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Metastasis is the ultimate “survival of the fittest” test for
cancer cells, as only a small fraction of disseminated tu-
mor cells can overcome the numerous hurdles they en-
counter during the transition from the site of origin to a
distinctly different distant organ in the face of immune
and therapeutic attacks and various other stresses. During
cancer progression, tumor cells develop a variety of mech-
anisms to cope with the stresses they encounter, and ac-
quire the ability to form metastases. Restraining these
stress-releasing pathways could serve as potentially effec-
tive strategies to prevent or reduce metastasis and im-
prove the survival of cancer patients. Here, we provide
an overview of the tumor-intrinsic, microenvironment-
and treatment-induced stresses that tumor cells encoun-
ter in the metastatic cascade and the molecular pathways
they develop to relieve these stresses. We also summarize
the preclinical and clinical studies that evaluate the po-
tential therapeutic benefit of targeting these stress-reliev-
ing pathways.

Metastasis, by which cancer cells spread from primary
sites to distant organs, is a highly inefficient process (Gup-
ta and Massagué 2006; Valastyan and Weinberg 2011;
Celia-Terrassa and Kang 2016), which requires (1) local in-
vasion and distant extravasation (Aiello and Kang 2019;
Lu and Kang 2019), (2) survival of circulating tumor cells
(CTCs) (Micalizzi et al. 2017), and (3) colonization and
outgrowth in distant organs (Chambers et al. 2002; Mas-
sagué and Obenauf 2016). Although conventional treat-
ments such as chemotherapy, radiation and targeted
therapy have achieved considerable success (Tolaney
et al. 2015; Goncalves et al. 2018), metastatic disease is
more resistant to these treatment strategies (Lambert
et al. 2017) and is still responsible for a large majority of
cancer related deaths (Gupta and Massagué 2006; Seyfried
and Huysentruyt 2013). Thus, it is imperative to develop
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therapeutic strategies that can effectively prevent or re-
duce metastasis.

During cancer metastasis, tumor cells encounter nu-
merous stresses that force them to develop pathways to
gain improved fitness in the metastatic cascade. Instead
of behaving as traditional driver oncogenes that directly
cause cancer, these “metastasis fitness genes” increase
the odds of successful metastasis by relieving stresses
that are not encountered by normal cells in physiological
conditions. Such metastasis fitness genes could serve as
novel targets for therapeutic intervention. In this review,
we summarize the stresses that tumor cells encounter in
the metastatic cascade and the mechanisms they devel-
oped to cope with these stresses. We also discuss the
potential preventive or therapeutic treatments for metas-
tasis by targeting these metastasis fitness pathways.

Stresses from tumor microenvironment

Tumor cells are surrounded by stromal cells and a noncel-
lular compartment, which are comprised of a microenvi-
ronment that produce stresses to restrain tumor growth
and metastasis. In this section, we briefly discuss the com-
mon stresses from the tumor microenvironment without
distinguishing primary and metastatic sites, as many of
such stresses are present in both primary and distant sites.
The crosstalk between tumor cells and their microenvi-
ronment reshapes the microenvironment to release such
stresses and results in increased metastasis fitness, allow-
ing primary tumor cells to gain metastatic abilities and
thrive in distant organs (Fig. 1).

Fibroblasts: from metastasis suppression to promotion

Malignant cells predominantly interact with normal fi-
broblasts at early stages. In vitro studies revealed that co-
lon cancer cells have reduced proliferation when
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Figure 1. Pathways activated in metastatic cancers to relieve various microenvironmental stresses and therapeutic options to restore
such stresses. The clockwise schematic diagrams list various molecular mechanisms and therapeutic strategies. (CAFs) Cancer-associated
fibroblasts (CAFs) promote tumor progression and metastasis by secreting supportive factors, such as fibroblast growth factors (FGFs).
Monoclonal antibody (Sibrotuzumab) and monoclonal antibody conjugated with cytotoxic drug maytansine (FAP5-DM1) target CAFs,
while Dovitinib and monoclonal antibody GP369 inhibit FGF receptor. (ECM stiffness) Both tumor cells and the recruited CAFs increase
collagen and fibronectin deposit to make a stiffer extracellular matrix (ECM). All-trans retinoic acid that deactivates CAFs and fibronectin
neutralization antibody L19-TNF restore the ECM stress to inhibit metastasis. Other ECM targeting strategies including inhibitors
against ECM-modifying enzymes such as lysyl oxidases (LOXs) and matrix metalloproteases (MMPs), or against ECM receptors. (Hypoxia)
Hypoxia is commonly observed in solid tumors. Although long-term hypoxia could inhibit metastasis by suppressing angiogenesis, inter-
mittent hypoxia promotes metastasis via hypoxia-inducible factor (HIF)-mediated pathways. Anti-metastasis agents that target HIFs
(EZN-2968, Acriflavine, PT2385, and PT2399) or block HIF’s transcriptional activity (Chetomin and Bortezomib) are under development.
(Metabolic reprogramming) In addition to inducing hypoxia, HIFs also reprogram metabolic pathways by altering the tricarboxylic acid
(TCA) cycle and enhancing glycolysis to promote tumor progression and metastasis. Such metabolic adaptation of metastatic cancer
can be blocked by dichloroacetate (DCA) and metformin, which target pyruvate dehydrogenase kinase (PDK) and mitochondrial complex
I, respectively, to influence TCA. In addition, 2-deoxyglucose treatment and targeting lactate dehydrogenase A reduce endogenous
glycolysis. (Immunesurveillance) Tumor cells can be recognized and eliminated by immune cells such as NK and cytolytic T cells.
Such immune stress inhibits tumor survival and distant metastasis, but tumor cells often develop multiple pathways to relieve the im-
mune stress. First, tumor cells could modulate the microenvironment to enhance the inhibitory immune checkpoint pathway, and induce
T-cell exhaustion. Meanwhile, tumor cells can inhibit immune cell activity by recruiting suppressive cell types, such as neutrophils and
regulatory T cells. Tumor cells can also reduce antigen presentation to inhibit the immune recognition. A few therapeutic strategies have
been approved by the FDA or are under development to restore immunosurveillance. These strategies include immune checkpoint block-
ade antibodies and agents that target T-cell intracellular pathways to reduce the exhaustion, engineered T cells (CAR-T and TCR-T) to
enhance the T-cell activity and tumor recognition, oncolytic virus to induce proinformatory environment and enhance T-cell recognition
and activity; and elevating tumor antigen presentation by targeting tumor intrinsic pathways, such as Panobinostat that inhibits histone
deacetylases to restore human leukocyte antigen (HLA) class I antigen presentation machinery expression.
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cocultured with CCD-18Co and BJ, which are normal co-
lon and skin fibroblasts, respectively (Koh et al. 2019),
suggesting that normal fibroblasts restrain tumor progres-
sion. Consistently, fibroblasts isolated from disease-free
tissues inhibit breast cancer metastasis in vivo (Dumont
et al. 2013). However, in advanced stage diseases, can-
cer-associated fibroblasts (CAFs) facilitate metastasis
development (Fig. 1, CAFs). In gastric cancer, the
TNFR2-NF-kB-IRF-1 pathway is activated in tumor cells,
which in turn promotes the release of TNF-a and increases
IL-33 secretion from CAFs. IL-33 signals to its receptor
ST2L in tumor cells and induces epithelial-to-mesenchy-
mal transition (EMT) to promote gastric cancer invasion
and distant metastasis (Zhou et al. 2020). In an in vitro
3D coculture system of MDA-MB-231 breast cancer cells,
tumor cells activate normal human dermal fibroblasts and
human primary mammary fibroblasts, which release ma-
trix metalloproteinases (MMPs) and SDF-1a/CXCL12 to
accelerate aggregation and coalescence of MDA-MB-231
cells (Wessels et al. 2019). Reflecting a phenotypic change
from metastasis-suppressive normal fibroblasts to metas-
tasis-promoting CAFs, gene expression profiling showed
that normal fibroblasts have high expression of S100A4,
TGF-p, FGF2, PDGFB, and TIMP1, while paired CAFs
showed higher levels of FGF7, IL-6, CCL-2, MMP2,
MMP9, and MMP11 (Gonzilez et al. 2016). In metasta-
sis-promoting CAFs, RasGAP and RASAL3 are silenced
by promoter hypermethylation at the epigenetic level, al-
lowing the activation of the Ras signaling to promote can-
cer progression and metastasis (Mishra et al. 2019).

