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Highly repeatable, nondestructive, and high-throughput measures of above-ground biomass (AGB) and crop growth rate (CGR)
are important for wheat improvement programs. This study evaluates the repeatability of destructive AGB and CGR
measurements in comparison to two previously described methods for the estimation of AGB from LiDAR: 3D voxel index
(3DVI) and 3D profile index (3DPI). Across three field experiments, contrasting in available water supply and comprising up to
98 wheat genotypes varying for canopy architecture, several concurrent measurements of LIDAR and AGB were made from
jointing to anthesis. Phenotypic correlations at discrete events between AGB and the LiDAR-derived biomass indices were
significant, ranging from 0.31 (P < 0.05) to 0.86 (P < 0.0001), providing confidence in the LiDAR indices as effective surrogates
for AGB. The repeatability of the LIDAR biomass indices at discrete events was at least similar to and often higher than AGB,
particularly under water limitation. The correlations between calculated CGR for AGB and the LiDAR indices were moderate to
high and varied between experiments. However, across all experiments, the repeatabilities of the CGR derived from the LiDAR
indices were appreciably greater than those for AGB, except for the 3DPI in the water-limited environment. In our experiments,
the repeatability of either LIDAR index was consistently higher than that of AGB, both at discrete time points and when CGR
was calculated. These findings provide promising support for the reliable use of ground-based LiDAR, as a surrogate measure of

AGB and CGR, for screening germplasm in research and wheat breeding.

1. Introduction

The grain yield from cereals can be expressed as the product
of above-ground biomass (AGB) at physiological maturity
and harvest index (HI). The genetic progress in wheat grain
yield potential during the last century has been generally
associated with improvements in HI, but there is evidence
that HI has now stabilised at ca. 0.5 (e.g., [1, 2, 3, 4, 5]),
despite a theoretical maximum of 0.62 [6]. There is evidence
that genetic progress in grain yield potential has been associ-
ated with increased preanthesis crop growth rate (CGR) and
radiation use efficiency (RUE) from ca. 1980 [3, 7]. CGR for
the preanthesis period is typically defined as the change in
AGB between stem elongation and anthesis divided by the
time interval [8]. Preanthesis CGR is important for the estab-

lishment of grain number and potential grain size [8]. Crop
growth (i.e., the accumulated daily CGR) for the stem elonga-
tion to anthesis period is also defined as the product of can-
opy intercepted photosynthetically active radiation (PARi)
and RUE [9]. Although PARi can be estimated remotely
[10], it varies little under good growing conditions during
the critical preanthesis stage (e.g., [4]); RUE cannot easily
be estimated, so the direct estimation of CGR has added
advantages. Future genetic progress in wheat grain yield
potential is sought through increasing CGR whilst maintain-
ing HI (e.g., [11, 12, 13]). AGB is typically measured destruc-
tively, by removing the plant material from a known area and
determining the dry weight (e.g., [14, 15]). Such measure-
ments made on large experiments are laborious and time-
consuming and the repeatability can be low if the sample area
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is small. Therefore, nondestructive and high-throughput
measures of AGB and CGR are important for wheat
improvement programs.

Recent advances in proximal remote sensing present such
an opportunity for nondestructive and high-throughput
assessment of AGB and potentially grain yield (e.g., [16, 17,
18]). To this end, a particularly promising proximal remote
sensing technology is LIDAR (Light Detection And Ranging)
[19, 20]. LiDAR typically measures distance by illuminating a
target with a laser and analyzing the reflected light. Thus,
field measurements are not confounded by the ambient light
conditions and the light normalization typically required for
hyperspectral measurements is not required (e.g., [21, 22, 23,
24]). Further, as LiDAR is a laser-based sensor, it can pene-
trate gaps in the canopy which minimises the effect of occlu-
sion when sequential scans from slightly different positions
are combined. Recent studies have used LiDAR and similar
laser-based sensors to quantify AGB, height, and leaf area
index (LAI) in cereals primarily for precision agriculture
applications [25-30]. These studies typically involve a single
genotype whereby variation in crop canopy density is gener-
ated by nitrogen application and sowing rate treatments. In
contrast, we are concerned with nondestructive measure-
ment of AGB for the purpose of crop improvement through
plant breeding.

LiDAR mounted on a portable buggy, alias “Phenomo-
bile Lite,” was recently proposed for nondestructive assess-
ment of height, ground cover, and AGB [16, 17, 31]. Two
LiDAR algorithms were shown to be highly correlated with
AGB across multiple samplings: 3D voxel index (3DVI)
and 3D profile index (3DPI) [17]. In addition, in a study
comprising eight bread-wheat cultivars grown across eight
sites, LIDAR-derived volume estimates of the crop canopy
were strongly associated with AGB and broad-sense herita-
bility estimates from LiDAR were as good as and typically
greater than those for AGB [32]. Whilst these studies are
encouraging, further testing is required with a larger number
of genotypes to better represent the likely scale encountered
within a breeding program. This study, therefore, comprises
up to 98 genotypes across three experiments in order to test
whether the LIDAR biomass indices (3DVI and 3DPI) are
consistently correlated with AGB (measured from conven-
tional, destructive sampling) and to evaluate the phenotypic
repeatability across multiple sampling events. In contrast to
earlier work, we evaluate the repeatability of CGR calculated
from LiDAR in comparison to CGR calculated from AGB.
The evaluation of repeatability is an important step in deter-
mining the potential utility of a phenotyping method for
plant breeding: the higher the repeatability, generally the
greater the opportunity for genetic gain through indirect or
direct selection [33].

