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Root crown phenotyping measures the top portion of crop root systems and can be used for marker-assisted breeding, genetic
mapping, and understanding how roots influence soil resource acquisition. Several imaging protocols and image analysis
programs exist, but they are not optimized for high-throughput, repeatable, and robust root crown phenotyping. The
RhizoVision Crown platform integrates an imaging unit, image capture software, and image analysis software that are optimized
for reliable extraction of measurements from large numbers of root crowns. The hardware platform utilizes a backlight and a
monochrome machine vision camera to capture root crown silhouettes. The RhizoVision Imager and RhizoVision Analyzer are
free, open-source software that streamline image capture and image analysis with intuitive graphical user interfaces. The
RhizoVision Analyzer was physically validated using copper wire, and features were extensively validated using 10,464 ground-
truth simulated images of dicot and monocot root systems. This platform was then used to phenotype soybean and wheat root
crowns. A total of 2,799 soybean (Glycine max) root crowns of 187 lines and 1,753 wheat (Triticum aestivum) root crowns of
186 lines were phenotyped. Principal component analysis indicated similar correlations among features in both species. The
maximum heritability was 0.74 in soybean and 0.22 in wheat, indicating that differences in species and populations need to be
considered. The integrated RhizoVision Crown platform facilitates high-throughput phenotyping of crop root crowns and sets a
standard by which open plant phenotyping platforms can be benchmarked.

1. Introduction

Roots serve as the interface between the plant and the com-
plex soil environment with key functions of water and nutri-
ent extraction from soils [1, 2]. Root system architecture
(RSA) refers to the shape and spatial arrangement of root
systems within the soil, which plays an important role in
plant fitness, crop performance, and agricultural productiv-
ity [1, 3, 4]. RSA is shaped by the interactions between
genetic and environmental components and influences the
total volume of soil that roots can explore [3]. Many root
phenes (or elemental units of phenotype [4–6]) shape the
final RSA, including the number, length, growth angle, elon-

gation rate, diameter, and branching of axial and lateral
roots [7]. Understanding the contribution of RSA phenes
to crop performance is of key importance in food security
and for breeding of more productive and resilient varieties
in a changing environment.

Because roots are hidden underground and require con-
siderable effort to characterize, research on plant roots lags
behind that of the aboveground organs [8], and the genetic
and functional basis of RSA remains obscured [9]. Phenotyp-
ing is a major bottleneck in research, and a lack of efficient
methods for collecting root phenotypic data is limiting prog-
ress in using RSA for genetic studies and breeding for root
ideotypes [10, 11]. In recent years, there has been a shift to
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image-based phenotyping for enabling relatively high
throughput and accurate measurements of roots. Many of
the platforms use 2D imaging with cameras and involve the
use of seedlings on agar plates, germination paper, or fabric
cloth in bins [11]. Despite the usefulness of controlling envi-
ronmental parameters for characterization of root pheno-
types, studies of roots of field-grown plants better represent
the agricultural systems in which they ultimately grow.

Weaver and colleagues [12, 13] pioneered methods for
excavating, drawing, and photographing root systems that
have been widely used for more than half a century [14].
These classical methods were since modified [15] with the
use of water to remove soil particles from the root systems
on a large scale and the use of high pressure air to penetrate
soil pores while leaving roots intact [16]. Hydropneumatic
root elutriation was developed by Smucker et al. [17] to
provide a rapid and reproducible approach for separating
roots from soil of field-collected soil core samples with min-
imal damage. Traditional excavation methods are most
suited for trees and shrubs as the root system of wooden
species is generally stronger and more resistant to breaking
than the finer roots of grasses or annual crops [14]. Other
field root phenotyping methods include minirhizotrons
and soil coring, which both require a large amount of phys-
ical labor and set-up time [14, 18, 19]. More recently, non-
destructive root phenotyping methods such as ground
penetrating radar and electrical resistance tomography have
shown promise; however, both techniques only provide
indirect assessments of root length, do not provide RSA fea-
tures, and have not been shown to be ready for reliable,
large-scale use [20, 21].

Over the past 10 years, root crown phenotyping [22] has
emerged as one of the more common field-based root pheno-
typing methods and is characterized by excavation of the top
portion of the root system, removal of soil, and measure-
ments, by a variety of means. The definition of root crown
as the top portion of the root system in this research is
extended from the earlier use of this terminology which
refers to the site where the root system transitions to the
shoot [23]. The term “root crown” should not be confused
with “crown root,” which refers to belowground nodal roots.
Root crown phenes, such as nodal root number [4, 24, 25]
and growth angle [25–28], have been widely reported to cor-
relate with crop aboveground biomass, nutrient content, or
grain yield. The work of Grift et al. [29] may be the earliest
published example of root crown phenotyping in a high-
throughput capacity. Root crown phenotyping was widely
popularized as “shovelomics” in the work of Trachsel et al.
[30] using visual scoring. While the term “shovelomics” is
popular, the extent of its definition is not clear and debate
exists whether it only refers to methods based on root crown
washing and visual scoring in maize (Zea mays L.) or to other
protocols. Therefore, “root crown phenotyping” is proposed
as less ambiguous and more broadly applicable, as defined
above. Root crown phenotyping has been used to enhance
the understanding of soil resource acquisition by roots of
soybean (Glycine max L.), common bean (Phaseolus vulgaris
L.), cowpea (Vigna unguiculata L.), wheat (Triticum aesti-
vum L.), and maize [28, 30–36].