ECM stiffness

Extracellular matrix (ECM), which is deposited by both
malignant and stromal cells, not only provides a physical
scaffold for cells, but also initiates signaling events that
are required for tissue morphogenesis, differentiation
and homeostasis (Frantz et al. 2010). Proteoglycans and fi-
brous proteins are two major components of ECM (Schae-
fer and Schaefer 2010). In normal physiological
conditions, nonactivated host cells, such as fibroblasts,
deposit and organize proteoglycans and fibrous proteins
to maintain a tensional homeostasis. Meanwhile, ECM
continuously undergoes remodeling to maintain a normal
level of stiffness and resist compressive and other stresses
in normal tissues (Egeblad et al. 2010). Such remodeling is
precisely controlled by MMPs, its counterparts, tissue in-
hibitors of metalloproteinases, and other enzymes, such
as lysyl oxidase (LOX) (Mott and Werb 2004; Lucero and
Kagan 2006; Cruz-Munoz and Khokha 2008; Hynes 2009).

Interestingly, such stiffness levels in normal tissues
generate stress to suppress proliferative and migratory sig-
naling in cells (Fig. 1, ECM stiffness). For example, breast
cancer cells grown in matrix with a stiffness level similar
to normal tissue have suppressed Rho/FAK signaling, re-
sulting in inhibited proliferation and migration (Wozniak
et al. 2003). In contrast, stiffer ECM is required for EMT
and metastasis in hepatocellular carcinoma (Dong et al.
2019b). However, tissue stiffness varies greatly in the hu-
man body, ranging from very soft tissues such as brain or
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breast (Miller et al. 2000; Griesenauer et al. 2017) to rigid
tissues, such as bone (Zysset et al. 1999). In the context of
metastasis, tumor cells that travel across different organs
are challenged by these distinct stiffness conditions. To
release such stress, ECM stiffness is altered by tumor cells
to facilitate metastasis (Paszek et al. 2005; Levental et al.
2009). For example, breast tumor tissues are twenty times
stiffer than normal mammary gland due to increased dep-
osition of ECM from tumors and CAFs (Walker et al.
2018).

Moreover, not only the tumor mass, but also the sur-
rounding stroma and vasculature exhibit increased stiff-
ness (Lopez et al. 2011). Such increased ECM stiffness
induces miR-18a expression in breast cancer cells, which
in turn reduces expression of the tumor suppressor phos-
phatase and tensin homolog (PTEN) and promotes breast
cancer progression and metastasis (Mouw et al. 2014). Stiff
tissue also promotes EMT through the TWIST1-G3BP2
mechanotransduction pathway to enhance metastasis
(Wei et al. 2015). In addition to the TWIST-G3BP2 signal
axis, the Hippo pathway is also involved in mechanotrans-
duction (Meng et al. 2016). Specifically, YAP/TAZ, which
are the core Hippo pathway downstream components, are
highly activated in a stiff ECM (Dupont et al. 2011), which
in turn promote metastasis (Lamar et al. 2012; Lau et al.
2014). Additionally, stiff ECM-mediated mechanical com-
pression induces miR-9 promoter methylation in breast
cancer; and such epigenetic regulation silences miR-9
and elevates the expression of its inhibitory target vascu-
lar endothelial growth factor (VEGF)-A to promote metas-
tasis (Kim et al. 2017).

Although a stiffer microenvironment is essential for
cancer metastasis and is correlated with poor clinical out-
comes (Seewaldt 2014), the stiffness of the tumor cell it-
self is inversely correlated with its migration and
invasion capability (Swaminathan et al. 2011). Cancer
cells decrease myosin II expression to decrease stiffness
and gain higher migration/invasion potential (Swamina-
than et al. 2011). In summary, tumors build a stiffer
ECM microenvironment and attenuate self-stiffness to fa-
cilitate metastasis.

Hypoxia

Oxygen is required for energy production and oxygen
depletion creates tremendous stress in living cells. An ef-
fective oxygen delivery system is developed by the 8th
week of gestation in humans to guarantee a precise
developmental process (Semenza 2014). In normal physio-
logical conditions, tissues experience various levels of ox-
ygen pressure, ranging from 26 to 51.6 mmHg (McKeown
2014). Such diverse oxygen levels are precisely controlled
to maintain oxygen homeostasis in each organ and ensure
its function (Carreau et al. 2011; McKeown 2014). Howev-
er, the disruption of oxygen homeostasis is commonly ob-
served in pathological conditions, such as cardiovascular
disease and cancer. In low oxygen conditions (hypoxia),
the cells develop various coping strategies, such as arrest-
ing cell proliferation, reducing energy consumption, and
migration.
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Hypoxia has been recognized as one of the hallmarks of
cancer (Hanahan and Weinberg 2011). A majority of solid
tumors contain hypoxic regions due to the abnormality of
vasculature and high oxygen demands. Hypoxia induces
the activation of a variety of signaling pathways. The
hypoxia-inducible factors (HIFs) are master regulators of
oxygen homeostasis (Ke and Costa 2006). HIF-1a is ubig-
uitously expressed in all mammalian cells, but the pro-
tein is unstable in normoxic conditions through the
proline hydroxylation-mediated ubiquitination of HIF-1a
by von-Hippel Lindau (VHL) ubiquitin ligase and the sub-
sequent proteasomal degradation (Groulx and Lee 2002;
Strowitzki et al. 2019), and becomes stabilized during
hypoxia to trigger downstream responses (Semenza
2012). In addition, MAPK/ERK and NF-kB activations
have also been reported to be associated with hypoxia
(Muz et al. 2015). Previous studies indicated that long-
term exposure of lung tumor bearing animals to hypoxia
significantly reduces tumor progression and metastasis
(Yu and Hales 2011). Although HIFs, such as HIF-la
and HIF-2a were induced in this context, decreased
microvessel density and lower ATP production account
for the suppression of lung cancer progression and metas-
tasis (Yu and Hales 2011). The study suggests that long-
term and persistent hypoxia restrains metastasis (Fig. 1,
hypoxia).