2. Material and Methods

2.1. Field Experiments. We established three separate field
experiments: Experiment 1 (GES15) in 2015 at CSIRO Agri-
culture and Food’s Ginninderra Experiment Station (GES),
Canberra, ACT, Australia (35.20°S, 149.09°E, elevation
577 m); Experiment 2 (Yanl6), in 2016, and Experiment 3
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(Yanl7), in 2017, were both grown at the Managed Environ-
ment Facility (MEF) [34], located at Yanco Agricultural
Institute (34.62°S, 146.43°E, elevation 164 m) in Southeastern
Australia. All experiments were sown following canola or
field pea break-crops and then managed with adequate nutri-
tion and chemical controls as required for pest, weed, and
leaf diseases.

Daily meteorological data was obtained from the Bureau
of Meteorology (http://www.bom.gov.au/) weather station
located closest to each experiment: Canberra Airport (station
number 070351) and Yanco Agricultural Institute (station
number 074037) (Table S1).

2.1.1. Experiment 1 (GES15). The soil at GES is classified as a
deep yellow-red Podzolic with a fine sandy loam in the A
horizon, changing abruptly at 0.30-0.50 m to a medium to
hard clay texture in the B horizon [35]. The GES15 experi-
ment, reported previously [17], comprised 13 contemporary
bread wheat (Triticum aestivum L.) and two triticale (x Triti-
cosecale) varieties chosen to represent the range in canopy
architecture likely to be found within Australian commercial
breeding programs and known to vary in flowering time by
ca. 5 days from previous experiments at Yanco. The experi-
mental plots were 15m long with 10 rows spaced 0.18 m
apart (orientated north-south) and paths between plots of
ca. 0.4m. The sowing density was 250 seeds/m”, and for five
of the varieties known for erect canopy architecture, an addi-
tional low-density treatment (125 seeds/m?) was included to
increase the range of above-ground biomass. The varieties
were sown on 12 June 2015 into a randomized complete
block design comprising 60 experimental plots (three repli-
cates of 15 varieties sown at 250 seeds/m? and five varieties
sown at 125 seeds/m?).

2.1.2. Experiments 2 (Yan16) and 3 (Yanl17). The soil at the
Yanco MEF is classified as chromosol and has a clay-loam
texture [36]. The Yanl6 experiment was sown on 23 May
in 2016 and Yanl7 was sown 29 May in 2017. The Yanl6
and Yanl17 experiments comprised 240 and 64 experimental
plots, respectively, 6 m long containing seven rows of 25cm
spacing (orientated north-south), sowing density of 200
seeds per m* and paths between plots of ca. 0.4 m. The germ-
plasm in Yanl6 and Yanl7 represented a series of near-
isogenic wheat lines varying for a range of agronomic traits
including plant height, tiller number, plant development,
and canopy erectness. In Yan16, 98 genotypes were sown into
a partial-replicate design experiment with the genotype repli-
cation averaging 2.45 and ranging from one to four. In
Yanl7, 41 genotypes (i.e., 41 of the 98 genotypes from
Yan16) were sown into a partial-replicate design experiment
with the genotype replication averaging 1.6 and ranging from
one to two. Due to the limited rainfall in 2017 for the Yan17
experiment, sprinkler irrigation was applied on several sepa-
rate days throughout the season, with amounts ranging from
15 to 37 mm (Table S1).

2.2. Phenotyping

2.2.1. Above-Ground Biomass. The above-ground biomass
(AGB) was determined from culms cut at ground level,
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always from the central rows of the plot and with at least one
border row either side. The area sampled varied for each
experiment as follows. GES15: 6 rows x 0.18 m row spacing
x1.0mlength=1.08 m?.  Yanl6:  4rowsx 0.25mrow
spacing x 0.3 mlength = 0.3 m?. Yan17: 5 rows x 0.25 m row
spacing 154 x 0.6 m length = 0.75 m?. Throughout, a single
area was sampled on each sampling date. Phenological
growth stage (GS) was recorded at each AGB sampling event
using the scale of [37]. For GES15, AGB was sampled on the
following five dates with the average growth stage (GS) for all
the plots shown in parentheses: 24-Sep-2015 (stem elonga-
tion, GS31); 7-Oct-2015 (stem elongation, GS32); 14-Oct-
2015 (booting, GS41); 23-Oct-2015 (heading, GS55); and
30-Oct-2015 (anthesis, GS65). For Yan16, AGB was sampled
at stem elongation (GS31), on 8-Aug-2016, and at anthesis
(GS65) of each line which for 90% of the lines ranged from
22-Sep-2016 to 13-Oct-2016 (median anthesis date was 28-
Sep-2016). For AGB sampled at anthesis, lines were sampled
on the actual date they reached anthesis (or within two days
of), and therefore, the lines were sampled on different dates.
Samplings at stem elongation occurred for all lines on the
same date (as indicated). In addition, AGB was sampled from
a subset of 60 plots from within the Yanl6 experiment
whereby the genotypes were randomly sampled and unrepli-
cated (i.e., 60 genotypes were represented). The additional
AGB sampling from the subset of 60 plots is denoted Yan16-
sub. The AGB sampling size for Yanl6sub was 0.75m” to
enable more reliable comparison between AGB and the
LiDAR. The Yanl6sub sampling occurred on the following
four dates with the average growth stage (GS) for the plots
shown in parentheses: 22-Aug-2016 (stem elongation,
GS35); 5-Sep-2016 (booting, GS45); 15-Sep-2016 (heading,
GS55); and 25-Sep-2016 (early anthesis, GS61). For Yanl7,
AGB was sampled on the following four dates with the average
growth stage (GS) for all the plots shown in parentheses:
28-Aug-2017 (stem elongation, GS35); 11-Sep-2017 (boot-
ing, GS45); 25-Sep-2017 (heading, GS55); and 9-Oct-2017
(anthesis, GS65).

