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Cellular senescence is a stress response that elicits a per-
manent cell cycle arrest and triggers profound phenotypic
changes such as the production of a bioactive secretome,
referred to as the senescence-associated secretory pheno-
type (SASP). Acute senescence induction protects against
cancer and limits fibrosis, but lingering senescent cells
drive age-related disorders. Thus, targeting senescent cells
to delay aging and limit dysfunction, known as “senother-
apy,” is gaining momentum. While drugs that selectively
kill senescent cells, termed “senolytics” are a major fo-
cus, SASP-centered approaches are emerging as alterna-
tives to target senescence-associated diseases. Here, we
summarize the regulation and functions of the SASP and
highlight the therapeutic potential of SASP modulation
as complimentary or an alternative to current senolytic
approaches.

Senescence is a cellular stress response triggered bymo-
lecular damage, such as that caused by replicative exhaus-
tion, aberrant oncogene activation (oncogene-induced
senescence, OIS), or treatment with chemotherapeutics.
Senescent cells arrest stably, produce a complex secre-
tome (known as the senescence-associated secretory phe-
notype, SASP), and undergo characteristic changes
including transcriptional, epigenetic, morphological, and
metabolic alterations (Gorgoulis et al. 2019). Senescent
cells are characterized by a prolonged and generally irre-
versible cell cycle arrest. The presence of DNA and other
types of macromolecular damage ultimately leads to ces-
sation of proliferation through activation of the p53/
p21CIP1 and p16INK4a/RB tumor suppressor pathways
(McHugh and Gil 2018). Induction of p21CIP1 and
p16INK4a inhibits cyclin-dependent kinases CDK4,
CDK6, (and CDK2 in the case of p21CIP1) that are neces-
sary to promote cell cycle progression. This stable arrest
explains some of the pathophysiological effects associated
with senescence, but many others relate to the ability of
senescent cells to influence theirmicroenvironment. Sen-

escent cells can communicate via direct cell-cell contact
(Nelson et al. 2012; Hoare et al. 2016), cell fusion (Chuprin
et al. 2013), through the formation of cytoplasmic bridges
(Biran et al. 2017), by extracellular vesicle (EV) signaling
(Takasugi et al. 2017), and through the SASP. Most of
the nonautonomous effects of senescent cells have been
linked to the SASP (Fig. 1).

The pleiotropic effects of the SASP

Cellular senescence might have evolved to induce tissue
remodeling during development and in response to dam-
age (Muñoz-Espín and Serrano 2014). In that context, the
SASP contributes to recruitment of immune cells that
would clear senescent cells. However, it is clear that
whatever its primordial function, the SASP can have
both beneficial effects and detrimental consequences.
The SASP mediates the tumor suppressor functions of
senescence. For instance, components of the SASP, such
as IL-8, IL-6, plasminogen activator inhibitor 1 (PAI-1),
and IGFBP7 reinforce the senescence growth arrest in vi-
tro (Acosta et al. 2008; Kuilman et al. 2008). Moreover,
in a fibrosis-associated liver cancer model, the SASP can
contribute to an anti-tumor microenvironment by skew-
ing macrophage polarization to a tumor-inhibiting M1
state (Lujambio et al. 2013). TGF-β family members, vas-
cular endothelial growth factor (VEGF), and chemokines
such as CCL2 and CCL20 can spread senescence to nor-
mal neighboring cells in what is known as paracrine sen-
escence (Acosta et al. 2013). Similarly, ROS signaling
through gap junctions induces bystander senescence in vi-
tro and, potentially, in vivo (Nelson et al. 2012). While the
role of paracrine senescence in cancer is yet undefined, it
has been found to contribute to liver dysfunction upon
acetaminophen overdose (Bird et al. 2018). It is possible
that paracrine senescence could amplify the anti-tumor
response triggered during OIS. Indeed, a key function of
the SASP is to signal to different immune cells, including
natural killer (NK) cells, macrophages, and T cells.

[Keywords: senescence; SASP; inflammation; cancer; aging; disease;
senolytics; senomorphics; therapeutics]
Corresponding author: jesus.gil@imperial.ac.uk
Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.343129
.120.

© 2020 Birch and Gil This article is distributed exclusively by Cold
Spring Harbor Laboratory Press for the first six months after the full-issue
publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml).
After six months, it is available under a Creative Commons License (Attri-
bution-NonCommercial 4.0 International), as described at http://creative-
commons.org/licenses/by-nc/4.0/.