On the other hand, intermittent hypoxia exacerbates
melanoma and lung cancer metastasis (Li et al. 2018;
Kang et al. 2020). Intermittent hypoxia induced high ex-
pression of HIF-la, metastasis-related MMP as well as
VEGF to promote metastasis (Kang et al. 2020). Moreover,
increased nuclear translocation of p-catenin and activated
WNT/B-catenin signaling under hypoxia promotes the
proliferative and migratory properties of tumors (Kang
et al. 2020). Consistently, hypoxia is associated with me-
tastasis and poor patient outcomes in the clinic (Luan
et al. 2013). Indeed, accumulating evidence revealed that
hypoxia is a key factor that supports metastasis (Rankin
et al. 2016).

Hypoxia contributes to metastasis by influencing mul-
tiple steps of the metastatic cascade, such as invasion, ex-
travasation, colonization, and outgrowth in distant
organs. EMT is essential for cancer metastasis (Lu and
Kang 2019). Previous studies indicated that HIFs, which
are induced by hypoxia, promote invasion and extravasa-
tion by directly regulating the EMT transcription factors:
Twist (Yang et al. 2008), ZEB1 (Zhang et al. 2015), and
Snail (Luo et al. 2011). In addition, HIFs induce expression
of VEGF, which stimulates angiogenesis and promotes
metastasis (Joyce and Pollard 2009; Tamura et al. 2020).
In addition to directly reshaping tumor cells, hypoxia
also induces epigenetic reprogramming of normal stromal
fibroblasts to result in a CAF-like transcriptome in the
cells, which in turn supports cancer progression and me-
tastasis (Becker et al. 2020).

Metabolic reprogramming

Metabolic reprogramming is another well documented
feature of cancer. The metabolic activities of tumor cells
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are profoundly altered, which could either restrain or ac-
celerate metastasis (Fig. 1, metabolic reprogramming).

Hypoxia induces reactive oxygen species (ROS), which
significantly alters metabolic activities in tumor cells.
Some metabolic enzymes are directly regulated by ROS
levels in cancer (Bhardwaj and He 2020). Moreover,
many glycolytic proteins, such as glucose transporters 1
and 3, are transcriptionally activated by HIF-1 under hyp-
oxia, and enhance glycolysis and pentose phosphate path-
ways in cancer (Ghanbari Movahed et al. 2019). The
expression of pyruvate dehydrogenase kinase (PDK) is
also activated by HIF-1, which suppresses the activity of
pyruvate dehydrogenase and consequently alters the tri-
carboxylic acid (TCA) cycle in tumor cells (Lu et al.
2008). All these changes result in increased glucose and
glutamine metabolism and lactate production during can-
cer progression and metastasis.

Metabolic reprogramming promotes distant dissemina-
tion of tumor cells. In lung cancer, activated EGFR phos-
phorylates UDP-glucose 6-dehydrogenase (UGDH),
which is a key enzyme in the uronic acid pathway that
converts UDP-glucose to UDP-glucuronic acid. Phosphor-
ylated UGDH protects the HuR-mediated Snail mRNA
stability and thus promotes EMT to enhance metastasis
(Wang et al. 2019c¢). Similarly, in breast cancer, patients
with higher asparagine synthetase expression are more
vulnerable to metastatic relapse (Knott et al. 2018). Aspar-
agine synthetase is a key metabolic enzyme that converts
aspartate and glutamine to asparagine and glutamate
(Lomelino et al. 2017). Given the fact that EMT-related
proteins have higher ratios of asparagine, asparagine syn-
thetase depletion significantly attenuates breast cancer
metastasis by suppressing EMT (Knott et al. 2018). More-
over, an earlier study indicated that tumor cells overcome
metabolic stress and promote metastasis by limiting acti-
vation of the nutrient sensor AMP-activated protein ki-
nase and releasing the cell motility effector FAK (Caino
et al. 2013). Epigenetic changes in tumors have also been
observed to relieve metabolic stress. For instance, tumor
suppressor genes PTEN, Liver Kinase B1 (LKB1), and
VHL are epigenetically silenced by promoter hypermethy-
lation, leading to the activation of cancer-related metabo-
lism pathways such as PIBK/AKT/mTOR and HIF-1
(Trojan et al. 2000; Soria et al. 2002; Vanharanta et al.
2013). Finally, tumor cells under metabolic stress can
also escape from immunosurveillance via decreased sur-
face expression of the major histocompatibility complex
(MHC) class I (Marijt et al. 2019; Nunes and Everts 2019).

Immunosurveillance

Immunosurveillance eliminates pathogens and mutated
cells to protect us from diseases, including cancer. Cyto-
toxic T cells are the main immune population that kills tu-
mor cells and eradicates metastasis. Cytotoxic T-cell
infiltration is correlated with good metastasis-free sur-
vival in cancers (Zhang et al. 2003; Pages et al. 2005), sug-
gesting that these cells restrain metastasis. T cells are
activated by tumor-specific antigens presented by antigen
presenting cells and MHC or human leucocyte antigen



(HLA) class I-positive malignant cells. The activated T
cells then destroy tumor cells through granule exocytosis
or death ligand/receptor systems to induce apoptotic death
(Fig. 1, immunosurveillance). In a prostate cancer model,
activated cytotoxic T cells are associated with high expres-
sion of Granzyme B, which restrains tumor progression
through the granule exocytosis pathway (Poggio et al.
2019). Similarly, activated cytotoxic T cells express death
ligands, such as TNF-a that is recognized by TNF receptors
(death receptor) to trigger cell death (Vredevoogd et al.
2020). Natural killer (NK) cells also control metastasis
through granule exocytosis or death ligand/receptor sys-
tems (Lopez-Soto et al. 2017; Barrow et al. 2018; Lorenzo-
Herrero et al. 2019). Interestingly, as part of the innate
immune response, NK cells predominantly eliminate
HLA class I-negative (antigen presentation-deficient) tu-
mor cells to control metastasis. Moreover, the NK cell-me-
diated killing of such tumor cells seems to be more effective
if the tumor cells are disseminated through blood circula-
tion instead of the lymphatic system (Garrido and Aptsiauri
2019). This observation is evidenced by the accumulation
of HLA class I-positive liver metastatic cells in a colorectal
cancer model, in which tumor cells disseminate to the liver
via portal vein (Kloor et al. 2010). Collectively, metastatic
suppression in different organs is based on HLA class I lev-
els in tumor cells, as T cells and NK cells recognize and kill
HLA class I-positive and -negative metastatic cells, respec-
tively (Garrido and Aptsiauri 2019). In addition to T cells
and NK cells, other immune components, such as macro-
phages (Shang et al. 2019), mast cells (Komi and Redegeld
2020), and dendritic cells (Wang et al. 2019b), have also
been reported to suppress metastasis.