The dry weight was determined from the AGB samples
after drying at 70°C until reaching a constant dry weight. Leaf
area (LI-COR LI-3000 conveyor belt system, Lincoln,
Nebraska, USA) was determined from GESI5, Yanl6sub,
and Yan17 AGB sampling events and expressed as leaf area
per unit of land area (leaf area index, LAI). In addition, for
Yanl6sub and Yanl7 AGB sampling events, the projected
area of stems and ears was determined, summed with the leaf
area and expressed as green area per unit of land area (green
area index, GAI).

2.2.2. Phenomobile Lite. The experiments were traversed with
the previously described Phenomobile Lite system [17] on
the day prior to an AGB sampling event (Figure S1). All
genotypes in a given experiment were sampled on the same
day. Traversing a given experiment with the Phenomobile
Lite took approximately 20 minutes and typically occurred
around solar noon.

The Phenomobile Lite is a portable buggy, powered by an
electric wheel and steered by an operator walking behind,
comprising a lightweight extruded aluminium frame with

three wheels and a high-frequency laser scanner or LiDAR
(SICK LMS400, Waldkirch, Germany, for which the techni-
cal specifications are as follows: 70 field of view; monochro-
matic laser 650nm, 4.0-7.5mW; 0.7-3.0m range; 1mm
distance resolution; scanning and angular resolution of
250Hz, 0.1°, 500Hz, 0.25°). The LiDAR was mounted
approximately 2.2 m above the ground. For the Yanl6 and
Yanl7 experiments, a GreenSeeker sensor (Trimble, USA)
was mounted on the Phenomobile Lite thereby enabling con-
current measurements of normalized difference vegetation
index (NDVI) and LiDAR. The data streams were geocoded
by means of a wheel encoder (submillimeter linear resolu-
tion) and GPS/IMU system (0.2° and <1.0 m accuracy) that
were fitted to the Phenomobile Lite. All data were captured
on a tablet (Panasonic F7-G1 Toughpad 10.1 inch HD day-
light readable display with powered docking station, Micro-
soft Windows) for later processing.

2.2.3. LiDAR Data Processing. As previously described [17],
the LIDAR data was processed using a custom processing
pipeline developed with Python 2.7 (Python Software Foun-
dation, https://www.python.org/) whereby the LiDAR data
was first geocoded with the wheel encoder and GPS/IMU
data. The LiDAR data was then manually segmented into
experimental plots through a custom-developed web inter-
face according to the following:

(i) For GES15, Yanl6sub, and Yanl17, the section of the
plot was selected from the same area where the AGB
sampling was going to be performed (ca. 1.0m?
0.75m? and 0.75 m?, respectively)

(ii) For Yanl6, the central rows (i.e., excluding border
rows) of each plot were selected to maximise the area
sampled whilst avoiding sections of the plot previ-
ously sampled for AGB (equating to an area of at
least 1.0m?)

Previously described algorithms [16, 17] were then used
to extract the following traits from the LiDAR data: crop
height, 3D voxel index (3DVI), and 3D profile index
(3DPI). The latter two, designed for the estimation of AGB
from LiDAR, were highly correlated with destructive AGB
in a prior study [17]. Briefly, 3DVI was calculated as the
sum of the number of 0.05m voxels [after 17] containing a
LiDAR point, normalized by the total number of voxels
(i.e., a voxel-based method). The 3DPI was calculated as the
sum of the fractional number of points intercepted by the
canopy in 0.0l m segments taken from the ground to the
maximum crop height (i.e., a profile-based method). Crop
height was obtained from the mean of the top 95™ percentile
of the LiDAR height distribution for a given experimental
plot, minus the height of the ground obtained from the aver-
age of the LiDAR returns from the soil, whereby the latter
were determined for a given column of plots as the mode of
heights in the point cloud (refer to Figure 4A in 17).

2.2.4. Determination of Crop Growth Rate. Crop growth rate
(CGR) between stem elongation and anthesis was calculated
as the difference in AGB divided by the duration of each
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period for each genotype (i.e., t - ha™' - day™!). CGR was cal-
culated in the same way for the LiDAR biomass indices,
3DVI and 3DPI. As described above for the Yanl6 experi-
ment, AGB at GS65 was sampled on the actual date the
entries reached anthesis (or within two days of), and there-
fore, the lines were sampled on different dates. Correspond-
ingly, the LiDAR biomass indices, 3DVI and 3DPI, were
linearly interpolated between individual sampling events
(i.e., 15-Sep, 25-Sep, 21-Oct, and 25-Oct) for the GS65 date
of each entry. The interpolated values were then used to
determine CGR from the LiDAR biomass indices.