GENES & DEVELOPMENT 34:1565–1576 Published by Cold Spring Harbor Laboratory Press; ISSN 0890-9369/20; www.genesdev.org 1565

mailto:jesus.gil@imperial.ac.uk
http://www.genesdev.org/cgi/doi/10.1101/gad.343129.120
http://www.genesdev.org/cgi/doi/10.1101/gad.343129.120
http://www.genesdev.org/cgi/doi/10.1101/gad.343129.120
http://www.genesdev.org/cgi/doi/10.1101/gad.343129.120
http://www.genesdev.org/cgi/doi/10.1101/gad.343129.120
http://www.genesdev.org/cgi/doi/10.1101/gad.343129.120
http://www.genesdev.org/cgi/doi/10.1101/gad.343129.120
http://www.genesdev.org/cgi/doi/10.1101/gad.343129.120
http://genesdev.cshlp.org/site/misc/terms.xhtml
http://genesdev.cshlp.org/site/misc/terms.xhtml
http://genesdev.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genesdev.cshlp.org/site/misc/terms.xhtml


Immune-mediated clearance of senescent cells suppresses
tumor initiation (Kang et al. 2011), contributes to tumor
regression (Xue et al. 2007), and is essential during devel-
opment (Muñoz-Espín et al. 2013; Storer et al. 2013). The
SASP is also behind many other benefits associated with
acute senescence (Muñoz-Espín and Serrano 2014). Senes-
cent fibroblasts contribute to wound healing (Demaria
et al. 2014), and the SASP of senescent hepatic stellate
cells (HSCs) participates in fibrotic scar degradation and
restores tissue homeostasis in liver fibrosis (Lujambio
et al. 2013). In response to tissue damage, the SASP can
also promote cellular reprogramming in neighboring cells
(Mosteiro et al. 2016) while reinforcing plasticity and
stemness (Ritschka et al. 2017). On the other hand, cocul-
ture systems and xenograft models have shown that the
SASP of senescent fibroblasts promotes the tumorigenesis
of precancerous epithelial cells (Krtolica at al. 2001). The
SASP can also induce epithelial-to-mesenchymal transi-
tion (EMT) and increase tumor vascularization, suggest-
ing that it has mostly protumorigenic properties (Coppé
et al. 2010). This idea has been cemented using more so-
phisticated cancer models. For example, the SASP of
HSCs promoted hepatocellular carcinoma (HCC) in obese
mice treated with carcinogens (Yoshimoto et al. 2013).
Similarly, pediatric craniopharyngiomas depend on the
SASP of a cluster of senescent stem cells expressing onco-
genic β-catenin (González-Meljem et al. 2017). Reconcil-
ing the differences in the tumor-suppressing and
protumorigenic properties of the SASP is not straightfor-
ward, particularly given its context-dependent effects. De-
velopments in transgenic mouse models that allow the
detection and elimination of senescent cells has aided in
causally determining the role of the SASP in tumorigene-

sis, but analogous mouse models allowing for regulated
modulation of the SASP are required to better understand
its effects.

In some instances, the SASP can also have immunosup-
pressive functions (DiMitri et al. 2014; Eggert et al. 2016).
For example, the SASP produced by preneoplastic hepato-
cytes recruits immature myeloid cells that inhibit NK
cells, therefore contributing to HCC progression (Eggert
et al. 2016). Chronic inflammation, often referred to as
inflammaging (Franceschi and Campisi 2014), underlies
many age-related pathologies. Eliminating senescent cells
reduces the levels of proinflammatory cytokines in old
mice (Baker et al. 2011, 2016), suggesting that the SASP
may also contribute to inflammaging. Interestingly, trans-
planting small numbers of senescent cells causes physical
dysfunction and is sufficient to increase systemic inflam-
mation (Xu et al. 2018). The SASP may also contribute to
disease bydisrupting tissue homeostasis. The SASP can ei-
ther suppress differentiation (of preadipocytes) or promote
it (of keratinocytes), resulting in alterations such as the lip-
odystrophy and skin phenotypes common in oldmice (Wi-
ley et al. 2016). The SASP can also explain chemotherapy
side effects, such as bonemarrow suppression, cardiac dys-
function, blood clotting, or cancer relapse (Demaria et al.
2017; Wiley et al. 2019). Why the SASP exerts such pleio-
tropic and often opposing effects is difficult to disentangle,
and much remains to be deciphered. However, the senes-
cence inducer, cell type undergoing senescence, stage of
senescence, and context of the tissue microenvironment
all likely play roles in shaping the outcome.

The dynamic and heterogeneous composition of the SASP

While cellular context may explain the pleiotropic func-
tionality of the SASP, its heterogeneous composition like-
ly also plays an important role in accounting for its
paradoxical effects. Early reports of the SASP documented
a plethora of factors secreted from senescent cells, includ-
ing proinflammatory and immune-modulatory cytokines
and chemokines such as IL-6, IL-8, CCL2, and CXCL1,
growth modulators including amphiregulin (AREG),
IGFBPs, and prosurvival molecules such as the neurotro-
phic factor GDNF (Coppé et al. 2008). The true extent of
the SASP is now better understood; it is also comprised
of hundreds of protein and non-protein signaling mole-
cules, including proteases, hemostatic factors, ceramides,
bradykinins, extracellular matrix (ECM) components, and
damage-associated molecular patterns (DAMPs) (Davalos
et al. 2013; Wiley et al. 2019; Basisty et al. 2020). The cell
type undergoing senescence and how senescence is trig-
gered, determines SASP composition. For example, dys-
functional mitochondria cause a distinct senescence
response, termed mitochondrial dysfunction-associated
senescence (MiDAS), which lacks the IL-1-dependent
proinflammatory arm of the SASP (Wiley et al. 2016). A re-
cent analysis identified a core of SASP components com-
mon across different senescence inducers and in distinct
cell types, some of which overlapped with aging markers
observed in human plasma such as growth differentiation