Although immune stress attenuates metastasis, tumor
cells develop alternative pathways to release such stress.
For example, cytolytic T-cell exhaustion is commonly ob-
served in cancers (Wherry 2011). To maintain balance be-
tween disease prevention and autoimmune defects,
costimulatory and inhibitory immune checkpoint proteins
are expressed on the immune cell surface to precisely con-
trol their activity. Tumor cells take advantage of the check-
point system to induce T-cell and NK cell exhaustion. The
programmed death ligand-1/programmed death-1 (PD-L1/
PD-1) signaling pathway is one of the most well studied in-
hibitory immune checkpoint pathways. Upon binding PD-1
and PD-L1, T cells become exhausted and undergo apopto-
tic cell death (Zou et al. 2016). As discussed above, tumors
are commonly under hypoxia, and such stress could elevate
PD-L1 via HIF-1a to induce T-cell exhaustion and promote
metastasis (Noman et al. 2014). Consistently, higher PD-1
or PD-L1 expression is commonly observed in patients
with worse clinical outcomes. In addition, tumor cells
may also act through other inhibitory pathways, such
CTLA-4 (Seidel et al. 2018), LAG-3 (Andrews et al. 2017),
NKG2A (Sun et al. 2017), and Tim-3 (Das et al. 2017) to en-
hance T-cell and NK cell exhaustion and escape from
immunosurveillance.

Besides inducing exhaustion, tumor cells also relieve
immune stress through other pathways. Losing antigenic-
ity is one of the common mechanisms tumors use to sup-
press T-cell-mediated tumor cell elimination. Previous
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studies found that the expression of the human long non-
coding RNA, LINK-A, in breast tumors down-regulates
antigen peptide-loading complex via K48-polyubiquitina-
tion-mediated degradation to inhibit tumor antigen
presentation and promote cancer progression and metas-
tasis (Hu et al. 2019b). Moreover, tumor cells also reduce
antigen processing and presentation through epigenetic
regulation, such as histone deacetylation, which silences
the HLA class I antigen processing machinery, such as
LMP2, LMP7, TAP1, and TAP2 (Ritter et al. 2017). Such
epigenetic alteration decreases tumor antigen presenta-
tion, and as a result, facilitates the escape of the tumor
cells from immunosurveillance.

In addition to these cell-autonomous pathways, tumors
also reshape the tumor microenvironment to prevent T-
cell infiltration and activation. In melanoma, WNT/p-cat-
enin signaling in tumors attenuates C-C motif chemokine
ligand (CCL)-4 production in the microenvironment, in-
hibiting the recruitment of dendritic cells and then sup-
pressing T-cell accumulation and activation (Spranger
et al. 2015). Similarly, tumor cells remodel ECM to inter-
rupt T-cell trafficking and accumulation (Slaney et al.
2014). Moreover, tumors recruit regulatory T cells (Treg)
to suppress cytolytic T cells. For example, Polycomb re-
pressor complex 1 promotes prostate cancer metastasis
by enhancing CCL-1 secretion, which recruits Tregs to
suppress immunosurveillance (Su et al. 2019) (Fig. 1,
immunosurveillance).

In addition to suppressing tumor-killing immune cells,
tumor cells also actively recruit tumor-promoting im-
mune components. Neutrophils have been reported to
support cancer metastasis. Studies indicated that tumor-
derived CXCL5 recruits neutrophils (Zhou et al. 2012,
2014a), which creates a premetastatic niche to facilitate
metastatic colonization (Wculek and Malanchi 2015;
Liang et al. 2018). Moreover, tumor cells secret multiple
cytokines, chemokines and other factors, such as colony-
stimulating factor 1 and CCL-2 to attract and induce the
M2 polarization of macrophages (Qian and Pollard 2010;
Su et al. 2019). M2 macrophages in turn secrete a variety
of anti-inflammatory cytokines such as IL-4, IL-10, and
IL-13, as well as expressing abundant arginase-1, mannose
receptor, and scavenger receptors to relieve immune stress
and promote cancer metastasis (Lin et al. 2019; Su et al.
2019).

In summary, tumor cells at primary and metastatic sites
commonly suffer from various stresses in the microenvi-
ronment as noted above, and metastatic fitness is enhanced
as a by-product of stress-relieving mechanisms. Of note,
many residual cancers display a period of dormancy before
emerging as clinically significant metastases (Sosa et al.
2014). Specifically, dormancy can be classified as tumor
mass dormancy or cellular dormancy (Aguirre-Ghiso
2007). In general, dormant tumor cells may also be chal-
lenged by the same stresses from tumor microenviron-
ments as noted above. Tumor cells under tumor mass
dormancy are suppressed by angiogenic defects-induced
hypoxia and metabolic stresses as well as immunosurveil-
lance (Holmgren et al. 1995; Koebel et al. 2007), and such
stresses can be relieved to facilitate metastasis with the
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mechanisms described above. On the other hand, stress
from ECM could result in cellular quiescence to induce cel-
lular dormancy through integrin-FAK signaling (Aguirre
Ghiso 2002; Shibue and Weinberg 2009), while increased
ECM stiffness relieves such stress to reactive dormant can-
cer cells and promote metastasis (Barkan et al. 2010).

Stresses in circulation

The detachment of malignant cells from the primary tu-
mor microenvironment to become CTCs in circulation
is a critical step for metastasis. Although millions of
CTCs are shed into circulation every day, it was estimated
that <0.02% of them are able to form metastasis in distant
organs (Chambers et al. 2002). CTCs are constantly chal-
lenged by numerous stresses, such as immune cell killing
(as discussed above), anoikis, and fluid shear stress. Over-
coming such stresses is indispensable for boosting the me-
tastasis fitness of CTCs.

Anoikis

Detachment of tumor cells from cellular and noncellular
components in primary tumors is essential for the dissem-
ination of tumor cells. However, losing contact with these
components also triggers apoptosis, which is termed as
anoikis (Paoli et al. 2013). Anoikis is a defensive mecha-
nism to prevent the ability of the detached cells to reside
and grow in an incorrect location in normal physiological
conditions; however, it also serves as a significant barrier
for cancer metastasis. Upon detachment, anoikis is in-
duced by death receptor and mitochondria-mediated apo-
ptotic pathways (Fig. 2). Specifically, death receptors (i.e.,
Fas or TNFR1) activate caspase-8, leading to the cleavage
and activation of caspase-3. Meanwhile, BH3-only pro-
teins (i.e., Bim and Bad) promote the assembly and activa-
tion of Bax-Bad complex in mitochondria, and

consequently activate caspases to trigger apoptosis (Paoli
et al. 2013). However, metastatic tumor cells develop a va-
riety of pathways to resistant anoikis (Simpson et al.
2008). A gain-of-function genomic screen identified tropo-
myosin receptor kinase B (TrkB), a neurotrophic tyrosine
kinase receptor, as a potent inhibitor of anoikis and pro-
moter of metastasis (Douma et al. 2004). MTDH has
been shown to promote anoikis resistance by enhancing
autophagy through the protein kinase RNA like ER kinase
(PERK)—eIF2a—ATF4—CHOP signaling axis in hepato-
cellular carcinoma (Zhu et al. 2020). Moreover, pancreatic
cancer cells with hyperactivated STAT3 signaling were
found to be more anoikis-resistant and with higher met-
astatic potential (Fofaria and Srivastava 2015). Addition-
ally, breast cancer cells induce anoikis resistance by
losing E-cadherin expression (Derksen et al. 2006). In gas-
tric cancer models, Wnt5a activates tumor RhoA to in-
hibit anoikis in E-cadherin-depleted cells (Hayakawa
et al. 2015). Furthermore, in lung cancer, elevated
expression of Aiolos, which is a lymphocyte lineage-re-
stricted transcription factor, remodels chromatin struc-
ture and epigenetically silences the anchorage reporter
p66(She) to block anoikis and promote metastasis (Li
et al. 2014).