In order to standardize measurements and increase
throughput, image-based phenotyping of crop root crowns
has become the standard procedure. The unique steps of
image-based phenotyping are acquiring and analyzing the
image, which are of equal importance with regard to creating
a reproducible and reliable protocol. The first example of
image-based root crown phenotyping used a custom imaging
booth with software to control vision cameras and conduct
image analysis implemented in MATLAB that provided two
measures, fractal dimension, and top root angle [29]. The
Digital Imaging of Root Traits (DIRT) platform attempted
to relax imaging requirements by allowing use of any con-
sumer camera with roots generally placed on a dark back-
ground in less-controlled lighting conditions and currently
focuses on a free cloud-based image analysis pipeline, though
a Linux installation is possible [10, 37]. The cloud-based
platform of DIRT requires uploading potentially thousands
of root images, which is time consuming, and the less-
controlled imaging protocol can lead to segmentation fail-
ures. The Root Estimator for Shovelomics Traits (REST)
platform included an imaging “tent” to provide more uni-
form lighting, a DSLR consumer camera controlled using
the manufacturer’s software, and a MATLAB executable
for image analysis but does not extract root length [32].
The Multi-Perspective Imaging Platform (M-PIP) includes
five point-and-shoot cameras along a 90° arc in an imag-
ing box, command line camera control software for Linux,
and MATLAB scripts for image analysis [38]. These plat-
forms have advanced the field of root crown phenotyping,
but advances can still be made to increase access to these
technologies and to optimize imaging, image analysis, and
data processing.

The aim of this study was to develop a phenotyping plat-
form for both high-throughput image acquisition and image
analysis of root crowns from the field to address these gaps.
The imaging hardware was designed to be ergonomic, porta-
ble, reproducible, and affordable. The imaging software was
designed for rapid plant phenotyping and usability and to
facilitate downstream image and data analysis. The image
analysis software was designed to process images quickly,
run reliably, and analyze in an automated batch mode once
initial settings are provided. The imaging software and hard-
ware were tested by acquiring thousands of root crown
images in two environments, the image analysis software
was validated using ground-truth data based on simulated
root system images, and the integrated platform was vali-
dated for correct physical units by imaging copper wires
and further tested by phenotyping wheat and soybean root
crowns. Together, these developments represent an inte-
grated solution for root crown phenotyping.

2. Materials and Methods

2.1. Experimental Design. In designing and validating a new
phenotyping platform for root crowns, several related tasks
and experiments were conducted (Figure 1). For validation
of the image analysis software RhizoVision Analyzer, known
physical and simulated calibration images were analyzed.
Then, in order to test the hardware platform, imaging
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software, and analysis software for root crown phenotyping,
root crowns for a soybean population in Missouri and a
wheat population in Oklahoma were excavated and imaged
using the RhizoVision hardware platform and Imager. These
experiments are discussed in detail below.

2.2. RhizoVision Crown Hardware. The RhizoVision Crown
hardware platform (Figure 2(a)) is a backlit imaging box
designed to produce near binary images, where the back-
ground is near white and the foreground (root crown) is a
near black silhouette. This is achieved by use of a 61 cm ×
61 cm LED edge lit flat panel light (Anten, 40 watts, 6000K
light color) affixed with epoxy to the back of an imaging
box. The imaging box is constructed from T-slotted alumi-
num profiles (80/20 Inc., Columbia City, IN) that were
assembled to make a box measuring 65:5 cm × 65:5 cm ×
91:4 cm. Foamed black PVC panels were custom cut (TAP
Plastics, Stockton, CA) and placed between profiles to isolate
the interior from outside light. A root crown holder was con-
structed by attaching a spring clamp to the bottom of a
foamed PVC panel measuring 22:86 cm × 30:48 cm. On the
top of the root holder panel, a screen door handle was
attached to assist with the placement and removal of the root
holder on the instrument. Detailed images, a schematic plan,
and the part list for the aluminum frame are available as Sup-
plementary Material 1. A root crown is clamped onto the

holder, and the holder panel is placed in an indentation
designed into the top of the imaging box such that root
crowns are consistently placed at the desired position. At
one side of the imaging box is the LED panel, and on the
other is a CMOS sensor monochromatic vision camera (Bas-
ler acA3800-um, Graftek Imaging, Inc., Austin, TX) using a
12mm focal length lens (Edmund Optics 33-303, Graftek
Imaging, Inc., Austin, TX). This camera faces the light panel
and is focused on the root crown. The camera is connected
to a laptop computer USB 3.0 port using a USB 3.0 cable
(Micro-B male to A male connectors). For the recom-
mended barcode mode, a USB barcode scanner was also
connected to the laptop (Tautronics, Fremont, CA). The
total cost of this platform was approximately $1,200 USD
at the time of publication. The imaging software is described
in the following section.

2.3. RhizoVision Imager. The imaging hardware is controlled
by the RhizoVision Imager (Figure 2(b)). The software is
open-source and can be downloaded for free from 10.5281/
zenodo.2585881 (for x86_64 processor). The program can
connect to multiple Basler USB 3.0 vision cameras using
the Basler Pylon SDK to send commands from the laptop
to the camera, capture images, and transfer image data from
the camera to the laptop. A USB 3.0 cable is used both to
transfer information and to supply power to the camera.
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Figure 1: The experimental design of this study to design and validate the RhizoVision Crown platform for root crown phenotyping included
constructing a hardware platform, developing a software for imaging, and developing a software for image analysis. The image analysis was
validated for root measurements using simulated monocot and dicot images. The combined platform was validated for accuracy of physical
measurements by imaging copper wires of known diameter. Finally, root crown phenotyping was tested using a soybean experiment in
Missouri and a wheat experiment in Oklahoma.
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For each camera, the parameters Gain, Gamma, and Expo-
sure Time can be changed depending on experimental
needs (Figure 2(b)). Using the lens mounted on the camera,
the aperture and focus of the lens can be modified. In order
to account for the three-dimensional shape of root crowns,
small aperature settings with deeper depths of field are
recommended.