2.3. Statistical Analysis. The AGB, LAI, GAI, CGR, height,
3DVI, 3DPI, and NDVI data were analyzed after first check-
ing for residual normality and error variance homogeneity at
each date-by-time sampling event. For each trait, each event
was analyzed separately using the SpATS package [38] (avail-
able from CRAN: http://cran.r-project.org/package=SpATS)
in the R programming language (http://www.r-project.org/
). Spatial effects were modelled on a row and column basis
by specifying the P-spline ANOVA (PSANOVA) algorithm,
with the number of segments set to the respective number
of rows and columns from the experimental design. The fol-
lowing factors were modelled as random effects: genotype,
row, and column. Repeatability (p), sometimes called
broad-sense heritability [39-41], was then estimated using
relevant variance components, namely, p = 0?g/(c%g + (0%€
/nrep)), where 0°, and 0” € are the genotypic and residual

variances, respectively, and nrep is the number of genotype
replicates in the experiment. The best linear unbiased predic-
tors of genotype effects (BLUPs) were predicted from a fitted
SpATS object. Phenotypic correlations were estimated
between BLUPs using Pearson correlation analysis with the
pandas module in Python 3.5 and statistically significant
associations denoted: ****P <0.0001; ***P <0.001; **P <
0.01; *P <0.05. The SciPy module [42] in Python 3.5 was
used to estimate linear least-squares regression between
AGB and the two LiDAR biomass indices (raw data, i.e., non-
spatially corrected, plot-level data) at individual sampling
events where large biomass samples were taken (i.e., GES15,
Yanlé6sub, and Yanl7).

3. Results

3.1. Growing Conditions and Summary of Data. The meteo-
rological conditions during the growing season for each
experiment are summarised in Table S1. The GES15 and
Yanl6 experiments had excellent conditions for growth as
related to the balance between reference evapotranspiration
and water supply; in contrast, the limited water supply for
Yanl7 was inadequate for good growth. The results from
the experiments are summarised for each measurement
event in Tables S2, S3, and S4 for GES15, Yanl6, and
Yanl7, respectively. Raw data (i.e., nonspatially corrected,
plot-level data) are summarised as mean, standard
deviation, and coeflicient of variation for each phenotype.
The mean CGRs were 0.16 (GES15), 0.14 (Yan16), and 0.12
(Yanl7) (t-ha™'-day™') and within the range of that
previously reported [4]. The higher mean CGRs attained
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for the GES15 and Yanl6 experiments are consistent with
their more favourable growing conditions, owing to greater
water supply.

3.2. Phenotypic Correlations at Individual Sampling Events.
The LiDAR biomass indices, 3DVI and 3DPI, were highly
correlated with destructive AGB for the majority of discrete
sampling events in the GES15 and Yan17 experiments, where
large biomass samples were taken (1.08 and 0.75 m?, respec-
tively). For GES15, the correlations between BLUPs ranged
from 0.52 (P < 0.05) to 0.86 (P <0.0001) (Figure 1(a)). For
Yan16, where LiIDAR biomass indices were compared to a
more conventional AGB sample size (0.3 m?), correlations
were not strong and ranged from 0.2 to 0.38 (P <0.001)
(Figure 1(b)). For Yanl7, the correlations ranged from 0.31
(P <0.05) to 0.76 (P <0.0001) (Figure 1(c)). Correlations
between NDVI and AGB for the Yanl6 experiment were
poor, ranging from -0.02 to 0.26 (P <0.05). Correlations
between NDVI and AGB ranged between 0.07 and 0.47
(P <0.01) for the Yan17 experiment.

The correlations at individual sampling events, from 60
plots within the Yanl6 experiment (Yanl6sub), between
AGB and the LiDAR biomass index, 3DPI, were high, rang-
ing from 0.79 (P <0.0001) to 0.85 (P < 0.0001) (Figure S2).
The correlations between AGB and 3DVI were not as high,
ranging from 0.51 (P<0.0001) to 0.75 (P <0.0001).
Correlations between NDVI and AGB ranged from 0.41
(P <0.01) to 0.66 (P < 0.0001).

For GES15, height was highly associated with both
LiDAR indices until 14 Oct (GS42), ranging from 0.73
(P<0.001) to 0.89 (P<0.0001) (Figure 1(a)). Thereafter,
the association was higher between height and 3DVI, than
between height and 3DPI. Prior to 23-Oct in the GES15
experiment, the associations between LAI and both LiDAR
indices were similar for a given event, ranging from 0.53
(P<0.05) to 0.83 (P<0.0001). However, from 23-Oct
(GS55) onwards, the association between LAI and 3DPI
was greater than the association between LAI and 3DVI. In
summary, from 23-Oct (GS55) onwards in the GES15 exper-
iment, LAI was more strongly associated with 3DPI than
3DVI and height was more strongly associated with 3DVI
than 3DPI.

For Yanl6, the association between height and both
LiDAR indices was similar and high for each event, ranging
from 0.56 (P < 0.0001) to 0.91 (P < 0.0001) (Figure 1(b)).

For Yanl7, height was more strongly associated with
3DVI than 3DPI for all sampling events. Conversely, GAI
and LAI were more strongly associated with 3DPI than
3DVI for all sampling events (Figure 1(c)).

For Yanl6sub, GAI and LAI were more strongly associ-
ated with 3DPI than 3DVI for all sampling events
(Figure S2). The association between height and both
LiDAR indices was similarly high for each event, ranging
from 0.59 (P < 0.0001) to 0.81 (P < 0.0001).