In addition to these cell-autonomous pathways, tumor
cells also protect themselves from anoikis by modulating
the microenvironment. Zhu et al. (2011) found that tu-
mors regulate ROS status in the microenvironment to
trigger PI3K/PKBa and ERK prosurvival pathways to pro-
mote anoikis resistance. Moreover, tumor cells also es-
cape from anoikis by recruiting CAFs, which secrete
insulin-like growth factor-binding proteins to stabilize
anti-apoptotic protein Mcl-1 (Weigel et al. 2014).

Fluid shear stress

After entering the blood or the lymphatic circulation, the
tumor cells suffer from fluid shear stress generated by the

Fluid shear stress-

Figure 2. Stresses upon detachment and in circu-
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have shown anti-metastasis efficacy in preclinical studies.
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flow of liquids (Follain et al. 2020). Given the distinct vas-
cular architecture across the body, the blood/lymphatic
flow rates changes constantly, resulting in harsh fluid
shear stress to CTCs (Wirtz et al. 2011). Fluid shear stress
was found to induce cancer cell death through a BMPRs/
Smadl,5/p38 MAPK signaling-dependent apoptosis path-
way (Lien et al. 2013). Moreover, fluid shear stress sensi-
tizes tumor cells to tumor necrosis factor-mediated
apoptosis in colon and prostate cancers (Mitchell and
King 2013). These findings indicate that fluid shear stress
restrains metastasis by reducing CTC survival (Fig. 2).
On the other hand, reducing fluid shear stress promotes
cancer invasion and metastasis as cancer cells develop
various mechanisms to cope with the stress. The expres-
sion of genes that are related to metastasis, such as EMT
regulators, are greatly altered in cancer cells under fluid
shear stress (Cognart et al. 2020). Wang et al. (2018) found
that fluid shear stress induces autophagy in hepatocellular
carcinoma cells, which in turn up-regulates PI3K, FAK
and Rho GTPases to promote cell migration. Fluid shear
stress was also found to activate YAP1 and PLAU signal-
ing to enhance metastasis in prostate (Lee et al. 2017)
and breast cancer (Novak et al. 2019), respectively. Fluid
shear stress further triggers the VEGF-VEGFR2-AKT-
ATOHS signal axis to enhance the CTC survival in colon
cancer (Huang et al. 2020). In addition to altering cell in-
trinsic pathways to overcome fluid shear stress and induce
metastatic properties, CTCs also protect themselves from
the stress by forming clusters (Aceto et al. 2014) or by re-
cruiting platelets in the circulation (Gay and Felding-Hab-
ermann 2011). Taken together, although various stresses
in the circulation eliminate most of the CTCs and dictate
metastasis as a low efficiency process, surviving cells ac-
quire essential traits with enhanced metastasis fitness.

Stresses at colonized organs

In addition to these common stresses from the tumor mi-
croenvironments as noted above, tumor cells also have to
cope with organ-specific stresses in order to survive and
form new colonies once they reach metastatic organs.
Here, we focus on brain, lung, liver, and bone, which are
common organ sites affected by metastasis (Obenauf and
Massagué 2015; Smith and Kang 2017).

Brain

The brain, which is separated from the rest of body by the
blood-brain barrier, has a unique microenvironment. The
blood-brain barrier presents an obstacle to not only tumor
cells (Fig. 3A) but also therapeutic drugs, reducing their
treatment efficacy for brain metastasis. However, cancer
cells remodel the blood-brain barrier and enhance its per-
meability to bypass the tight junctions (Fares et al. 2020).
For example, MMP9 is up-regulated by tumor-derived
metalloprotease disintegrin ADAMS, which then pro-
motes transendothelial migration through the blood-
brain barrier (Conrad et al. 2018).

Tumor cells encounter a variety of brain-specific stro-
mal cells, such as astrocytes, microglia and neurons, af-

Stress in metastasis: mechanisms and therapeutics

ter the blood-brain barrier transmigration. Among
these stromal cells, the contribution of astrocytes to
brain metastasis is well characterized. Astrocytes chal-
lenge the survival of the infiltrated tumor cells by releas-
ing the proapoptotic cytokine Fas ligand (FasL). However,
brain metastatic cells neutralize FasL-mediated killing
by expressing serpins that target astrocyte-derived plas-
minogen activator, which is essential for the release of
FasL (Valiente et al. 2014). Moreover, factors that are se-
creted from brain metastatic cells, such as EGF, TGFaq,
and macrophage migration inhibitory factor (MIF), acti-
vate STAT3 signaling in astrocytes, which in turn pro-
mote the survival, proliferation and stemness of tumor
cells (Priego et al. 2018). STAT3 activated astrocytes
also prevents the immune elimination of brain colonized
tumor cells (Priego et al. 2018), further enhancing brain
metastasis.

Lung

As an organ with extensive exposure to the outside envi-
ronment, the lung creates barriers and stresses to deter
colonization by potential pathogens as well as metastatic
tumor cells. The tight junctional barrier formed by
endothelial cells serves as a structural obstacle for lung ex-
travasation. Moreover, immune populations, such as acti-
vated CD8" T cells, prevent lung colonization through
anti-metastatic immunity (Fig. 3B).

However, lung metastases are frequently observed in a
variety of cancer types. Tumor cells start to relieve such
physical and immune stresses even before they reach
the organ. Secreted factors from primary tumors remodel
the lung microenvironment to generate premetastatic
niches. For example, primary tumor cells under hypoxia
produce LOXs, which remodel the lung by increasing
the adhesion of myeloid cells to create a premetastatic
niche (Erler et al. 2009). Moreover, tumor secreted miR-
21 and miR-29a bind as ligands to Toll-like receptors to in-
duce prometastatic inflammatory response and promote
lung metastasis (Fabbri et al. 2012). Once in the lung, tu-
mor cells secrete miR-105 to silence tight junction protein
zona occludens 1 (ZO1) and breach the endothelial barrier
to enhance lung colonization (Zhou et al. 2014b). Tumor
cells also hijack a4 integrin-expressing macrophages to
trigger the initial prosurvival signaling following coloni-
zation (Chen et al. 2011). Moreover, by recruiting neutro-
phils, tumor cells suppress CD8" T-cell activation to
restrain anti-metastatic immunity (Wculek and Malanchi
2015).

