin-
ning of stem elongation, heritability increased continuously
with increasing number of replications. The beginning of
stem elongation thereby reached a heritability of 0.82, plant
counts 0.88, and shoots per area 0.62. For tillering rates and
shoots per plant, increasing replication numbers from two
to four did not show any further improvements of heritabil-
ity—values reached 0.39 for shoots per plant, 0.54 for tillering
rate per area, and 0.41 for tillering rate per plant.

3.6.3. Relative Efficiency. Relative efficiencies were calculated
based on heritabilities for manual measurements (Section
3.6.1), heritabilities of HTFP methods (Section 3.6.2), and
correlations between the methods (Section 3.3). As heritabil-
ities of manual measurements for plant count, shoot per
plant, and tillering rate where zero or close to zero, relative
efficiency values for the corresponding HTFP methods were
infinite. The relative efficiency for shoots per area started at
1.55 for one replication per year-site and increased to 2.23
for four replications per year-site. The relative efficiency for
beginning of stem elongation increased from 0.55 to 0.85
with increasing number of replications.

4. Discussion

In this work, we presented multiview images as a novel UAS-
based approach for high-throughput phenotyping. By
exploiting the additional information contained in the multi-
tude of viewing angles within the UAS images capturing an
area on the ground, this approach enables the quantification
of intrinsically hard-to-phenotype traits such as the begin-
ning of stem elongation or tiller count [16]. A direct compar-
ison between the multiview image approach and standard
UAS approaches is difficult. In comparison to segmented
single-view images (e.g. [19]), multiview ground cover
images show intensity values (plant pixel fractions) rather
than just binary values (plant versus soil). This characteristic
allows applying methods such as spatial algorithms, which do
not work with single-view images. Consequently, a direct
comparison of the performance of single-view images with
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multiview images on the level of extracted traits is only pos-
sible if comparable methods exist for both products. Never-
theless, all existing plant count methods known to us rely
on GSDs smaller than 0.5mm [16], which is hardly achiev-
able with currently available drone systems. In addition, nei-
ther a shoot count method nor a GS30 method based on
images is known to us. Therefore, to give evidence of the
key characteristic of multiview images, we validated our
methods with manual measurements with high temporal
and spatial resolution.

All following feature extraction steps were designed to
work with multiview images. Dense point processing—a cal-
culation intensive task typically done in SfM processing to
yield 3-D information—was not required for time point trait
extraction. Processing costs of less than half a day per flight
campaign and minimal manual interaction requirements
(see Supplementary Materials D) indicated a high usability
of multiview images in applications that require high
throughput. The required ground sampling distance of
3mm thereby allowed capturing images efficiently, a sub-
stantial advantage over other ground-based methods with
comparable precision.

The multiview image approach saves the time for gener-
ating the dense point cloud. Nevertheless, canopy heights
extracted from a point cloud could represent important addi-
tional information, e.g., to train a machine learning predic-
tor. The decision not to generate dense point clouds
therefore represents a trade-off between saving processing
time and not taking advantage of the full potential of data.

If processing time is not limiting, combining multiview
images with canopy heights may be of advantage.

Requirements on drone flights for multiview images are
more rigid than for other remote sensing products. Images
should have equally distributed zenith angles in relation to
plot centers, frequent views perpendicular to the row direc-
tion, and plots should appear at equal frequencies in images.
Using proper flight planning is therefore essential.

For the quality of the multiview images, it is essential to
apply an appropriate buffer size to plot polygons that con-
siders important parameters such as maximum canopy
height, angle of view, and georeferencing precision. These
restrictions were taken into account by choosing a large
buffer size of 0.25m. Furthermore, the precision of coregis-
tration between multiple views will have an impact on the
quality of multiview images. Our approach is based on the
internal camera alignment of Agisoft Metashape, which it
reports to be accurate in the range of one to two pixels. Con-
sequently, the resulting image masks have a corresponding
precision.

In a breeding context, a HTFP method is only of use if
extracted traits allow reliable selection of targeted ideotypes.
Hereafter, we therefore discuss the robustness of individual
traits based on multiview images, followed by a discussion
of implications for breeding.