Intraclass correlations (ICCs), defined here as the corre-
lation between sampling events for a given phenotype,
followed a similar pattern across experiments and pheno-
types: typically highly significant for consecutive events and
of decreasing strength as the time between events increased
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FiGure 1: Phenotypic correlations, at individual sampling events, of the best linear unbiased predictors of genotype effects (BLUPs) for the
three experiments: (a) GES15, (b) Yan16, and (c) Yanl7. AGB: above-ground biomass; GAL: green area index; LAIL leaf area index; LIDAR
biomass indices (3D vegetation index (3DVI) and 3D profile index (3DPI)); NDVI: normalized difference vegetation index; LIDAR crop
height. For (a) GES15 and (c) Yanl7, the sampling date is indicated and the phenological growth stage is shown in parentheses. For (b)
Yan16, the phenological growth stage (GS) is indicated, and for AGB sampled at GS65, entries were sampled on the actual date they
reached anthesis (or within two days of); therefore, the lines were sampled on different dates. 3DVI, 3DPI, NDVI, and height were
interpolated between individual sampling events for the GS65 date of each entry.
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FIGURE 2: Repeatability estimates from the (a) GES15 and (b) Yan17 experiments for individual sampling events of above-ground biomass
(AGB), green area index (GAI) (Yanl7 only), leaf area index (LAI), the two LiDAR biomass indices (3D vegetation index (3DVI) and 3D
profile index (3DPI)), normalized difference vegetation index (NDVI) (Yanl7 only), and crop height derived from the LiDAR.

(refer to Figures S3, S4, and S5 for GES15, Yan16, and Yan17,
respectively). ICCs were notably high for 3DPI in the Yan16
experiment, ranging from 0.46 (P<0.0001) to 0.99
(P <0.0001). Conversely, the ICC was abnormally low
between Yanl7 events on 11-Sep and 17-Sep for 3DVI and
3DPI (0.00 and 0.02, respectively).

3.3. Linear Regression at Individual Sampling Events between
LiDAR and AGB. Linear regression analysis for raw data (i.e.,
nonspatially corrected, plot-level data) at individual sam-
pling events, where large biomass samples were taken,
between AGB and the two LiDAR biomass indices is shown
for GES15, Yanl6sub, and Yanl7 (Figure S6). Across the
three experiments, the slopes between 3DVI and AGB
ranged from 0.33 to 0.85 (mean 0.51) and the intercepts
ranged from -0.96 to 2.79 (mean 0.97). For 3DPI, across the
three experiments, the slopes ranged from 1.42 to 4.42
(mean 2.26) and the intercept ranged from 1.13 to 4.18
(mean 2.58). With the exception of 3DVI in GES15, the
intercepts generally increased chronologically with the
sampling events.

3.4. Phenotypic Repeatability Estimates at Individual
Sampling Events. For GES15, repeatability estimates for the
LiDAR biomass indices were at least equivalent to, and for
the majority of events greater than, those for AGB
(Figure 2(a)). For Yanl6 at GS31, repeatability estimates for
the LiDAR biomass indices and NDVI (0.88, 0.9, and 0.85
for 3DVI, 3DPI, and NDVI, respectively) were considerably
greater than those for AGB (0.36) (Table 1). Repeatability
estimates at GS65 were higher for the LIDAR biomass indices
(0.82 and 0.84 for 3DVI and 3DPI, respectively) and NDVI
(0.83) than AGB (0.6). For Yanl7, repeatability estimates
for the LiDAR indices were always greater than those for

TaBLE 1: Repeatability estimates from the Yanl6 experiment for
above-ground biomass (AGB), the two LiDAR biomass indices (3D
vegetation index (3DVI) and 3D profile index (3DPI)), normalized
difference vegetation index (NDVI), and crop height derived from
the LiDAR. The date of each sampling event is indicated as well as
the dates of phenological growth stages (GS) 31 and 45 (as attained
by 50% of entries). For 90% of the lines, GS65 ranged from 22-Sep
to 13-Oct (median GS65 date was 28-Sep). For AGB sampled at
GS65, entries were sampled on the actual date they reached anthesis
(or within two days of); therefore, the lines were sampled on
different dates and date is denoted “various.” Correspondingly, the
values of 3DVI, 3DPI, NDVI, and height were interpolated between
individual sampling events (i.e., 15-Sep, 25-Sep, 21-Oct, and 25-
Oct) for the GS65 date of each entry.

Date GS AGB 3DVI 3DPI NDVI Height
8-Aug 31 0.36 0.88 0.90 0.85 0.89
16-Aug — — 0.78 0.87 0.83 0.81
22-Aug — — 0.68 0.79 0.61 0.84
6-Sep 45 — 0.69 0.82 0.62 0.90
15-Sep — — 0.70 0.78 0.39 0.90
25-Sep — — 0.77 0.79 0.54 0.92
Various 65 0.60 0.82 0.84 0.83 0.94
21-Oct — — 0.73 0.66 0.66 0.91
25-Oct — — 0.66 0.63 0.63 0.91

AGB, which was zero for all events except the final event
on 9-Oct (Figure 2(b)). For NDVI, repeatability estimates
were zero on two out of the four sampling events and always
less than the LiDAR indices.