Liver

Unlike the brain and lung, the vessels in the liver are fen-
estrated and lack an organized basement membrane that
wraps endothelial cells. In this regard, liver metastatic
cells face much less stress from tight junctional barriers
during extravasation.

Liver sinusoidal endothelial cells (LSECs) are the first
group of stromal cells that metastatic tumors encounter
in liver. Upon the interaction with tumor cells, LSECs
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Figure 3. Stresses at specific metastatic organs and relieving pathways. (A) The blood-brain barrier serves as the first line of defense to
prevent brain colonization. However, tumor cells transmigrate the barrier by enhancing adhesion, facilitating angiogenesis, inducing en-
dothelial cell apoptosis, and degrading ECM and tight junctions. Upon colonization, while capable of inducing tumor apoptosis at the be-
ginning, astrocytes are activated by tumors via the STAT3 pathway, and instead promote metastatic outgrowth in the brain. Protease
inhibitor Pefabloc and STAT3 inhibitor silibinin may reduce brain metastasis by enforcing blood-brain barrier and deactivating astro-
cytes, respectively. (B) Endothelial cells formed tight junctions to prevent lung colonizing. Immune populations, such as CD8" T cells,
restrain the tumor survival at the lung. However, tumor cells secrete factors, such as miR-105, to target tight junction proteins and bypass
the endothelial barrier. Tumor cells also recruit neutrophils and macrophages to suppress CD8" T-cell activation and gain prosurvival
signaling after lung colonization. (C) Liver sinusoidal endothelial cells (LSECs) release nitric oxide (NO) and IFN-y to induce tumor
cell apoptosis upon interaction. However, tumor cells relieve such apoptotic stress by releasing adhesion molecules, such as ICAM-],
VCAM-], and E-selectin. During liver colonization, Kupffer cells and NK cells can eliminate tumor cells. However, tumor cells educate
Kupffer cells to produce cytokines and growth factors to enhance tumor survival and metastasis. (D) During the development of osteolytic
bone metastasis of breast cancer, tumor cells activate osteoclasts through parathyroid hormone-related peptide (PTHrP)-receptor activator
of NF-kB ligand (RANKL) or Jaggedl/Notch signaling. Tumor cells could also activate osteoblasts via prostate-specific antigen (PSA)-
PTHYP signaling, Osx, Runx-2, or TGFp family members to form osteoblastic lesions. In addition, tumor cells may take advantage of ex-
isting niches for normal adult tissue stem cells, such as hematopoietic stem cell (HSC), to gain prosurvival signaling during bone metas-
tasis. Strategies that target RANKL (Denosumab) or block Jagged1l/Notch signaling (Jaggedl antibody and y-secretase inhibitor) could
restore bone microenvironmental stress and reduce bone metastasis.

secrete nitric oxide (NO) and IFN-y, which result in the
FasL-induced apoptosis to restrain liver colonization

they generate also drive the development of metastasis fit-
ness pathways. For example, upon the interaction of tumor

(Braet et al. 2007). Moreover, following liver colonization,
Kupffer cells, which are bone marrow-derived macrophag-
es, can recognize and eliminate tumor cells (Kimura et al.
2016). Furthermore, Kupffer cells release a variety of cyto-
kines to activate other anti-tumor innate immune popula-
tions, such as NK cells (Van den Eynden et al. 2013).
Collectively, these liver resident cells work together to
prevent liver metastasis (Fig. 3C).

Although LSECs, Kupffer cells, and NK cells serve as the
first line of defense to prevent liver metastasis, the stresses
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cells and LSECs, increased expression of prometastatic
surface adhesion molecules, such as VCAM-I, ICAM-I
and E-selectin have been observed (Brodt et al. 1997).
LSECs also contribute to liver metastasis by facilitating
EMT and tumor-induced angiogenesis (Ou et al. 2014;
Banerjee et al. 2015). Similarly, adhesion to tumor cells
promote the Kupffer cells to produce cytokines and growth
factors, such as IL-6, VEGF, MMP9 and MMP14, to en-
hance tumor survival, proliferation and migration, and
thereby promote liver metastasis (Fig. 3C; Brodt 2016).



Bone

Bone metastasis is a common occurrence in breast and
prostate cancer patients. However, in breast cancer,
less than a quarter of the patients with CTCs have
detectable disseminated tumor cells in bone (Fortunato
et al. 2009), suggesting that there are significant stresses
in the bone to prevent the colonization and growth of
CTCs. Bone is continuously undergoing remodeling, a
process mediated by osteoclasts and osteoblasts; such
highly dynamic remodeling presents challenges for tu-
mor cells colonizing the bone (Croucher et al. 2016).
Moreover, as the weight bearing skeleton of our body,
the bone ECM is usually more rigid than primary sites
as mentioned above, which generates additional stress
to prevent bone metastasis.

To relieve such stresses, bone metastatic cells hijack os-
teoclasts and osteoblasts to create favorable niches for
bone metastasis (Fig. 3D). For example, in breast cancer,
bone metastatic cells express elevated levels of parathy-
roid hormone-related peptide (PTHrP), which triggers os-
teoblasts to release receptor activator of NF-«xB ligand
(RANKL), and thereby activating osteoclasts to form
osteolytic lesions (Macedo et al. 2017). Breast cancer cells
were also reported to activate osteoclast differentiation
and bone metastasis through Jaggedl-Notch signaling
(Sethi et al. 2011; Zheng et al. 2017). Instead of activating
osteoclasts, prostate cancer cells can produce prostate-
specific antigen (PSA) to cleave PTHrP and reduce its ac-
tivity, possibly shifting prostate cancer bone metastasis
to osteoblastic lesions (Iwamura et al. 1996; Macedo
et al. 2017). Bone metastatic cells can also take advantage
of osteogenic and hematopoietic stem cell niches through
adhesion molecules, such as E-selectin and E-cadherin, to
gain stemness and proliferative abilities (Shiozawa et al.
2011; Wang et al. 2015; Esposito et al. 2019). Moreover,
in the face of increased ECM rigidity in bones, tumor cells
have activated GL12 and TGF-f signaling, which enhance
the development of bone metastasis (Ruppender et al.
2010; Johnson et al. 2011).

In summary, tumor cells that disseminate to distant or-
gans are challenged by distinct organ-specific stresses that
limit metastatic colonization. Metastatic cells develop or-
gan-specific pathways to relieve such stresses and enable
successful colonization.

Treatment-induced stresses

In addition to the stresses that are inherently generated
during tumor progression and metastasis, cancer
therapeutics also create harsh conditions either by
directly targeting malignant cells or by remodeling
microenvironments.

Nontargeted therapy

Although surgical removal of tumors could cure the dis-
ease in some cancer patients, accumulating evidence sug-
gests that the surgical insult also increases the risk of
metastasis (Fig. 4A). Moreover, malignant cells may dis-
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seminate to distant organs as early as the preneoplastic
stage (Rhim et al. 2012; Kang and Pantel 2013) and surgical
removal of primary tumors may actually foster the tumor
outgrowth at metastatic sites.