Figure 1. The pleiotropic functions of the SASP. Shown here is a
summary of the effects exerted by senescent cells (in themiddle)
that are mediated by the SASP. The effects above the senescent
cell (in green) represent those that are considered beneficial,
whereas those at the bottom (in red) reflect some of the detrimen-
tal consequences of the SASP.
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factor 15 (GDF15), stanniocalcin 1, and serine protease in-
hibitors (SERPINs) (Basisty et al. 2020). SASP strength and
composition is also regulated temporally (Hernandez-
Segura et al. 2017). InOIS, fluctuations inNOTCH1 levels
switch an early TGF-β-rich immunosuppressive secre-
tome to a proinflammatory SASP (Hoare et al. 2016).
Moreover, in very late replicative, stress, and OIS cells,
the SASP becomes characterized by the expression of
type-I interferons (IFN-I) (De Cecco et al. 2019). Thus,
the dynamic and complex nature of the SASP helps ex-
plain, at least in part, the diverse biological functions asso-
ciated with senescence.

Regulation of the SASP

Despite the complexity of the SASP and its pleiotropic na-
ture, we are beginning to understand the mechanisms un-
derlying its regulation. While the events that activate the
SASP are still poorly understood, they are typically con-
nected to the DNA damage response (DDR) and converge
to induce a transcriptional program required for SASP in-
duction (Fig. 2).

SASP induction

Senescent cells have co-opted components of the innate
immune machinery to sense macromolecular damage

and activate the SASP. For example, RIG-I, a sensor for cy-
toplasmic RNA, mediates senescence-associated inflam-
mation (Liu et al. 2011). Another key mediator
explaining SASP induction is the inflammasome (Acosta
et al. 2013). Inflammasomes are groups of pattern recogni-
tion receptors (PRR) capable of recognizing different
DAMPs and activating the IL-1 inflammatory cascade or
inducing pyroptosis (Schroder and Tschopp 2010). The
NLRP3 inflammasome is at least partially responsible
for inflammasome activity during senescence (Acosta
et al. 2013). In OIS, toll-like receptor 2 (TLR2) priming
by acute phase serum amyloids A1 andA2 triggers inflam-
masome activation (Hari et al. 2019). Other DAMPs, in-
cluding high-mobility group box 1 (HMGB1) can also
activate TLR signaling to induce the SASP (Davalos
et al. 2013). Cytosolic DNA is a key signal inducing the
SASP. Sources of cytosolic DNA in senescent cells in-
clude retrotransposable elements like LINE-1 (L1) that be-
come transcriptionally derepressed in late senescence (De
Cecco et al. 2019), mitochondrial DNA, or cytosolic chro-
matin fragments (CCFs) (Ivanov et al. 2013). CCFs origi-
nate from the blebbing of the nuclear membrane and are
linked to autophagy-mediated degradation of lamin B1
(Dou et al. 2017). Dysfunctional mitochondria (Correia-
Melo et al. 2016) and a persistent DDR (Rodier et al.
2009) both promote the SASP, in part by increasing CCF
formation (Vizioli et al. 2020). Cytosolic DNA is sensed

Figure 2. Regulation of the senescence-associated secretory phenotype (SASP). Scheme showing the different factors contributing to
SASP induction. Transcription factors are shown in yellow. Intracellular signaling components are shown in orange. Sensors and receptors
and ligands are shown in red. (DSB) Double-strand breaks, (CCF) chromatin cytoplasmic foci.
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by the cyclic GMP-AMP synthase (cGAS), which then
produces cyclic GMP-AMP (cGAMP), activating the stim-
ulator of interferon genes (STING). The cGAS/STING
pathway is considered a key regulator of SASP induction
(Dou et al. 2017; Glück et al. 2017; Yang et al. 2017).

Signaling to express the SASP

A number of factors signal to induce the SASP. STING ac-
tivation stimulates TBK1 and downstream from TBK1,
IRF3, and nuclear factor (NF)-κB become activated to in-
duce IFN-I and inflammatory responses. Persistent DDR
activity is required for the induction of several proinflam-
matory SASP factors, such as IL-6 and IL-8 (Rodier et al.
2009). Activation of p38, amember of themitogen-activat-
ed protein kinase (MAPK) family, promotes the SASP by
activating NF-κB (Freund et al. 2011). Metabolic fluctua-
tions, such as altered nicotinamide adenine dinucleotide
(NAD+) to NADH ratios, underlie the MiDAS SASP
by influencing 5′AMP-activated protein kinase (AMPK)-
mediated activation of p53 (Wiley et al. 2016). Con-
versely, increased nicotinamide phosphoribosyltransfer-
ase (NAMPT) activity, which salvages NAD+, promotes
a “high” proinflammatory SASP in OIS by enhancing gly-
colysis and mitochondrial respiration (Nacarelli et al.
2019). All these pathways eventually converge to induce
a transcriptional program required for SASP induction.