3.5. Analysis of Crop Growth Rate. For the GES15 experi-
ment, the correlations between AGB CGR and CGR derived
from the LiDAR biomass indices were 0.6 (P <0.001) and
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TaBLE 2: Repeatability estimates for crop growth rate (CGR denoted
A), between stem elongation (GS31) and anthesis (GS65), for above-
ground biomass (AGB) and the two LiDAR biomass indices (3D
vegetation index (3DVI) and 3D profile index (3DPI)). The three
experiments are denoted GES15, Yan16, and Yanl7.

Experiment A AGB A3DVI A 3DPI
GES15 0.45 0.57 0.78
Yanl6 0.31 0.78 0.81
Yanl7 0.39 0.93 0.34

0.76 (P<0.0001), for 3DVI and 3DPI, respectively
(Figure S7(a)). The CGR correlations were not as strong for
the Yan16 experiment: 0.12 and 0.38 (P < 0.0001), for 3DVI
and 3DPI, respectively (Figure S7(b)). For the Yanl7
experiment, the CGR correlations between AGB and the
LiDAR indices were 0.39 (P <0.05) and 0.45 (P <0.001),
for 3DVI and 3DPI, respectively (Figure S7(c)). Across all
three experiments, the correlation between 3DPI CGR and
AGB CGR was greater than that for 3DVL

The repeatability estimates of CGR for AGB and the two
LiDAR indices are shown in Table 2. For GES15, repeatabil-
ity estimates of CGR were appreciably greater for 3DVI
(0.57) and 3DPI (0.78) than for AGB (0.45). Similarly, for
the larger experiment, Yanl6, repeatability estimates of
CGR for 3DVI (0.78) and 3DPI (0.81) were more than two-
fold than those of AGB (0.31). For the Yanl7 experiment,
the repeatability estimate of CGR for 3DVI (0.93) was more
than twofold than that of 3DPI (0.34) and AGB (0.39).

4. Discussion

Across three experiments, contrasting in available water sup-
ply and comprising up to 98 wheat genotypes varying for
canopy architecture, concurrent measurements of LiDAR
and destructive AGB were made at several stages of develop-
ment from jointing to anthesis. The consistently high corre-
lations between the large biomass samples and the LIDAR
biomass indices provide confidence in the LiDAR indices as
effective surrogates for destructive AGB. These results accord
with a recent study comprising eight bread-wheat cultivars
grown across eight sites, where LiDAR-derived crop-
volume estimates were often significantly correlated with
AGB and broad-sense heritability estimates from LiDAR
were typically greater than those from AGB [32]. In our
experiments, the repeatability of the LIDAR biomass indices
at discrete events was at least similar to and often higher than
AGB, particularly under water limitation. The correlations
between calculated CGR for AGB and the LiDAR indices
were moderate to high and varied between experiments
(Figure S7). However, across all experiments, the
repeatability of the CGR derived from the LiDAR indices
was appreciably greater than that for AGB (Table 2), with
the exception of the 3DPI in the water-limited environment
of the Yanl7 experiment. Measurements of AGB and CGR
are laborious and time-consuming and the repeatability is
often low, more so on large experiments where it can take
several days for a team of workers to complete the process

of AGB sampling, drying, and weighing. In contrast, the
process of traversing an experiment with the Phenomobile
Lite and processing the data to derive the LIDAR biomass
indices, NDVI, and crop height for every plot can take as
little as one hour for an experiment comprising 250 plots.

4.1. High Repeatability Estimates from LiDAR Biomass
Indices. Both LIDAR biomass indices were highly repeatable
from stem elongation growth stage to anthesis, as shown
through the consistently high repeatability estimates
(Figure 2 and Table 1) and intraclass correlations between
consecutive events (Figures S3, S4, and S5). The
repeatability estimates for AGB were highest in GES15.
This is probably due to the sample size of 1.08 m?, a larger
sample size than typically used in prebreeding studies. For
example, a quadrat sample of 0.25 m” was described by [14]
and a similar quadrat size of 0.22 to 0.36 m*> was described
by [15]. In the Yanl16 experiment, the small quadrat size of
ca. 025m> for AGB resulted in low and moderate
repeatability estimates at GS31 (0.36) and GS65 (0.6)
(Table 1), respectively. These values are similar to
previously reported repeatability estimates for biomass
from a sample area of 0.4m?> [43] under fully irrigated
conditions, which ranged from 0.24 to 0.5 (measured 40
days after emergence and at anthesis plus seven days,
respectively). Under water limitation in the Yanl7
experiment described herein, despite using a large sample
size (0.75 m?), the repeatability estimates for AGB were low,
ranging from 0.0 to 0.27 (Figure 2(b)).

The repeatability estimates reported herein for the
LiDAR biomass indexes are similar in range to the predicted
AGB heritabilities reported by [44] (0.78 to 0.84) for an
experiment comprising 647 doubled haploid triticale lines
derived from four families. In the study of [44], AGB was
estimated using the “Breed Vision” platform [45] comprising
multiple optical sensors including three laser distance sen-
sors, two 3D-Time-of-Flight cameras, a hyperspectral imag-
ing system, and light curtains, used to avoid influence of
direct solar radiation. A multiple linear regression model
was used to “fuse” the sensor data and generate a biomass
prediction model. Similarly, Walter et al. [32] reported heri-
tabilities for LIDAR-derived crop volume estimates ranging
from 0.32 to 0.90. These heritabilities were typically greater
than those for AGB, which ranged from 0.12 to 0.78. The
high repeatability for nondestructive measures of AGB,
reported in both the present study and [32, 44], demonstrates
the utility of LiDAR-based platforms for potential use in
plot-scale phenotyping within a genetics study or within a
plant breeding program.