The program starts with a live view for a connected cam-
era. If multiple cameras are connected, the live view for each
can be changed in the View menu. The live view can be
zoomed in and out to view a specific area in the image. To
start capturing images from the connected cameras, a direc-
tory location needs to be specified in which to save the
images. For single shots, the user may enter an image file
name. File names of all the captured images are appended
by the camera number and by the number of times the image
was taken with the same name and camera number. This
ensures that the images are not overwritten and allows for
multiple subsamples of the same biological replicate to be
acquired using the same identification.

The program also includes a barcode mode for triggering
image acquisition and designating file names. A barcode
reader is automatically detected when connected by the user.
After selecting the barcode mode (“Enable barcode reader for
imaging”), scanning a barcode will acquire the image and
save with a file name that includes the identification encoded
by the barcode and appended with the camera and picture
numbers. The program has a log window, where all the
events are logged for review. This includes logging when a
new image is captured, camera devices are refreshed, or a
barcode scanner is attached. The camera settings can be
saved as profiles in the program, which may then be reused
in later experiments or modified with a text editor. The
images can be saved as .BMP, .JPEG, .PNG, or .TIFF files.
The RhizoVision Imager was implemented in C++ using

OpenCV and uses the Basler Pylon SDK, and the user
interface was developed using Qt, a cross-platform GUI
toolkit. The program depends on the freely available Pylon
runtime from the camera manufacturer. The RhizoVision
Imager software is an open-source software with a modified
GPL license, designed for Windows 10, and does not
require installation.

2.4. RhizoVision Analyzer. The RhizoVision Analyzer
(Figure 3(a)) was designed to quickly analyze the images
acquired using the RhizoVision Crown platform and the
Imager software. The Analyzer is open-source with a mod-
ified GPL license and can be downloaded for free from 10
.5281/zenodo.2585891 (for x86_64 processors). The overall
goal in the design of the RhizoVision Analyzer was to cre-
ate a simple-to-use and robust program that batch pro-
cesses a folder containing root crown images and outputs
a data file with the measures for each sample in a form con-
venient for data analysis. A total of 27 phenes are extracted
from each input image, which are stored in a CSV text file.
The Analyzer has an option to output segmented images
(Figure 3(b)) as well as processed images on which visual
depictions of the extracted features are drawn on the seg-
mented image (Figure 3(c)). The program also stores a sep-
arate metadata file in CSV text format, which contains the
user defined options.

Coupled with the optimized image acquisition using the
hardware platform, segmentation of the root crown images
from the background requires only thresholding of the
greyscale values for each pixel with minimal loss of data
(Figure 4(b)). Thresholded (binary) or greyscale images from
other platforms may also be used. The input image may have
irregular edges that lead to nonexistent skeletal structures
being created (Figure 4(c)). In order to address this, the edges
of the input image are smoothed using the Ramer-Douglas-

(a) (b)

Figure 2: RhizoVison Crown hardware and software for root crown imaging. Root crowns are placed into the imaging unit (a) with a backlit
panel for framing the root crown and a laptop connected to a vision camera and USB barcode scanner. The vision camera is controlled using
the software RhizoVison Imager (b) which has a user interface for controlling camera settings, provision of live camera view, and image
export settings.
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Peucker algorithm [39, 40]. According to the algorithm, the
contour is simplified into piecewise connected straight lines
where each straight line is an approximation of the original
contour points within a specified pixel distance threshold
from the line approximation. The algorithm starts by con-
necting the start and end points of a contour with a straight
line and computes the maximum distance between the pixels
on the contour to the line. If this distance is more than the
threshold of 2 pixels, then the line is split at that pixel where
the maximum distance is found and a piecewise connection
of straight line is created. The algorithm then proceeds
recursively as described above for each piecewise straight
line. In the RhizoVision Analyzer, the distance threshold
parameter was set to be 2 pixels because, given the object size
using this hardware configuration, the irregular edges
spanned about 2 pixels and simplifying the contours using
this threshold did not result in great changes in the seg-
mented image but led to substantial reduction in the number
of erroneous lateral roots. Any decrease in the threshold may
increase nonexistent lateral roots, and any increase may lead

to oversimplification of the root topology that adversely
affects the extracted phenes. After this procedure, the overall
shape of a root segment does not change substantially, but
the skeletal structure is simpler and has fewer nonexistent
lateral roots (Figures 4(d)–4(f)). This procedure will not lead
to a completely error-free skeleton in all situations, which is
a common problem across all root image analysis software,
and no manual correction is possible. Pruning of these extra
short root skeletal segments is another option to be explored
in the future.