Transcriptional control of the SASP

The inflammatory SASP is regulated through the activa-
tion of two main transcription factors: NF-κB and
CCAAT/enhancer binding protein β (C/EBPβ) (Kuilman
et al. 2008). Indeed, Loss of bothNF-κB andC/EBPβ reduce
IL-8 and other chemokine receptor (CXCR)2 ligands
affecting growth arrest in OIS (Acosta et al. 2008).
Additionally, the NOTCH1-driven inhibition of the later
proinflammatory SASP in OIS is mediated by repression
of C/EBPβ transcriptional activity (Hoare et al. 2016).
Increased stabilization of the transcription factor GATA-
binding protein 4 (GATA4) connects the DDR with NF-
κB activation to induce the SASP (Kang et al. 2015). The
janus kinase (JAK) signal transducer and activator of tran-
scription (STAT) pathway has also been involved in regu-
lating SASP expression (Toso et al. 2014).

Epigenetic regulation of the SASP

During OIS, enhancer landscapes are remodeled with re-
cruitment of the bromodomain and extra-terminal (BET)
family protein BRD4 to superenhancer elements adjacent
to SASP genes (Tasdemir et al. 2016). Additional chroma-
tin modifications have been implicated in SASP regula-
tion, such as decreased histone H3K9 dimethylation at
promoter regions of key SASP factors (Takahashi et al.
2012) and increased expression of the histone variantmac-
roH2A1 (Chen et al. 2015). The histone variant H2AJ that
accumulates in senescent cells also participates in SASP
induction (Contrepois et al. 2017). Other epigenetic mod-
ifiers, such as histone–lysine–N-methyltransferase 2A

(MLL1) and HMGB2 also favor SASP production by keep-
ing their genetic loci in an open and active state (Aird et al.
2016; Capell et al. 2016).

Post-transcriptional control of the SASP

Themechanistic target of rapamycin (mTOR) is a key reg-
ulator of protein translation in senescent cells. mTOR and
lysosomes accumulate at the trans side of the Golgi in a
TOR autophagy spatial coupling compartment (TASCC)
connecting autophagic processes to mTOR activation,
which fuels the SASP in OIS (Narita et al. 2011). mTOR
also promotes the translation of IL-1α and NF-κB activa-
tion (Laberge et al. 2015). mTOR regulates the translation
of MAPKAPK2, a kinase downstream from p38, which
phosphorylates and inhibits the RNA-binding protein
ZFP36L1 during senescence, stabilizing SASP mRNA
transcripts (Herranz et al. 2015). Additionally, the poly-
pyrimidine tract-binding protein 1 (PTBP1) has been
shown to regulate alternative splicing of genes involved
in intracellular trafficking, such as EXOC7 (Georgilis
et al. 2018) to control SASP expression. Overall, our un-
derstanding of SASP regulation, although incomplete, pro-
vides us with several ways to target it for therapeutic
benefit.

Senescence and the SASP contribute to aging and disease

Removal of senescent cells increases healthy life span in
murine models (Baker et al. 2011, 2016), but how senes-
cent cells contribute to aging and disease is difficult to dis-
cern. This problem is exacerbated as only a small
percentage of cells become senescent, even at very old
age (Biran et al. 2017). Multiple scenarios explaining sen-
escence-mediated organ dysfunction likely exist (Fig. 3).
The progressive accumulation of senescent cells can
deplete the organism of functional cells required for tissue
repair and regeneration, such as stem and progenitor cells.
For example, senescence of neural progenitors (Molofsky
et al. 2006) contributes to age-related decline in neurogen-
esis. Similarly, senescence is responsible for the age-relat-
ed decline in muscle stem cell regenerative function
(Garcia-Prat et al. 2016). These effects are cell intrinsic,
but in many settings senescent cells exert their effects
in a paracrine fashion. For example, the injection of senes-
cent preadipocytes (representing <1% of cells) causes
widespread physical dysfunction in young mice (Xu
et al. 2018). Thus, the SASP is a primary mediator of the
detrimental effects of senescent cells. Chronic, low-grade
inflammation, characterized by elevated levels of circulat-
ing cytokines and increased immune infiltration associat-
ed with inflammaging, fuels loss of resilience, and
increased risk of diseasewith age (Franceschi andCampisi
2014). Since around 40% of SASP factors are also associat-
ed with age in human plasma (Basisty et al. 2020), the
SASP likely contributes to inflammaging. Indeed, the
clearance of senescent cells reduces levels of secreted in-
flammatory factors known to drive pathologies (Baker
et al. 2011, 2016). Besides systemic effects, specific
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components secreted by senescent cells might also be re-
sponsible for inducing tissue dysfunction locally. For ex-
ample, hemostatic factors, including SERPINs and PAI-1
may link the SASP with chemotherapy-associated throm-
bosis (Wiley et al. 2019). Similarly, TGF-β-driven para-
crine senescence limits liver regeneration following
acute injurywith acetaminophen (Bird et al. 2018). Anoth-
er way in which senescent cells, and the SASP, could con-
tribute to disease is through remodeling of the tissue
microenvironment and disruption of tissue homeostasis.
This could be mediated by the secretion of ECM compo-
nents, recruitment of immune cells, or by affecting the
fate of other cells in the tissue. This is, for example, the
case during fibrosis (Schafer et al. 2017). Finally, the phys-
ical build-up of senescent cells could contribute to dis-
ease, as is the case with the accumulation of senescent
foamy macrophages in atherosclerotic plaques (Childs
et al. 2016).