4.1. Beginning of Stem Elongation. The beginning of stem
elongation served as an important anchor point for the sub-
sequent prediction of plant and shoot counts. The overall
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Figure 7: Multiple season heritability values of intermediate level traits (a) and relative efficiency of HTFP methods in comparison to manual
measurements for intermediate level traits where the heritability of manual measurements was nonzero (b). For manual measurements, all
year-sites had one (plant count, shoot count) and two (growth stage 30 (GS30)) replications. For high-throughput field phenotyping
(HTFP) methods, values are given for the full number of replications (two for FIP18, four for FIP19, and four for Delley19, indicated as
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RMSE of 39 GDD indicates suitability to predict the begin-
ning of stem elongation for year-sites and genotype sets
where time points span multiple weeks. Nevertheless, if tran-
sitions happen in less than ten days, as in FIP18 between
April 12 and April 20, 2018 ( ~ 100 GDD), this accuracy
may be too low, even if the measuring frequency is increased
considerably. This finding is supported by the low R2 at year-
site FIP18. Surprisingly, repeatability values of intermediate
level traits indicated a good useability for all year-sites
including FIP18. Ultimately, higher multiple season herita-
bility values for manual measurements than for the HTFP
traits, as well as increasing RMSEs in cross-validation for
unseen genotype/year-site sets, revealed the root of the prob-
lem: The used machine learning method showed a tendency
to overfit and most probably also included other training
characteristics that were not related to the target trait, e.g.,
differences in plant emergence homogeneity between the
years at site ETH (Section 3.1, Figure 4(a)), differences in soil
composition between the sites ETH and Delley (Supplemen-
tary Materials C), and differences in soil moisture between
individual measurement time points. In a given year-site, this
results in higher repeatability values, but over year-sites, her-
itability values fall short below the one of reference measure-
ments. This lack of generalization may be reduced by using
more training samples, and it clearly indicates advantages
of hand-crafted traits over machine learning approaches if
using small training data sets.

Nevertheless, the relative efficiency of up to 0.85 indicates
a high potential of the method to distinguish early and late
beginning of stem elongation in large-scale breeding experi-
ments. To our knowledge, other studies reporting accuracy
of HTFP GS30 estimates are not available. However, GS30
can also be estimated based on the dynamics of stem elonga-
tion using terrestrial laser scanning [12, 13]. The authors
found considerable genetic variation for the beginning of
stem elongation (defined as the GDD at which 15% of final
height was reached) with a heritability of 0.82 across three
growing seasons, which perfectly fits the heritability for four
replications found in this study (0.82) but is superior to the
heritability for two replications (0.71). Nevertheless, substan-
tial differences exist between the study materials: While
Kronenberg et al. [12, 13] examined a diverse set of approx-
imately 330 common European winter wheat genotypes from
a diverse range of breeding origin; we examined a set of 36
Swiss elite genotypes originating mainly from one single
plant breeder. We therefore expect the heritability of the
method developed by Kronenberg et al. [12, 13] to be lower
for a genotype set that is more related to a breeding context.

Adapting the method of Kronenberg et al. [12, 13] to
drone images by extracting the dynamics of height develop-
ment with sufficient precision would be feasible (e.g. [46])
but would have two essential consequences on measurement
and processing practice. First, it would require processing
RGB images to dense point clouds, extracting plant heights
from the difference between measured heights of a specific
campaign and a soil height reference, and determining the
time point where 15% of the final height is reached in a semi-
automated way. Second, it would require continuing the
height measurements throughout the whole growing season,

thereby capturing the final height of plants, a prerequisite for
the relative height calculation. While the first consequence
would increase the calculation effort and reduce the through-
put, the second consequence would effectively prevent
breeders from drawing first conclusions on genotype perfor-
mance in-season.

Beginning of stem elongation determination on multi-
view images on the other hand allows selecting genotypes
in-season with high efficiency. Thereby, our results indicated
that two replications per year-site are sufficient—increasing
the replication number from two to four only slightly
improved efficiency.

4.2. Plant Count. HTFP yielded good estimates of plant
counts across year-sites with high repeatability and moderate
prediction errors. However, the comparison of found predic-
tion errors with other studies is difficult. Most other authors
were choosing experimental designs that included sowing
density and nitrogen treatments but only a few genotypes,
which reduces the informative value of results for breeding.
Under these restrictions, plant count prediction errors based
on multiview images were comparable with the method of
Liu et al. [18] who reported errors of 22% for experiments
with similar sowing densities and five genotypes, while in this
study we found prediction errors of 11.8 and 17.0 plants m-1

which corresponds to 23.3 and 33.7% (Figure 5). Liu et al.
[19] reported superior performance with errors of 12.5%
for three different genotypes and nitrogen treatments and
Liu et al. [17] errors of 12% for few genotypes in sowing den-
sity treatments. It remains unclear to us whether applying the
mentioned methods to breeding experiments would preserve
these high precisions.