On each row of the segmented and smoothed image, a
horizontal line scanning operation is performed from the left
to the right side of the image, where each pixel transition
from background to foreground (plant root pixel) is counted.
These pixel transitions form a plant root count profile along
the depth of the root crown, from which the median and the
maximum number of roots are determined (Figure 5). Since
the root crown is hung vertically using the clamp at the top,
root segments will be under the influence of gravity and less
rigid roots may fully collapse, which will prevent accurate

(a)

(b)

(c)

(b)

Figure 3: RhizoVision Analyzer for automated batch analysis of root crown images (a). The software has a user interface (a) for selecting
input and output folders, choosing image threshold levels before analysis, classifying root diameter ranges, and saving options. The
segmented image (b) and feature image (c) are optionally generated by the RhizoVision Analyzer. The feature image shows a blue convex
polygon that is fit around the entire root system for extraction of the convex area. The boundary and skeletal pixels are shown in red and
the distance transform is shown in green. The “holes” or the background image patches that were disconnected due to the overlapping of
foreground pixels are randomly colored for distinction.
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counting. Roots may also be lost during excavation and
washing. However, as the purpose of phenotyping is gener-
ally uncovering relative differences among genotypes, this
method is sufficient while imperfect. While the number of
roots in each row of the image may be susceptible to the
slight angle variations at which the root is held, by determin-
ing the median and maximum of the number of roots, the
extracted phenes are ensured to be relatively stable. The net-
work area of the image is determined by counting the total
number of plant root pixels in the image. Further, a convex
polygon is fit on the image and the area is noted as a convex
area.

A precise distance transform is computed on the line
smoothed image in order to identify the medial axis. The dis-
tance transform [41] of an image is the map of distance of
each pixel to the nearest background pixel. The distance met-
ric used here is the Euclidean distance metric (Figure 5(a)).
The medial axis is a set of loci on the distance transform that
are equidistant from at least two background pixels and is
identified from the ridges formed on the distance transform
map (Figure 5(a)). In order to make a fully connected skeletal
structure, additional pixels are added using the connectivity

preserving condition from the Guo-Hall thinning algorithm
[42, 43] and the end points of the ridges are connected using
the steepest accent algorithm. The contours of the segmented
image are identified for determining the perimeter of the
plant root structure.

Using the generated skeletal structure, topological prop-
erties such as the branch points and end points are identified
(Figure 5(b)). The skeletal pixels connecting one branch
point to another branch or end point are identified as root
segments. This part was then validated to ensure that the root
skeletal structure reconstructed from the root segments
replicates the original skeletal structure. Rules were also
designed so that the end points were used only once for any
root segment, and each branch point is used three times
either as a start or end point of a root segment. The number
of end points is noted as the number of root tips. For each
skeletal pixel in every root segment, a 40 × 40 neighborhood
window is selected. Within each window, the slope of the
principal component of the skeletal pixels is computed and
the average angle is determined using these slopes. The win-
dow size of 40 × 40 is selected as it is large enough so that
smaller differences in the angle are ignored giving more

Irregular edges

(c)(a) (b)

(f)(d) (e)

Figure 4: Example of how the RhizoVision Analyzer skeletonizes root crown images before extraction of measurements. A small region of
interest is selected (a) and magnified (b) for demonstration purposes. The thresholded image of the region of interest shows that due to
the irregular edges, the generated skeletal structure contains lateral roots that are nonexistent (shown in blue) (c). The skeletal structure of
the root is then smoothed to reduce falsely classified lateral roots before line smoothing operation (d). During the line smoothing
operation, pixels are either added (shown in red) or deleted (shown in blue) (e). Finally, the skeletal structure of the root after the line
smoothing operation has the falsely classified lateral roots removed (f).
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importance to larger changes in direction. Using these angles,
the numbers of shallow-angled, medium-angled, and steep-
roots in an image are noted as histogram bins, by grouping
the computed angles in ranges of 0° to 30°, 30° to 60°, and
60° to 90° from the horizontal, respectively. This histogram
is normalized and the bins are named as shallow, medium,

and steep angle frequencies. Further, an average of all the
angles is computed and noted as average root orientation.
A similar normalized histogram is constructed using the skel-
etal pixels on the root diameter. The three histogram bins are
allowed for the user to be specified from the user interface of
the RhizoVision Analyzer. These bins are noted as fine,
medium, and coarse diameter frequencies. Also, the average,
median, and maximum diameters are identified from the
diameters of all the skeletal pixels. The plant root area below
the pixel having the maximum diameter is noted as the lower
root area. The segmented and edge-smoothed image is color
inverted, connected component analysis is performed to
count the number of holes, and an average of all the hole
areas is computed to determine the average hole size.
Table 1 briefly describes the list of features extracted from
the root crown images.

The RhizoVision Analyzer is implemented in C++ using
the OpenCV library. The user interface of the program is
developed in Qt, a cross-platform GUI toolkit. The program
can utilize a CPU’s vectorization facilities using Intel’s AVX
2.0 technology, to execute the algorithms faster on newer
computers. All pixel-based measures are converted to appro-
priate physical units if the user supplies the number of pixels
per millimeter before analysis. Depending on the exact com-
puter system, the Analyzer can be expected to routinely pro-
cess each image in a fraction of a second.

2.5. Validation Using Copper Wire and Simulated Root
Systems. In order to validate the ability of the RhizoVision
Analyzer to correctly determine physical measurement units
from pixel-based analysis of images, copper wires of different
diameter gauges were imaged and analyzed. The gauges
(American Wire Gauge, AWG) used were 10, 16, 22, 28,
and 32 which represent a diameter range of 0.20–2.57mm.
Two lengths of wire were used for each gauge for a total of
ten. The ground-truth diameter was measured using a
micrometer. The ten wires were imaged individually using
the RhizoVision Crown hardware. The pixel to millimeter
conversion was determined from the manually determined
pixel width of a coin envelope imaged with the hardware plat-
form and which was manually measured using a micrometer.
Thesewire imageswere processed using theRhizoVisionAna-
lyzer with 13.63866 used to scale from pixels to millimeters.