Senolytics: a wide therapeutic opportunity

Geneticmodels enabling the specific ablation of senescent
cells havemade the case to target senescence for therapeu-
tic benefit (Fig. 4A). The most popular strategy has been
the identification of drugs that selectively kill senescent
cells, known as senolytics. As many senescence triggers
also cause apoptosis, senescent cells are primed for death
but avoid it by inducing prosurvival pathways. Indeed, en-
hanced resistance to apoptosis is a widely recognized fea-
ture of senescent cells (Gorgoulis et al. 2019). The first
senolytic drugswere identified on the hypothesis that sen-

escent cells are more sensitive than their normal counter-
parts to inhibition of these prosurvival networks. This led
to the discoveryof dasatinib (D), amultityrosine kinase in-
hibitor, and quercetin (Q), a flavonol, as senolytics (Zhu
et al. 2015). Given in combination,D+Q reduce senescent
cell burden in aged, radiation-exposed and progeroidmice,
while improvinghealth spanparameters, including cardio-
vascular and physical function (Xu et al. 2018). Similar ap-
proaches led to the identification of inhibitors of the B-cell
lymphoma2 (BCL-2) family of anti-apoptotic proteins, and
peptides inhibiting FOXO4 as senolytics (Ovadya and
Krizhanovsky 2018). D+Q and the BCL-2 inhibitors,
ABT-263 (Navitoclax) and ABT-737, are the most fre-
quently used senolytics in vivo, showing promise in im-
proving a wide range of pathologies (van Deursen 2019).
Despite the significant success of ABT-263 and ABT-737
inpreclinical studies, thereare reservations regarding their
clinical use. Trials assessing navitoclax as an anticancer
agent report neutropenia and thrombocytopenia (Wilson
et al. 2010). Senolytic drugs may not need to be adminis-
tered continuously to produce the benefits associated
with senolysis, which could mitigate their side effects.
Nevertheless,many labshave set up different efforts to cir-
cumvent the detrimental effects of existing senolytics. For
example, DT2216, a proteolysis targeting chimera (PRO-
TAC) that targets BCL-XL to the Von Hippel-Lindau
(VHL) E3 ligase for degradation, reduced toxicity in plate-
lets, as theyexpress low levels ofVHL (Heet al. 2020).Mul-
tiple groups are actively pursuing the identification of new
senolytics. Phenotypic drug screens have pinpointed com-
pounds as varied as heat-shock protein inhibitors (Fuhr-
mann-Stroissnigg et al. 2017), cardiac glycosides

Figure 3. Mechanism bywhich senescent cells contribute to disease. Both SASP-independent (top) and SASP-dependent (bottom) effects
of senescent cells likely explain how senescence promotes tissue and organ dysfunction. The build-up of senescent cells can deplete stem
and progenitor pools and could lead to dysfunctions associated with senescent cell accumulation, such as the case in atherosclerosis. Al-
ternatively, paracrine functions of senescent cells, such as the ability of SASP factors to contribute to chronic systemic inflammation and
tissue inflammation and remodeling are also at play. Specific SASP components, such as hemostatic factors including SERPINs and PAI-1,
promote platelet activation and increased thrombosis following chemotherapy. Similarly, liver injury, induced by acetaminophen, is driv-
en by macrophage-dependent TGF-β signaling that favors hepatocyte paracrine senescence limiting regeneration.
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(Guerrero et al. 2019; Triana-Martínez et al. 2019), and
p53–MDM2 interaction inhibitors (Jeon et al. 2017) as
harboring senolytic activity. A further strategy to
develop senolytics is based on exploiting the peculiarities
of senescent cells, such as the senescence-associated β-ga-
lactosidase (SA-β-Gal) activity. Galacto-oligosaccharide
encapsulated nanoparticles (GalNP) containing cytotoxic
or senolytic drugs (Muñoz-Espín et al. 2018) and galac-
tose-derived prodrugs display senolytic properties (Gonzá-
lez-Gualda et al. 2020; Guerrero et al. 2020) and are two
examples of this approach. Given their success in preclin-
ical studies, senolytic regimes are themorepopularmodal-
ity of senotherapies and are starting to be tested in clinical
trials (Hickson et al. 2019).