Jin et al. [20] on the other hand tested their method on
breeding experiments but relied on a very fine ground sam-
pling distance: Required flight heights for their method
ranged between three and seven meters, and several flights
were necessary to cover areas comparable with those of this
study. Consequently, they reached accurate prediction errors
of 14.31%. Breeding-related repeatability or heritability
values were not provided. Heritability of plant counts may
be affected by nongenetic factors, such as seed storage condi-
tions. It is therefore expected that the heritability within a
season is high (particularly, when there is a large variability
in seed quality) but low across seasons.

In this study, heritability values for the HTFP method
were considerably higher than those for manual reference
measurements (Figure 7(a)). Differences in sampling size
may have contributed to this finding: While we hand-
sampled a one-meter row within the nine-rowed plot, which
is representing not even 10% of the overall plot size, the
HTFPmethod was based on the whole plot. For manual mea-
surements, Jin et al. [26] proposed to use sample sizes of at
least six meters if counting fixed lengths or to count 90 plants
in total, which should then lead to errors <10%. Following
this recommendation may have led to higher heritability
values for manual measurement based genotype means, but
the effort needed to perform such manual measurements
would have been high. This finding points out the need for
and benefit of HTFP methods. Furthermore, it gives
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implications for using small plot sizes in early breeding
stages. Even if using phenomobiles taking images at early
growth stages (e.g. GS 11-12) from proximity with a GSD
of less than 0.1mm as discussed by Hund et al. [16] and dem-
onstrated by Liu et al. [18], severe inhomogeneity in small
plot sizes may still prevent high heritability values. On the
other hand, if using larger plot sizes, higher precision is most
probably superfluous, as the variation due to inhomogeneity
between rows of the same plot may be higher than the preci-
sion gain when using proximity measurements.

Irrespective of the proximity of the method, nonexisting
heritabilities of manual measurements indicate a clear advan-
tage of HTFP for breeding; manual measurements as done in
this study are not suitable for breeding (Figure 7(a)). High
heritabilities of plant count estimations based on multiview
images on the other hand may empower breeders to use the
method for multiple purposes, e.g., to calculate deviated traits
such as tillers per plant in a HTFP manner as demonstrated
in this study; to exclude seed lots with poor emergence per-
formance from evaluations; or to screen for emergence
behavior based on genotype-environment interactions or
seed treatments.

4.3. Shoot Count. Available literature on shoot counts is limit-
ed—most studies included sowing density treatments based on
few genotypes, only. When considered in a breeding context,
the prediction efficiency of our method is most probably supe-
rior to other studies. While Phillips et al. [22] found an R2 of
0.74 for 310 measurements at 22 year-sites, which is compara-
ble to our method (R2 = 0:86), Scotford and Miller [23] found
a RMSE of ±125 shoots m-2, which is comparable with the pre-
diction error of 16.9% of our method. Again, no breeding-
related repeatability or heritability values were provided.

In our study, repeatabilities of shoot count estimation
showed little variation over year-sites (Figure 6(b)). Repeat-
abilities of tillering rates on the other side indicated strong
year effects. The high overall heritability of shoots per area
and lower heritability of shoots per plant additionally indi-
cate that a genotype-specific “desired” shoot density exists
and significantly differs between genotypes. Compensation
effects for sowing densities and emergence rates are well-
known for wheat [10].

Heritability values for manual reference measurements
were low to nonexisting, which led to high relative efficien-
cies for HTFP methods (Figure 7(b)). This finding indicates
that using HTFP is of high advantage for breeders who aim
to select ideotypes based on tiller dynamics. While two rep-
lications per year-site may provide a reasonable base for
selection, higher replication numbers may not justify the
additional effort.

The presented shoot count method was based on the
assumption that genotypes in early growth stages have simi-
lar leaf areas. This simplification allowed developing a gener-
alizable method with a strong R2 if compared to manual
reference measurements. Nevertheless, there is evidence in
the literature that the variation in leaf width is genotype spe-
cific (e.g., [61]). Incorporating leaf area as genotype-specific
parameter in a future work may therefore further improve til-
ler count predictions.