To validate the diverse root measures generated by the
RhizoVision Analyzer software, 10,464 simulated images of
dicot and monocot root systems from Lobet et al. [44] were
processed (total elapsed time of 1 hour 7mins on an Intel
processor with 8 cores, 3.7GHz of clock frequency, and
16GB of RAM memory). Lobet et al. [44] define the
ground-truth data as the known measurements from the
three-dimensional simulations and the descriptor data as
those derived from projected 2D images using RIA-J image
analysis. Common features from the RhizoVision Analyzer
and RIA-J include length, area, tip number, width, and depth.

2.6. Field Sites and Root Crown Phenotyping

2.6.1. Phenotyping Soybeans in Missouri. A F5-derived soy-
bean recombinant inbred line (RIL) population derived from

Skeletal pixel
Pixel showing distance map

(a)

Skeletal pixel
End point
Branch point
Point showing
direction change

(b)

Root crown pixel
Pixel transition from background to foreground
Pixel transition count in each row

(c)

Figure 5: Example of how the RhizoVision Analyzer extracts
quantitative features from the root crown image. For each pixel
within the root crown skeleton, the corresponding value from the
distance map is used to estimate root diameter (a). Topological
information is extracted from the skeletal structure such as branch
points (shown in blue), root direction change (shown in orange),
and end points (shown in green) (b). Finally, for the root counting
procedure (c), a pixel transition is marked in a horizontal line
scanning operation (shown in blue) for each row and is recorded
for counting the number of roots in that row (shown in red). This
profile is then sorted to extract the median and maximum number
of roots.
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a cross of PI398823 × PI567758 was planted at the Bradford
Research Center near Columbia, MO, on a Mexico silt loam
soil (fine, smectitic, and mesic Aeric Vertic Epiaqualf). The
parental lines of this population were identified to differ in
root crown architecture based on the characterization of a
soybean diversity panel prior to the creation or use of this
platform (F.B. Fritschi, unpublished). Preplanting soil tests
indicated that no P or K fertilizer application was necessary.
Prior to sowing, the seedbed was prepared by one pass with
a disc to approximately 0.15m depth, which was followed
by a pass with a harrow. The 185 RILs and two parental
lines were sown in a randomized complete block design
with three replications on 14 May 2017 at a density of
344,000 plants ha-1 in single 3m long rows with a row spac-
ing of 0.76m. Weed control consisted of a preplant burn-
down application of glyphosate (0.73 kg ha-1 a.i.) and post-
planting applications of acetochlor (0.6 kg ha-1 a.i.), benta-
zone (0.27 kg ha-1 a.i.), and clethodim (0.03 kg ha-1 a.i.), and
these herbicide applications were supplemented by manual

weeding as needed. Additionally, two applications of zeta-
cypermethrin S-cyano (0.1 kg ha-1 a.i.) were conducted to
control insects.

Five root crowns for each plot were excavated at the
beginning of the R6 stage the week of 21 September 2017
using a shovel. For each focal plant, the shovel was inserted
such that the width of the blade was parallel to the row and
midway between two rows on each side of the plant. The
blade was inserted as deeply as possible, and on the second
insertion, the shovel was leveraged in order to pry up the
plant. The soil was very loose so the root crowns only needed
shaking to remove the majority of soil and were not washed.
The root crowns were imaged using the RhizoVision Crown
in the field using a gasoline electric generator for power. The
lens of the camera was placed at a working distance of 56 cm
from the center of the root crown (the bottom of the clamp)
for a resolution of 12.7787 pixels per mm. The lens aperture
was set to f/11.0 to maximize the depth of field to accommo-
date the 3D root crown. The exposure time was set to 14ms

Table 1: The list of 27 features extracted from each root crown image by the RhizoVision Analyzer.

Features extracted Description

Median and maximum number of
roots

The number of roots is counted by performing horizontal line scans from left to right in each row
through the segmented image. In each of the line scan, pixel value transitions are checked from the
previous pixel value to the current pixel value on its right side. If the current pixel value changes from 0
to 1, a root is recorded. The number of roots is recorded from each row of the segmented image, and the

median and maximum numbers of roots are determined from these values.

Number of root tips Count of the total number of tip pixels in the skeletonized image.

Total root length Computed by determining the total Euclidean distance of medial axis pixels in the skeletonized image.

Depth, maximum width, and
width-to-depth ratio

The maximum depth and maximum width of the root in the segmented image. The ratio of maximum
width to depth of the image is noted as the width-to-depth ratio.

Network area, convex area, and
solidity

The total number of pixels in the segmented image. The convex hull of the segmented image is the
minimal-sized convex polygon that can contain the root. From this convex hull, the convex area is

determined. The ratio of the network area and the convex area is given as the solidity.

Perimeter Perimeter is the total Euclidean distance of contour pixels in the segmented image.

Average, median, and maximum
diameters

For each pixel in the skeletonized image, the distance to the nearest nonroot pixel is computed. This
distance is used as a radius to fit a circle. The diameter of the circle at each pixel is noted as the root
diameter. The list of diameters from all the medial axis pixels is used to determine the average, median,

and maximum diameters for the entire root crown.

Volume and surface area
Using the radii determined earlier, the sum of all cross-sectional areas across all the medial axis pixels is
noted as the volume and the sum of the perimeter across all the medial axis pixels is noted as the surface

area.

Lower root area
The lower root area is the area of the segmented image pixels that are located below the location of the

medial axis pixel that has the maximum radius.