Targeting the SASP as an alternative to senolytic drugs

Consistent with a role for senescence in regeneration, ini-
tial studies using the INK-ATTAC and p16-3MR mouse
models showed defects in wound healing when senescent
cells were eliminated (Baker et al. 2011; Demaria et al.
2014), suggesting that removing senescent cells can lead
to unwanted outcomes. Moreover, the recent finding
that clearing certain populations of senescent cells, such
as liver sinusoid endothelial cells, promotes fibrosis
(Grosse et al. 2020) has further strengthened the case for
caution and the value of identifying alternatives to seno-
lytics. Since many of the negative effects associated
with senescence are driven by the SASP, compounds
that modulate the senescence secretome (often referred
to as senomorphics) are an alternative to senolytics (Fig.
4B). For example, nucleoside reverse transcriptase inhibi-
tors (NRTIs), such as lamivudine, have been used to sup-
press cytoplasmic DNA for L1. As a result, lamivudine
reduces the late SASP response and ameliorates several
phenotypes of aging in oldmice, including kidney glomer-
ulosclerosis, skeletal muscle atrophy, and tissue immune

infiltrations (De Cecco et al. 2019). Genetic interference
with the cGAS-STING pathway results in SASP inhibi-
tion and reduces tissue inflammation in vivo (Dou et al.
2017; Glück et al. 2017). Importantly, genetic models
have also served to link the cGAS-STING pathway with
pathologies such as cancer, fibrosis, neurodegeneration,
metabolic, and auto-inflammatory diseases. Given the in-
tricate correlation between cGAS-STING, inflammation,
senescence, and disease, several inhibitors of cGAS (Lama
et al. 2019) and STING (Haag et al. 2018) have been devel-
oped. These are prime candidates to modulate the SASP.
Similarly, the NLRP3 inflammasome is a key regulator
of SASP induction, widely involved in disease and for
which drug development is active (Zahid et al. 2019).

Targeting transcriptional regulators of the SASP is an-
other option. For instance, the JAK1/2 inhibitor ruxoliti-
nib reduces the proinflammatory SASP, in vitro and in
vivo and enhances insulin sensitivity, limits osteoporosis
and reduces frailty in ageing mice (Xu et al. 2015a,b; Farr
et al. 2017). Inhibiting inflammation is a promising con-
cept to treat the age-associated diseases in which senes-
cence plays a role. However, as an anticancer therapy,
the situation is more complex. While the SASP can drive
cancer progression, a robust SASP is also necessary to
mount immune surveillance against preneoplastic lesions
or in response to therapy. In prostate tumors treated with
chemotherapy, the JAK2/STAT3 pathway is required to
induce an immunosuppressive SASP that leads to in-
creased tumor growth. In this context, JAK inhibitors re-
program the SASP to trigger an antitumor immune
response (Toso et al. 2014). This suggests that in some in-
stances, rather than blunting the SASP response, modify-
ing it might be more desirable. Indeed, inhibiting IL1
signaling, or cGAS-STING, interferes with immune sur-
veillance and senescent reinforcement and could contrib-
ute to tumor escape (Acosta et al. 2013; Dou et al. 2017).
To address this problem, a screen aiming to identify strat-
egies to limit the proinflammatory arm of the SASP,

A B

Figure 4. Targeting senescent cells and the SASP in age-related disease. Different strategies to target senescent cells in age-related pa-
thologies have been proposed with the two main approaches being cell death induction via senolytics (A) and modulation of the SASP
by interfering with its regulatory pathways (B).
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without promoting senescence escape, identified PTBP1.
As proof-of-principle, genetic interference with PTBP1
prevented tumor growth caused by the presence of senes-
cent cells in vivowithout resulting in increased tumor ini-
tiation (Georgilis et al. 2018). Interference with pathways
signaling for SASP induction has also been used to limit
the SASP, including using drugs targeting epigenetic
changes, such as the BRD4 Inhibitor IBET762 (Tasdemir
et al. 2016) and the histone deacetylase (HDAC) inhibitor,
TrichostatinA (TSA).At lowconcentrations,TSAbehaves
as a pan-SASP suppressor, blunting SASP-associated in-
flammation in vitro and in an acetaminophen-driven liver
injury model in vivo (Vizioli et al. 2020). However, at mil-
limolar doses,TSAhas been shown to promote senescence
and development of the SASP (Pazolli et al. 2012), empha-
sizing the importance of fine balance when attempting to
tweak these processes. Another concernwhen using drugs
that inhibit epigenetic or signaling factors is howmuch of
the observed effect can be attributed to SASPmodulation.
This observation applies to several other drugs. Glucocor-
ticoid treatment decreases the production of selected com-
ponents of the SASP, namely, proinflammatory cytokines
like IL-6, across different inducers of senescence by inhib-
iting NF-κB (Laberge et al. 2012). The antidiabetic drug
metformin alleviates a number of age-related conditions
in experimental animal models and humans and inhibits
multiple proinflammatory SASP factors by blocking NF-
κB nuclear translocation (Moiseeva et al. 2013). However,
these compounds exert other effects, making it difficult to
prove causality of SASP inhibition per se. For instance, the
mTOR inhibitor rapamycin increases life span and health
span (Miller et al. 2011) and acts as a selective SASP sup-
pressor. Rapamycin also limits the tumor-promoting abil-
ities of senescent cells in vivo (Herranz et al. 2015; Laberge
et al. 2015). However, given thewide range of actions asso-
ciated with mTOR inhibition, it is difficult to know what
the contribution of SASP inhibition is. Nevertheless, a
numberof senomorphic compounds arebeing tested inhu-
mans, including metformin and analogs of rapamycin
(rapalogs). Metformin has been shown to improve cardio-
vascular function and prolong life span in diabetic pa-
tients, prompting investigation into the ability of
metformin to delay aging in nondiabetic individuals (Tar-
geting Aging with Metformin; TAME study) (Kulkarni
et al. 2020). Several rapalogs, including everolimus, have
also been tested in humans, with mTOR inhibition lead-
ing to improved vaccination responses in the elderly, pos-
sibly through targeting immunosenescence (Mannick
et al. 2014).
Targeting of mitochondrial-derived ROS with MitoQ