4.2. Analysis of the Difference between the LiDAR Biomass
Indices: 3DVI and 3DPI. The LiDAR biomass indices repre-
sent two different approaches for estimating AGB from the
LiDAR point cloud: a voxel-based method (3D voxel index
(3DVI)) and a profile-based method (3D profile index
(3DPI)) [see 17]. The association between height, LAI/GAI,
and the respective LIDAR biomass indices provides a greater
understanding of the differences between the LiIDAR indices
and their relative performance across the three experiments



herein. In our experiments, the profile-based method, 3DPI,
showed a greater dependence on LAI and GAI than 3DVI.
Conversely, the voxel-based method, 3DVI, showed a greater
dependence on height than 3DPIL.

In Yan16, the growing conditions were conducive to high
biomass and leaf area, and the 3DPI outperformed the 3DVTI:
the associations between AGB were greater for 3DPI than
3DVI (Figure S6) and the repeatability estimates were
higher for 3DPI than 3DVI for both the discrete sampling
events, with the exception of the final two events (Table 1),
and CGR (Table 2). The superior performance of the 3DPI
under favourable growth conditions may be due to
saturation of the 3DVI under high biomass, whereby all the
voxels fill up resulting in lower granularity. In contrast,
under the water-limited conditions in the Yanl7
experiment, 3DVI performed better than 3DPI in terms of
repeatability estimates, which were greater for 3DVI than
3DPI for both the discrete sampling events (Figure 2(b))
and CGR (Table 2). However, the associations between
AGB were appreciably greater for 3DVI than 3DPI for only
two of the four sampling events (Figure 1(c)). Nevertheless,
the 3DVI generally performed better than the 3DPI under
the water-limited conditions in Yan17. This may be due to
the 3DVI having a lower dependence on leaf area compared
to the 3DPIL

Linear regression analysis of the raw data at individual
sampling events between the large AGB samples and either
3DVI or 3DPI showed that although these variables were
highly correlated, the regression parameters varied across
sampling events. In particular, the intercept with AGB typi-
cally increased chronologically with the sampling events.
Similarly, although Walter et al. [32] reported good associa-
tions between LiDAR-derived volume estimates of the crop
canopy and AGB, the regression parameters appeared to vary
across sampling events according to the scatter plots pre-
sented (refer to Figure 7 in [32], the regression parameters
were not reported). Therefore, in the absence of stable inter-
cepts and slopes between AGB and LiDAR across sampling
events (reported herein and in [32]), one cannot expect a uni-
versal function to accurately predict AGB from LiDAR across
multiple sites, even for one species (wheat). It is noted how-
ever that the LIDAR indices used herein and in [32] directly
arise from LiDAR metrics applied to the LiDAR point cloud.
An alternative approach involves the application of machine
learning to directly classify plant organs and features within
the canopy, including the ground [46]. The latter approach
may improve the accuracy of nondestructive estimates of
AGB and further work is required.

4.3. Application to Prebreeding Research and Breeding. This
study demonstrates the utility of LIDAR mounted on the
Phenomobile Lite as a tool for nondestructive, reliable, and
repeatable quantification of both AGB and CGR from stem
elongation to anthesis. This is particularly relevant to wheat
improvement studies, where increased preanthesis CGR has
been associated with genetic progress in wheat grain yield,
establishment of grain number, and potential grain size
[3, 7, 8]. The nondestructive LiDAR method described
herein is ideally suited to screening large experiments for
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preanthesis CGR; a trait that is otherwise difficult to mea-
sure in large experiments.

LiDAR estimation of AGB and CGR could assist breeders
with discarding poor performing lines. In early generations,
breeders are not confident selecting the top 10% performing
lines, so focus instead on discarding poor performers. An
indirect estimate of poor performance using LiDAR could
assist with discarding poor lines and thereby enable an
increased selection intensity based on discarding a greater
number of poor performers. However, there is evidence sug-
gesting that a bordered plot is required for reliable estimates
of growth-related traits [47], including CGR, to overcome the
confounding effects of competition for resources (light,
water, and nutrients) that are evident in the spaced rows or
unbordered plots typically used in breeder’s nurseries. There
is the possibility, therefore, for selection in spaced rows based
on CGR to favour more competitive lines. Further work is
required to test that genotypic variation in CGR measured
on the short rows typically used in breeder’s nurseries is reli-
ably expressed in full plots and not confounded by edge
effects. Nevertheless, CGR estimates on bordered plots at lat-
ter stages of a breeding program, in addition to yield mea-
surements, could improve genomic selection models and
assist with selection of parents for crossing.

Plot size in breeder’s trials is typically smaller than that
used in this study (e.g., [47]), and based on a walking speed
of 5km/h, the Phenomobile Lite system presented herein
could traverse ca. 2,500 plots of 4 m” size per hour. Neverthe-
less, the Phenomobile Lite platform in its present form may
not be amenable for use by breeders and several technical
improvements to the Phenomobile Lite system could assist
uptake by breeders, including mounting the LIDAR on a trac-
tor [48, 49], using a smaller and lighter LiDAR on an
unmanned aerial vehicle (UAV) and use of GPS georeferen-
cing to increase data processing speed, and travelling at right
angle to the direction of seeding in order to scan two plots
simultaneously. The latter point was recently highlighted
[49]: traversing the plots in the direction of seeding (in
the case of the Phenomobile Lite) greatly increases the
travel distance when compared to systems that travel at
right angle to the direction of seeding and scan two plots
simultaneously (refer to Figures 2 and 6 in 49). Although
the former may scan the plot more completely than the
latter, thereby resulting in data of superior quality, the dif-
ference in travel distance is significant (nearly eightfold in
the example presented by 49).