4.4. Implications for Breeding. Multiview images used in this
study allowed processing of UAS-based data in a high-
throughput manner with minimal human interaction and
in reasonable processing time. The required flight height of
approximately 30m above ground thereby enables breeders
to screen larger breeding populations with precisions compa-
rable to phenomobile approaches. However, flight time and
battery capacity is still the limiting factor for experiments
with large plot sizes: To fly an experimental field site with
two replications of 350 genotypes and 1 × 1:5 m plot sizes
took approximately 15 minutes in this study, which is at
the absolute limit of battery capacity.

Nevertheless, as even individual rows can be monitored
with the presented methods, HTFP may be applied in early-
generation breeding gardens. Thus, on the same area, more
than 3000 individual lines could potentially be screened, if
each row was planted with a different variety. This would
allow to increase the selection intensity by means of a larger
number of genotypes being screened. As Rebetzke et al. [8]
stated, HTFP should play a key role in allowing breeders to
increase sizes of their breeding nurseries to finally increase
genetic gain. We are not aware that tillering capacity or the
beginning of stem elongation is routinely assessed in early
generation-breeding programs yet. Thus, we consider the
developed method also as a new selection tool in the breeder’s
toolbox.

Finally, combining the presented plant and shoot count
methods with high-throughput ear count methods could
supply ample information on mechanisms and genetic back-
grounds of tiller formation and abortion. Having insights in
such processes will contribute to the stabilization of grain
yield even in rapidly changing climatic conditions.

5. Conclusion

High-throughput is a term at risk to become worn-out in
crop phenotyping: While many studies propagate to present
such high-throughput methods, few bring it to the stage
where applicability can be assessed. Despite the increasing
interest in crop phenotyping driven by the genomics com-
munity, throughput is still an issue, both on the level of data
processing and on the level of data capturing.

In this study, we presented multiview images in combina-
tion with dynamic modeling of repeated measures as a new
remote sensing product that may become key to combine
throughput and precision for drone-based crop phenotyping.
Since the method enriches the information content of
images by integrating multiple views in one single plot-
based product, it required moderate ground sampling dis-
tances ( ~ 3mm), thereby allowing to screen large fields by
means of drones. We used the turning point of the begin-
ning of stem elongation as an anchor to parameterize
developmental crop models, thus taking into account differ-
ent developmental stages among genotypes. Using the
example of plant count and shoot count combined with
beginning of stem elongation, we demonstrated applicabil-
ity of the approach to extract new target traits for breeding.
We therefore conclude that multiview image processing in
combination with developmental modeling may become a
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standard tool in crop phenotyping to meet the demands of
throughput and precision.

Additional Points

Source Code. Maintained source code for processing is pub-
licly available on the ETH Zurich GitLab server (https://
gitlab.ethz.ch/crop_phenotyping/PhenoFly_data_processing_
tools); archived versions can be found in Roth [62, 63]. The
GitLab repository includes following preprocessing steps: (1)
Image mask generation (Standalone Agisoft Metashape
Script) (https://gitlab.ethz.ch/crop_phenotyping/PhenoFly_
data_processing_tools/ImageProjectionAgisoft). (2) Image
segmentation with random forest (https://gitlab.ethz
.ch/crop_phenotyping/PhenoFly_data_processing_tools/
ActiveLearningSegmentation). (3) Multiview image genera-
tion (https://gitlab.ethz.ch/crop_phenotyping/PhenoFly_
data_processing_tools/MultiViewImage). The GitLab reposi-
tory furthermore includes the following trait extraction
method: (4) Early growth trait extraction (https://gitlab
.ethz.ch/crop_phenotyping/PhenoFly_data_processing_
tools/EarlyGrowthTraitExtraction). Addition useful tools
can be found here: (A1) Utils (https://gitlab.ethz.ch/
crop_phenotyping/PhenoFly_data_processing_tools/U-
til). Data. Secondary data (plot-based values, BLUEs,
BLUPs, repeatability, and heritability) are available at
the research collection of ETH Zurich (https://www
.research-collection.ethz.ch/) (Roth, [64]). Primary data of
this research (RAW images) are available upon request; a
sample data set is publicly available (Roth, [65]).
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