suppresses the SASP and has been shown to limit skin ag-
ing in 3D equivalents (Victorelli et al. 2019; Vizioli et al.
2020), suggesting that indirect effects on the SASP, via im-
provedmitochondrial function, are possible.Consistently,
the use of FK866, a specific NAMPT inhibitor, suppresses
the proinflammatory SASP and limits pancreatic ductal
adenocarcinoma (PDAC) progression (Nacarelli et al.
2019). These findings suggest thatmitochondrial targeting
could be a viableway tomodulate the SASP.Alternatively,
targeting specific SASP components (e.g., using anakinra,

an IL-1R antagonist or tocilizumab, an antibody against
IL-6R) could dampen the SASP, since its persistence relies
on self-amplifying feedback loops. Other times, individual
SASP components, such as TGF-β, might be pinpointed as
disease drivers and targeting them specifically might be
appropriate (Bird et al. 2018).

Engaging senescence in cancer treatment

While most senotherapies rely on opposing senescence
and its phenotypes, induction of senescence (prosenes-
cence therapies) is being actively investigated for cancer
treatment. Antitumor strategies, including radiotherapies
andmany chemotherapies, cause extensiveDNAdamage,
inducing senescence (Gorgoulis et al. 2019). Some target-
ed therapies, such as inhibitors of aurora kinase or CDK4/
6 also trigger tumor senescence and show promise in
treating a number of cancers (Wagner andGil 2020).While
senescence induction in cancer cells is an attractive ther-
apeutic option, care must be taken to limit the detrimen-
tal effects associated with the chronic presence of
senescent cells. These include increases in local and sys-
temic inflammation and cancer reoccurrence (Demaria
et al. 2017). Therapy-induced senescence (TIS) also pro-
motes stem cell and self-renewing features, which can
contribute to cancer initiation and aggressiveness

Figure 5. Targeting senescence in cancer. Engaging senescence
using “prosenescence therapies” in cancer can be followed up
by strategies that then exploit vulnerabilities of senescent cancer
cells. Inducing senescent cell death by senolytic treatment or
through the development of senolytic CAR T cells that recognize
factors expressed on the surface of senescent cancer cells is one
approach. An alternative method is to use drugs that potentiate
the SASP. Drugs that induce or reinforce the SASP have been
found to promote immune cell surveillance and senescent cell
clearance. SASP inducers can also remodel the tumor microenvi-
ronment, favoring access by immune cells and chemotherapeutic
drugs used as part of anticancer treatments. TME, tumor
microenvironment.
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(Milanovic et al. 2018). Recent developments in seno-
therapies have provided additional ways in which senes-
cence and the SASP could be targeted for the treatment
of cancer while circumventing potential undesirable ef-
fects of senescence induction (Fig. 5).

Senolytics in combined therapies against cancer

One way to potentiate anticancer therapies is to pair
them with senolytic treatments. This strategy of follow-
ing up prosenescence treatment with senolytics has
been termed a “one–two punch approach” and has been
demonstrated in vitro using human cancer cells, includ-
ing melanoma and lung cancer lines (Wang et al. 2017).
Treatment of tumors with chemotherapy can induce vul-
nerabilities associated with senescence that could be tar-
geted therapeutically. Indeed, one of the first descriptions
of the viability of synthetic lethal targeting of senescence
to improve cancer treatment was from Dörr et al. (2013).
Here, proteotoxic stress accompanying TIS, driven in part
by SASP demand, rendered senescent cells vulnerable to
the inhibition of glucose processing and autophagy,
with pharmacological disruption of these altered meta-
bolic processes leading to tumor regression and improved
outcomes in murine lymphomamodels (Dörr et al. 2013).
Senescence induction by inhibition of DNA replication
kinase CDC7 has also been paired with a senolytic that
disrupts mTOR signaling, inducing apoptosis in senes-
cent human liver cancer cells and improving survival in
mouse models of HCC (Wang et al. 2019). Such “dou-
ble-hit” strategies are still to be tested in patients. Howev-
er, preclinical findings of this approach appear promising.
While a “gold standard” senolytic, the use of ABT-263 in
the clinic is limited due to its reported side effects. Other
senolytic compounds, including cardiac glycosides, are
widely used clinically and cooperate with prosenescence
therapies to kill cancer cells (Guerrero et al. 2019). More-
over, such broad-spectrum senolytics, which target differ-
ent types of senescent cells that coexist in the tumor
microenvironment, could have benefits that go beyond
potentiating prosenescence therapies (Guerrero et al.
2019).