Holes and average hole size
Holes are the disconnected background components and indicative of root branching and complexity.
They can be counted (number) by inverting the segmented image. The average hole size (area) is also

calculated.

Average root orientation
For every medial axis pixel, the orientation at the pixel is computed by determining the mean

orientation of medial axis pixels in a 40 × 40 pixel locality. The average of all these orientations is noted
as the average root orientation.

Fine, medium, and coarse diameter
frequencies

From the skeletal image, the medial axis pixels are grouped into fine or coarse roots based on the
diameter values at the pixels.

Shallow, medium, and steep angle
frequencies

Given the skeletal image, for every pixel in the medial axis, the locations of the medial axis pixels in a
40 × 40 pixel locality are used to determine the orientation of these pixels in the locality. This

orientation is noted for every medial axis pixel. These orientation frequencies are grouped in bins less
than 30, less than 60, and less than 90 degrees from the horizontal.

Computational time The time taken to extract features for one image.
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and gamma was set to 3.9 in order to optimize contrast.
Roots were placed in the orientation that appeared as the
widest to the user in order to standardize measurements. A
total of 2,799 images were acquired from wheat root crowns
grown in Missouri.

2.6.2. Phenotyping Wheat in Oklahoma. The wheat popula-
tion is a recombinant inbred line (RIL) population with 184
F5:7 lines derived from a cross between TAM111 × TX05A
001822. The population was created for mapping QTL or
genes contributing to a number of important agronomic
traits, and root phenes were not previously evaluated.
“TAM 111” is one of the most planted hard red winter wheat
cultivars in the Southern High Plains and has adapted to both
dryland and irrigated conditions [45] while TX05A001822 is
an advanced breeding line with superior bread making qual-
ity from the Texas A&M AgriLife Research.

The population was planted in a randomized complete
block design with three replications of 1.5m wide by 0.9m
long plots with seven rows and seeded at a rate of
148 kg ha-1 on 11 November 2017 at Burneyville, Oklahoma.
The field was clean tilled prior to planting and rain-fed with
no supplemental irrigation. Fertilization was first preplant
incorporated with 56 kg ha-1 nitrogen and then top-dressed
with 56 kg ha-1 nitrogen on 23 January 2018 based upon rain-
fall. Phosphorous and potassium concentrations were suffi-
cient based on soil test results prior to planting. Weeds
were controlled with 247 kgha-1 of glyphosate at planting
and 0.02 kg ha-1 of Glean XP at Zadoks growth stage 13. Post-
emergence application of 1.12 kg ha-1of 2,4-D was used on 14
February 2018 for broadleaf weed control.

Root crownswere excavated near grainmaturity on 14–15
May 2018. Several plants were harvested with a single excava-
tion because of the high population density. The shovel was
inserted parallel to the row with its back against the neighbor-
ing rows on each side of the focal plants, and a whole group of
plants was lifted out then placed into a large plastic bag with a
barcode label affixed for sample identification. These bags
were taken to the washing station where the group of root
crowns in soil were placed inwater with dish soap and allowed
to soak in one of 20 plastic bins. After soaking and gently
moving back and forth in water to remove most soil, the root
crowns were removed and washed with a water hose spray
nozzle with light pressure for a few seconds to clean more
thoroughly. The group of plants remained together and were
placed back into the plastic bags. These bags were transported
back to the lab and kept in a cold room for one week while
imaging using the RhizoVision Crown. Three plants were
selected from the group, and the barcodes were used for trig-
gering image acquisition and saving file names. The lens of the
camera was placed at a working distance of 51.5 cm from the
center of the root crown (the bottom of the clamp) for a reso-
lution of 14.0315mm per pixel. The lens aperture was
adjusted to f/11.0. Exposure time and gamma were set to
14ms and 3.9, respectively. A total of 1,753 images were
acquired from wheat root crowns grown in Oklahoma.

2.7. Statistical Analysis. Statistical analyses were employed
using R version 3.5.1 (R [46]) through RStudio version

1.1.45 [47]. Linear regressions were fit using the “lm” func-
tion. Principal component analysis was conducted using the
“prcomp” function after scaling and centering the data. The
R package “reshape2” [48] was used to format the data before
plotting. The R package “ggplot2” [49] was used for data
visualization. Other packages used included “dplyr,” “purr,”
and “patchwork.” Broad-sense heritability was calculated
based on Falconer and Mackay [50] as

H2 =
σ2g

σ2g + σ2e /rð Þ : ð1Þ

The variables σ2g, σ
2
e , and r represent the variance of the

genotype effect, variance of the local environment effect,
and the number of replicates (blocks), respectively. The var-
iances were obtained by fitting a mixed model including
genotype as a random effect and block as a fixed effect using
the lme4 package [51]. The data for the five root crowns of
soybean and three root crowns of wheat from each plot
were averaged before subsequent computation of heritabil-
ity. The heritability computed using the equation above
was plot-based,whereas the correlationswere computed using
plant-based data. All statistical code and data files needed are
available to download at 10.5281/zenodo.3380473.

3. Results

3.1. Physical Calibration. In order to ensure that the correct
physical units can be determined by the integrated platform,
copper wires of known diameters ranging from 0.20 to
2.57mm were imaged with the RhizoVision Crown hard-
ware, and the correct pixels per mm conversion factor was
supplied to the Analyzer for analysis. Regression of the com-
puted diameters versus caliper-measured diameters showed
nearly exact correspondence (y = −0:1 + 1:01x, R2 = 0:99,
p < 0:01), which indicates the physical units provided by
the Analyzer are accurate when the user supplies the pixels
to mm conversion (Figure 6).