Surgical stress could trigger metastasis through multi-
ple mechanisms. First, the damage to patients’ tissues
could increase the number of tumor cells in circulation
(Yamaguchi et al. 2000), significantly elevating the risk
of metastasis. Second, tissue damage also alters the micro-
environment to promote metastasis. For instance, surgery-
induced wounds or infections create an inflammatory en-
vironment, which then up-regulates lipocalin2 expression
and results in EMT to promote metastasis (Jung et al.
2017). Moreover, surgery induces the production of ECM
proteins, which enhances the attachment and cluster for-
mation of CTCs, and as a result, protects CTCs from anoi-
kis and fluid shear stress (Chen et al. 2019). In addition,
surgery could elicit an immunosuppressive state to pro-
mote the immune escape of tumor cells (Chen et al.
2019). Surgical removal of primary tumors may also elim-
inate a major source of circulating angiogenesis inhibitors,
allowing outgrowth of metastases (O’Reilly et al. 1994).
Last, many anesthetic agents used in surgery have been re-
ported to contribute to tumor metastasis (Tavare et al.
2012).

In addition to surgery, chemotherapies and radiation
therapies are commonly used in cancer patients. Chemo-
therapies and radiation therapies suppress cancer progres-
sion and metastasis by inducing DNA damage, RNA and
protein synthesis alteration, and cell cycle arrest. Al-
though chemotherapy- and radiation-induced stresses
have been proven effective in restraining tumor progres-
sion and metastasis, these therapies are usually associated
with severe side effects due to the lack of specificity. Fur-
thermore, tumor cells can develop pathways to exacerbate
metastasis in response to these treatments (Fig. 4B). For
example, breast cancer cells activate astrocytes (Chen
et al. 2016) and osteoclasts (Zheng et al. 2017) to enhance
chemoresistance and promote brain and bone metastasis,
respectively. Moreover, CAFs that are recruited by tumor
cells were also reported to promote chemoresistance and
metastasis by secreting exosomes (Hu et al. 2019a). Simi-
larly, tumors also release radiation therapy stress with in-
creased metastatic potential through multiple intrinsic
and extrinsic pathways, as summarized by Sundahl et al.
(2018).

Targeted therapy

With increasing knowledge about signaling pathways es-
sential for cancer progression and metastasis, drugs that
target key components of these pathways have been devel-
oped and approved for clinical use (Table 1). For instance,
anti-angiogenic therapies, such as anti-VEGF antibody
(bevacizumab) and VEGF-R tyrosine kinase inhibitor
(sunitinib), which induce angiogenesis stress have been
approved for treatment of colorectal and other cancers
(Table 1). However, tumor cells develop alternative path-
ways to relieve such stress, and sometimes, even enhance
metastasis (Paez-Ribes et al. 2009). Colon cancer cells
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Figure 4. Nontargeted therapy induced stresses. (A) Instead of eliminating tumors, surgical removal could inadvertently enhance metas-
tasis. Surgical process damages tissues to increase CTCs in circulations. Moreover, it alters the microenvironment to promote epithelial-
mesenchymal transition (EMT) and CTC cluster formation and thereby facilitating metastasis. Surgery also creates an immunosuppres-
sive microenvironment to enhance tumor immune evasion. (B) Chemotherapies and radiation therapies prevent metastasis by inducing
DNA damage, RNA & protein synthesis alteration, and cell cycle arrest. However, these therapies also drive tumor-intrinsic treatment
resistant pathways, such as PI3K activation, EGFR hyperactivation, MMPs and integrins elevation. Moreover, chemotherapies and radi-
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the stress and thus promote metastasis.

adapt to bevacizumab and sunitinib treatments by elevat-
ing the expression of VEGF/VEGF-R family members as
well as by activating the neuropilin-1/c-Met pathway, re-
sulting in increased cell migration and invasion (Tomida
et al. 2018). In breast cancer, treatment with poly(ADP-ri-
bose) polymerase (PARP) inhibitor Olaparib promotes os-
teoclast differentiation, immune suppression and bone
metastasis (Zuo et al. 2020). Cancer cells have also been
found to overcome the proliferative and survival stresses
that induced by anti-EGFR or anti-CDK4/6 therapies via
activating PIBK-AKT pathway (Fuchs et al. 2008; Jansen
et al. 2017), which is correlated with increased metastasis
in multiple cancers (Fuchs et al. 2008; Pierobon et al.
2017).

Immunotherapy

Immunotherapy, especially immune checkpoint block-
ade therapy, has achieved impressive clinical success in
some cancer types (Table 1). Immune checkpoints are cru-
cial to prevent immune cells from attacking healthy cells
indiscriminately and maintain immune system homeo-
stasis. However, tumor cells can take advantage of these
checkpoint pathways to escape immunosurveillance.
Anti-CTLA4 or PD-1/PD-L1 immune checkpoint block-
ade strategies have been developed to restore immune
pressure, leading to reduction or complete eradication of
tumors. However, many tumors develop resistant path-
ways to blunt such curative responses and gain metastatic
potential. For example, tumor cells lose PTEN expression
to activate the PI3BK-AKT pathway, which relieves the im-
mune checkpoint blockade therapy-induced stress (Peng
etal. 2016). The activated PI3K-AKT pathway further pro-
motes metastasis as mentioned above (Pierobon et al.
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2017). In addition to tumor cell-autonomous resistance,
CD38 on T cells is elevated upon PD-1/PD-L1 blockade
to allow escape of the tumor from the therapy (Chen
et al. 2018). CD38 has been reported to promote metasta-
sis via adenosine-mediated CD8" T-cell suppression
(Chen et al. 2018). Moreover, tumors under immune
checkpoint blockade therapies have been found to up-reg-
ulate other inhibitory immune checkpoints in T cells,
such as VISTA and TIM-3, to suppress T-cell activation
(Koyama et al. 2016; Gao et al. 2017) and promote cancer
metastasis (Cao et al. 2013; Liao et al. 2018). Finally, tu-
mor cells could remodel the microenvironment to resist
immunotherapy and enhance metastasis. For example,
loss of PTEN in tumors up-regulates VEGF, which in
turn promotes abnormal angiogenesis and limits CD8"
T-cell infiltration to induce PD-1/PD-L1 blockade resis-
tance (Peng et al. 2016). VEGF-stimulated angiogenesis
further increases the risk of metastasis (Skobe et al.
2001; Stacker et al. 2001).

Anti-metastasis therapeutics targeting stress-relieving
pathways

As tumor cells encounter harsh stresses during metastatic
progression or under treatment, stress-relieving mecha-
nisms are developed to bypass these hurdles and increase
the risk of metastasis. Targeting the relevant metastasis
fitness genes serves as a promising strategy to develop
novel therapeutics.