Harnessing the immune system to eliminate
senescent cells

Recently, a different approach has been described to elim-
inate tumor cells undergoing senescence. Rather than us-
ing senolytics, Amor et al. (2020) engineered chimeric
antigen receptor (CAR) T cells recognizing uPAR, a pro-
tein expressed by senescent cells, a strategy that mirrors
normal senescence immunosurveillance. Importantly,
these “senolytic CAR T cells” can be used not just as an
anticancer therapy, but to treat other senescence-associat-
ed disorders, such as nonalcoholic steatohepatitis (NASH)
(Amor et al. 2020). The identification of senescence-spe-
cific antigens opens up the possibility of targeting them
by other means, such as using bispecific antibodies or an-
tibodies conjugated with toxic ligands.

Potentiating the SASP as an anticancer therapy

An alternative to artificially engineered CAR T cells is to
potentiate the clearance of senescent cells by the immune
system. This could be achieved using drugs that enhance
the SASP. Two recent studies exemplify this approach.
Ruscetti et al. (2018) showed that while palbociclib treat-
ment of lung tumors alone induces features of senescence,
its combination with the MEK inhibitor Trametinib (T/P)
results in a stronger growth arrest and a more potent
SASP. Indeed, T/P induces senescence in a KRAS-mutant
lung cancer model and activates an immunomodulatory
SASP, comprised of TNF-α and intercellular adhesion
molecule−1 (ICAM1). This promotesNK cell surveillance
and tumor regression and prolongs survival (Ruscetti et al.
2018). The effects of SASP induction seem to be context
dependent. In PDAC, treatment with T/P led to SASP-fa-
cilitated remodeling of the tumor microenvironment
(TME), which exposed therapeutic vulnerabilities. Specif-
ically, VEGF increased blood vessel density, whereas the
proinflammatory SASP, namely, IL-6, CCL5, and
CXCL1, promoted endothelial cell activation, increasing
vessel permeability. This led to improved access of the
chemotherapeutic drug gemcitabine and facilitated tumor
infiltration by CD8+ T cells, promoting tumor destruction
(Ruscetti et al. 2020). While, the infiltrated CD8+ T cells
were exhausted, they could be reawakened by checkpoint
blockade. In this way, combining either gemcitabine or
anti-PD-1 therapy with T/P produces a potent antitumor
effect.

Conclusions, challenges, and future directions

Targeting senescent cells offers a myriad of therapeutic
opportunities, particularly in the context of age-associat-
ed disease and cancer. This knowledge has fueled testing
of senolytic drugs as a novel therapeutic paradigm. Al-
though the SASP likely explains many of the detrimental
consequences attributed to senescence, direct evidence of
its role is often lacking. Transgenicmodels that allow spe-
cific targeting of senescent cells has helped prove causal-
ity. The development of ingenious models allowing the
manipulation of the SASP will help to determine its pre-
cise involvement as a mediator of the effects exerted by
senescent cells. This is likely to be complicated given
SASP heterogeneity and its context-dependent effects.
Clarifying SASP involvement will contribute to placing
senomorphics on par with senolytic approaches, increas-
ing the arsenal available to treat senescence-associated
diseases.

To design senotherapies targeted to specific diseases,
wewill need to better understand what cell types undergo
senescence, particularly since eliminating certain senes-
cent cell types can be harmful (Grosse et al. 2020). Clarifi-
cation of the molecular and physiological properties of
senescent cells, including their SASP profile, is also need-
ed. The advancement of single-cell technologies will like-
ly further these efforts. Indeed, while a number of SASP
regulators have been identified to date, most modulators
interrogated thus far impact on the proinflammatory
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and immune-modulatory SASP, but it is unclear which
signaling pathways influence the profibrotic or proangio-
genic SASP, for example. It is also important to be able
to decipher regulators of the SASP per se rather than those
underpinning more generic inflammatory processes. Sep-
arating the SASP from inflammatory events distinct from
senescence is a current challenge; this will hopefully be
helped by the identification of reliable in vivo markers
of senescence and models that allow for targeted manipu-
lation of SASP regulatory factors within senescent cells. It
is unlikely that complete SASP disruption will ever be
beneficial; rather a better appreciation of the different
arms of the SASP, and the effects that they exert, is need-
ed. Knowledge of the regulatory processes that are at play
in bystander cells, and how bystander responses change
depending on tissue, with age, or in particular disease
states, will also be of value. This is partly exemplified by
the complex, and often varied, responses elicited by the
SASP in cancer. A clear understanding of these differences
will help inform when and how prosenescence therapies
and senotherapies are used. Answers to some of these
questions are needed promptly, particularly as induction
of senescence in cancer cells is emerging as a therapeutic
concept and senolytics are now being trialed in humans,
albeit the safety and efficacy of these compounds for hu-
man use still remain to be fully determined (Hickson
et al. 2019). While the dynamic and ever-evolving conse-
quences of senescence appear increasingly complex, one
thing is certain: The therapeutic opportunities can be
transformative, provided we harness them correctly.
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