5. Conclusions

Preanthesis above-ground biomass (AGB) and crop growth
rate (CGR) have been associated with genotypic variation
in wheat grain yield potential and therefore identified for
phenotypic selection in genetics studies or in plant breeding
trials. However, destructive sampling of these traits is labori-
ous and often the measurement repeatability is low. Reliable,
repeatable, and nondestructive methods for measuring AGB
and CGR are required. LIDAR mounted on the Phenomo-
bile Lite provides a repeatable, nondestructive, and high-
throughput estimate of AGB and CGR. Herein, the use
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of the LiDAR indices as effective surrogates for AGB was
supported by high phenotypic correlations at discrete sam-
pling events between the AGB samples and the LiDAR-
derived biomass indices. However, the regression parame-
ters between AGB and the LiDAR indices varied across
sampling events and at this stage are not sufficiently
robust for universal predication of absolute AGB from
LiDAR. Nevertheless, repeatability estimates from either
LiDAR index were consistently higher than those from
AGB, both at discrete time points and when CGR was cal-
culated. This study provides promising support for the
reliable use of ground-based LiDAR, as a surrogate mea-
sure of AGB and CGR, for screening germplasm in
research and wheat breeding.
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Supplementary Materials

Figure S1: Phenomobile Lite comprising LIDAR, RGB cam-
era, GreenSeeker R, and tablet mounted on an aluminium
frame with adjustable wheel spacing to accommodate differ-
ent plot widths (1.75-2.2 m) and ground clearance of canopy
heights up to 1.5m. Figure S2: correlations, at individual
sampling events, from 60 plots within the Yan16 experiment
(denoted Yanl6sub) between above-ground biomass (AGB),
green area index (GAI), leaf area index (LAI), the two LiDAR
biomass indices (3D vegetation index (3DVI) and 3D profile
index (3DPI)), normalized difference vegetation index
(NDVI), and crop height derived from the LiDAR. Figure
S3: intraclass correlations (i.e., between sampling events) of
the best linear unbiased predictors of genotype effects
(BLUPs) for the GES15 experiment between above-ground
biomass (AGB), the two LiDAR biomass indices (3D vegeta-
tion index (3DVI) and 3D profile index (3DPI)), and crop
height derived from the LiDAR. The date of each sampling
event is indicated. Figure S4: intraclass correlations (i.e.,
between sampling events) of the best linear unbiased predic-
tors of genotype effects (BLUPs) for the Yan16 experiment
between the two LiDAR biomass indices (3D vegetation
index (3DVI) and 3D profile index (3DPI)), normalized dif-
ference vegetation index (NDVI), and crop height derived
from the LiDAR. The date of each sampling event is indi-
cated. Figure S5: intraclass correlations (i.e., between sam-
pling events) of the best linear unbiased predictors of
genotype effects (BLUPs) for the Yan17 experiment between
the two LiDAR biomass indices (3D vegetation index (3DVTI)
and 3D profile index (3DPI)), normalized difference vegeta-
tion index (NDVI), and crop height derived from the LIDAR.
The date of each sampling event is indicated. Figure S6: linear
regression analysis of nonspatially corrected, plot-level data
at individual sampling events between above-ground bio-
mass (AGB) and the two LiDAR biomass indices: 3D vegeta-
tion index (3DVI, left panels) and 3D profile index (3DPI,
right panels). Figure S7: phenotypic correlations of the best
linear unbiased predictors of genotype effects (BLUPs) for
crop growth rate (CGR denoted A) from above-ground bio-
mass (AGB), LiDAR 3D vegetation index (3DVI), and
LiDAR 3D profile index (3DPI). CGR between stem elonga-
tion and anthesis was calculated as the difference in AGB
divided by the duration of each period for each genotype.
Table 1: meteorological conditions during the growing sea-
son for the three experiments, denoted GES15, Yan16, and
Yanl17. Table 2: summary of data from experiment. Mean
(M), standard deviation (SD), and coefficient of variation
(CV) for above-ground biomass (AGB), leaf area index
(LAI), 3D vegetation index (3DVI), 3D profile index
(3DPI), crop height, and crop growth rate (CGR). Table 3:
summary of data from Yanl6 experiment. Mean (M), stan-
dard deviation (SD), and coefficient of variation (CV) for
above-ground biomass (AGB), 3D vegetation index (3DVI),
3D profile index (3DPI), normalized difference vegetation
index (NDVI), crop height, and crop growth rate (CGR).
Table 4: summary of data from Yanl7 experiment. Mean
(M), standard deviation (SD), and coefficient of variation
(CV) for above-ground biomass (AGB), green area index
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(GAI), leaf area index (LAI), 3D vegetation index (3DVI), 3D
profile index (3DPI), normalized difference vegetation index
(NDVI), crop height, and crop growth rate (CGR).
(Supplementary Materials)
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