3.2. Validation Using Simulated Root System Images. In order
to validate the root measures from the RhizoVision Analyzer,
a publicly available dataset consisting of more than 10,000
simulated root system images was utilized from Lobet et al.
[44], which include ground-truth data from 3D models and
descriptors from analysis of the 2D projections analyzed
using RIA-J root image analysis software. The ground-truth
total root length was underestimated by the Analyzer
(y = −0:54 + 1:55x, R2 = 0:75, p < 0:01) (Figure 7(a)),
which is to be expected because the original simulated
roots were three-dimensional but the processed images
are projected to two dimensions. The RIA-J extracted
descriptor length provided was similar to the Analyzer length
(y = −0:11 + 0:97x, R2 = 0:99, p < 0:01) (Figure 7(b)), indicat-
ing that the Analyzer performs similarly to the previously
used software. Tip number (y = −11:49 + 1:07x, R2 = 0:99,
p < 0:01) (Figure 4(c)), root crown area (y = 0:20 + 0:96x,
R2 = 0:98, p < 0:01) (Figure 7(d)), root crown maximum
width (y = −5:07 + 0:99x, R2 = 0:99, p < 0:01) (Figure 7(e)),
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and root crown maximum depth (y = −5:68 + 1:00x, R2 =
1:00, p < 0:01) (Figure 7(f)) all indicate that the Analyzer
extracts phenes that have the same physical units (slopes
equal one) and that account for a high proportion of variance
of the phenes extracted by RIA-J software.

3.3. Phenotyping Soybean and Wheat Root Crowns. In order
to validate the entire hardware and software platform, 2,799
of soybean root crowns of 187 lines grown in Missouri and
1,753 images were acquired of wheat root crowns of 186 lines
grown in Oklahoma. For both species, all of the root crowns
were imaged with the hardware platform using the RhizoVi-
sion Imager and processed by the RhizoVision Analyzer with
no segmentation failures, indicating the hardware provides
reproducible images that are optimized for image analysis
irrespective of plant species. On a computer with an 8-core
Intel processor with 16GB of RAM, analysis of the 2,799 soy-
bean images took 17 minutes and the 1,753 wheat images
took 11 minutes.

The means and standard deviations were computed for
the extracted phenes (defined in Table 1) independently
for the wheat and soybean populations (Figure 8) grown at
the two different sites. The average total root length of soy-
bean root crowns was 1:70 ± 1:29m, number of root tips
was 368:27 ± 264:47, maximum width was 123:09 ± 55:54
mm, and the depth of the roots was 127:36 ± 29:73mm. In
general, the entire root crown fit within the field of view
of the camera so width and depth measurements are accu-
rate. The soybean root crowns showed solidity values of
0:21 ± 0:09, the median root diameter of 1:40 ± 0:71mm,
the hole number of 118:66 ± 163:76, and the average hole
size of 7:52 ± 9:47mm2. Finally, the average root orienta-
tion of every pixel in the skeletal structure of the soybean
root was 42:50° + 2:94° from the horizontal. The average
total root length of wheat root crowns was 3:20 ± 1:02m,
number of root tips was 606:77 ± 204:58, maximum width

was 78:54 ± 18:83mm, depth of the roots was 152:56 ±
29:21mm, solidity was 0:29 ± 0:08, median root diameter
was 0:83 ± 0:18mm, hole number was 500:27 ± 240:54, hole
size was 3:24 ± 1:93mm2, and average root orientation of
every pixel in the skeletal structure of the wheat root was
49:22° + 2° from the horizontal. The parents of the soybean
population differed substantially for a majority of the
phenes, but the parents of the wheat population did not dif-
fer (Supplementary Material 2).

Principal component analysis was used to identify the
major linear phene combinations that maximize the multi-
variate variation (Figure 9, Supplementary Material 3). Prin-
cipal components (PC) 1 and 2 explained 51.94% and
12.97% of the multivariate variation, respectively, for the
phenes extracted for soybean root crowns (Figure 9(a)).
The phenes that loaded most strongly onto PC1 were size-
related phenes such as total root length, perimeter, number
of root tips, number of holes, several measures of root areas,
and some contribution from diameter measures. PC2 was
dominated by the mean angle and angle frequencies. PCA
of wheat root crowns (Figure 9(b)) showed that the PC1
and PC2 explained 34.99% and 27.02% of the multivariate
variation, respectively. The phenes that loaded onto PC1
were size-related phenes such as total root length, perimeter,
number of root tips, number of holes, and maximum diam-
eter. PC2 was strongly dominated by median diameter and
the diameter frequencies.

In order to evaluate the possibility to use these root
phenes for breeding, broad-sense heritabilities were com-
puted for the phenes extracted from soybean root crown
images (Figure 10(a)). In soybean, a majority of the phenes
had heritabilities greater than 0.50. The maximum heritabil-
ity was observed with maximum number of roots at 0.74. The
phenes with lower heritabilities were the ratios, mean angle,
and orientation frequencies. Heritabilities for the wheat root
crowns were generally lower, ranging from 0 to 0.22 for the
maximum width (Figure 10(b)).

4. Discussion

Over the past few years, the throughput, reliability, and stan-
dardization of root crown phenotyping has increased using
digital imaging and image-based analysis software, such as
DIRT [37], REST [32], and M-PIP [38]. Minimizing cost,
increasing throughput, and improving reliability are key
demands for developing high-throughput root phenotyping
platforms. The integration of the RhizoVision Imager soft-
ware with the RhizoVision Crown hardware platform facili-
tates phenotyping with the end-user in mind by utilizing a
backlit approach and a simple clip-and-replace system for
replacing root crowns.

The RhizoVision Imager allows live view so that the
user may verify that the images are high-contrast and
framed correctly, stores camera settings, and has a barcode
scanning mode that saves images with the sample identifi-
cation. However, the use of RhizoVision Imager is not nec-
essary to successfully use the hardware platform or the
image analysis software. Many machine vision and con-
sumer point-and-shoot camera manufacturers, including
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Figure 6: Regression between diameters extracted using the
RhizoVision Analyzer of copper wires imaged with the camera-
based hardware and caliper-measured diameters (each diameter
has two points).
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Basler with Pylon Viewer, provide imaging software limited
to use with their cameras. For DSLR consumer cameras,
digiCamControl (free, open-source) and CaptureGrid (com-
mercial) provide control of cameras from several major
brands. The main advantages to using the RhizoVision
Imager are the barcode triggering mode that facilitates
sample tracking and the relatively simple user interface.
The Pylon API is based on a vendor-independent interna-
tional standard called GenICam, so extending the Imager
for more general use may be possible. While a color camera
could also be used with this platform, monochrome cameras
produce sharper images with a backlight. The ergonomics
evident in the hardware and control software facilitate
high-throughput image acquisition.

The features extracted by the RhizoVision Analyzer were
extensively validated with 10,464 simulated images of dicot
and monocot root systems from a publicly available dataset.
Excellent agreements were observed between root phenes like
length, tip number, root crown area, root crown maximum
width, and root crown maximum depth extracted using the
Analyzer and published data of the simulated images. In
order to validate the physical unit accuracy of the combined
hardware and software, copper wires representing a range
of diameters observed in roots were imaged and analyzed.
In order to test the practical use of this platform, thousands
of excavated soybean and wheat root crowns were pheno-
typed from the field.

The soybean and wheat experiments occurred at different
times and at different sites, so a direct statistical comparison is
not possible. However, in both experiments, root crown phe-
notyping occurred after flowering so root crowns weremature.
Therefore, the differences observed between the species may
be representative of the intrinsic differences. For example,
the mean and median root diameters of root crowns are
smaller for wheat compared to soybean as would be expected.
Wheat root crowns are also typically less wide and with
steeper angles due to the growth of nodal roots as opposed
to the shallow angles of first-order laterals in soybean. While
the heritabilities of features for soybean were typically greater
than 0.50 with amaximum of 0.74, the maximum observed for
wheat was only 0.22. Possibly, this indicates that intrinsic dif-
ferences between the species make the wheat root crown less
suitable for phenotyping using this method. For example, the
smaller diameter wheat roots are more flexible and when sus-
pended orient downwards, and so differences among geno-
types may be obscured. However, root crown phenotyping of
field-excavated wheat root crowns was previously used to con-
firm shallow and steep angles of lines measured in a lab-based
seedling screen with success [33], which indicates that the
lower heritabilities observed here may not be due to an inher-
ent incompatibility of the method. Another explanation for
low heritability is simply that there is not substantial genetic
variation for these root phenes present in the RIL population
used which is possible because the wheat parents were not
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selected based on root characteristics, while the soybean par-
ents were selected based on contrasting root system architec-
ture prior to the creation of this platform. Based on the data

collected with this platform, the soybean parents were con-
firmed to differ substantially for many of the measured
phenes, while the wheat parents did not. Still, even in the
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absence of parental differences, progeny can exhibit diversity
due to transgressive segregation so the results are not conclu-
sive. For species with more flexible roots, refinements to the
protocol such as laying the root crown on a flat surface rather
than suspending and including more sup-replicates from each
plot should be investigated. The imaging box described here
could easily be oriented to have the backlight facing up for this
use. Additional image-based measures could further improve
plant classification and characterization of root topology, for
example, extracting new root phenes such as lateral root
branching density or angles and lengths of specific classes of
roots through optimized algorithms. Incorporation of mor-
phometric descriptors [52] could simplify representation of
data, such as persistent homology [53].

In conclusion, RhizoVision Crown is a cost-effective and
high-throughput platform that has the potential to increase
access to technologies for root crown phenotyping. The plat-
form builds upon previous platforms [29, 32, 37, 38] by opti-
mizing image acquisition using a backlight and the barcode
option, using custom imaging software designed for pheno-
typing, and using image analysis software with a simple graph-
ical interface designed for batch processing. All software are
free and ready-to-use on Windows 10. The platform has been
validated using ground-truth measures of a simulated dataset
and successfully extracted root phenes from field-excavated
root crowns of a cereal and a legume species. The ergonomics
of use, the integration of all hardware and software, and the
extensive validation tests serve as a benchmark for other plant
phenotyping platforms [54]. This technology will increase
access to root crown phenotyping as a method to acquire data
for functional phenomics [55], genetic mapping, use in breed-
ing programs, and understanding how root phenes can
address agricultural unsustainability and food insecurity.
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Figure 10: Heritabilities of each phene extracted using the RhizoVision Analyzer for soybean (a) and wheat (b) datasets.
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Supplementary Materials

Supplementary Material 1 is included as a PDF containing
images of the completed hardware platform from different
angles, schematic drawings, and a part list for the aluminum
structure. A table of the means of all extracted features for the
four wheat and soybean parents is found in Supplementary
Material 2. A table containing the contribution rates, or pro-
portions of variance, from each principal component and the
loadings of all features onto the components for both species
is found in Supplementary Material 3. (Supplementary
Materials)
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