Targeting CAFs

CAF is the major stromal cell type in the tumor microen-
vironment and plays an active role in promoting



Table 1. FDA approved targeted therapies for solid tumors
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Stresses induced by the

Target Agents Applied cancer types treatment
HER2 Trastuzumab emtansine, Neratinib, HER2" breast cancer, HER2" gastric cancer ~ Reduce proliferation and
Pertuzumab, Trastuzumab survival
EGFR and Afatinib, Cetuximab, Erlotinib, Gefitinib, NSCLC, colorectal cancer, head and neck
HER2 Lapatinib, Necitumumab, Osimertinib, cancer, pancreatic cancer, HER2" breast
Panitumumab, Vandetanib cancer, medullary thyroid cancer
ALK Alectinib, Brigatinib, Ceritinib, NSCLC
Crizotinib
mTOR Everolimus, Temsirolimus HR*HER2™ breast cancer; renal cell
carcinoma; neuroendocrine tumors
originate from pancreas, gastrointestinal
tract, and lung
MEK Cobimetinib, Trametinib Melanoma, NSCLC
BRAF Dabrafenib, Vemurafenib Melanoma, NSCLC
CDK4/6 Palbociclib, Ribociclib HR'HER2™ breast cancer Inhibit proliferation
VEGF/ Axitinib, Bevacizumab, Sunitinib, Renal cell carcinoma; cervival, colorectal, Inhibit angiogenesis
VEGFR Cabozantinib, Lenvatinib, Pazopanib,; fallopian tube, ovarian, peritoneal,
Ramucirumab, Regorafenib, Sorafenib, thyroid, and gastric cancers; giloblastoma;
Ziv-aflibercept hepatocelluolar carcinoma; NSCLC
Smoothened  Sonidegib, Vismodegib Basal cell carcinoma Inhibit proliferation,
PDGFR Imatinib, Olaratumab; Gastrointestinal stroma tumor, soft tissue survival and
sarcoma angiogenesis
PARP Niraparib, Olaparib, Rucaparib Fallopian tube, ovarian, and peritoneal Induce DNA damage stress
cancers
RANKL Denosumab Bone giant cell tumor, multiple myeloma, Inhibit osteoclast
bone metastasis from soild tumors differentiation and
activation
B4GALNT1  Dinutuximab Pediatric neuroblastoma Induce metabolic stress
and supress angiogenesis
1L-2 Aldesleukin Renal cell carcinoma, melanoma Enhance
PD-1/PD-L1  Atezolizumab, Avelumab, Durvalumab, Urothelial carcinoma, NSCLC, Merkel cell immunosurveillance
Nivolumab, Pembrolizumab carcinoma, colorectal cancer, head and
neck squamous cell carcinoma,
hepatocellular carcinoma, melanoma,
gastric cancer
CTLA4 Ipilimumab Melanoma, renal cell carcinoma

metastasis. Therapeutic strategies targeting CAFs have
been developed for metastatic cancers (Fig. 1, CAFs).
Sibrotuzumab, which is a humanized prolyl endopepti-
dase (FAP) monoclonal antibody targeting FAP in CAFs,
is currently undergoing a phase II clinical trial for meta-
static colon cancer (NCT02198274). However, no signifi-
cant clinical benefit was observed. Subsequently, anti-
FAP conjugated with a cytotoxic drug maytansine
(DM1) was developed. The resulting agent FAP5-DMI1 de-
livers the cytotoxic drug DMI1 specifically to CAFs to
deplete the cells. Long-lasting tumor regression was ob-
served upon FAP5-DMI1 treatment in preclinical studies
(Ostermann et al. 2008).

CAFs also secrete many factors, such as fibroblast
growth factors (FGFs) to stimulate tumor cells and pro-
mote metastasis. The small molecule inhibitor Dovitinib,
and monoclonal antibody GP369 against FGF receptors
have achieved promising anti-tumor efficacy in preclini-
cal and clinical studies (Bai et al. 2010; Musolino et al.
2017; NCT01528345).

Reducing ECM stiffness

In the stiffer ECM found in tumors, type 1 collagen and fi-
bronectin are abundantly deposited to ECM in the tumor
microenvironment (Cox and Erler 2011). In this regard, re-
ducing stiffness by targeting collagen and fibronectin may
inhibit tumor progression and metastasis (Fig. 1, ECM
stiffness). All-trans retinoic acid, which can deactivate
CAFs to reduce type 1 collagen production, is in clinical
trials for cancer therapy (von Ahrens et al. 2017;
NCT03999684 and NCT00001509). Similarly, antibodies
targeting fibronectin have been developed and tested for
cancer therapy (Han and Lu 2017). Given the promising
data in preclinical models, fibronectin targeting antibody
L19 fused with TNF (L19-TNF) is also currently in clinical
trials (NCT02076633 and NCT01213732; Hemmerle
et al. 2013; Han and Lu 2017). Furthermore, inhibitors
and antibodies that target ECM modifying enzymes,
such as LOXs, are also in development (Winer et al.
2018), with preclinical data showing promising results
that these inhibitors reduce breast cancer metastasis and
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enhance chemotherapy efficacy (Salvador et al. 2017;
Saatci et al. 2020).

Moreover, instead of targeting ECM, therapeutic strate-
gies that block ECM receptors in tumor cells to reinforce
the original stiff stress have also been evaluated. In fact,
many integrin antibodies and inhibitors are currently un-
der clinical trials (Cianfrocca et al. 2006; Raab-Westphal
et al. 2017). Another avenue uses natural ECM compo-
nents with inhibitory functions for therapeutic purpose.
For example, a recent study indicated that treatment of re-
combinant ECM protein Tinagll in mouse models inhib-
its breast cancer progression and metastasis by
simultaneously blocking prometastatic signaling mediat-
ed by integrin a5p1 and EGFR (Shen et al. 2019).

Targeting hypoxia

Induced expression of HIFs allows tumor cells to escape
hypoxic stress and gain metastatic abilities. Therapeutic
agents that target HIFs have been developed and evaluated
(Fig. 1, hypoxia). EZN-2968, which is an antisense oligo-
nucleotide against HIF-1a mRNA expression, is currently
under phase I clinical trial for refractory solid tumors
(NCTO01120288; Jeong et al. 2014). Similarly, Acriflavine,
which inhibits HIF-1 dimerization, prevents tumor
growth and EMT in in vitro and in vivo models (Lee
et al. 2009; Dekervel et al. 2017). A phase I clinical trial
of PT2385, a HIF-2a antagonist, in advanced clear cell re-
nal cell carcinoma showed that the drug has a favorable
safety profile and significantly improves anti-tumor
efficacy when combined with anti-PD-1 therapy
(NCT02293980; Courtney et al. 2018). Another HIF-2a an-
tagonist, PT2399, also showed promising anti-tumor ac-
tivity in a preclinical study (Courtney et al. 2020).
Instead of directly targeting HIFs, agents that block
HIF’s transcription activity, such as Chetomin and Borte-
zomib, are also under evaluation. For example, Bortezo-
mib together with other therapeutics have been
employed for phase I/II clinical trials in colorectal and
prostate cancers (NCT01504477 and NCT00103376).

Targeting metabolic reprogramming

Metabolic enzymes are crucial for the altered metabolism
in metastatic tumor cells. Targeting these enzymes could
restore energy stress and suppress tumor progression and
metastasis. 2-deoxyglucose, which targets hexokinase to
reduce the excessive glycolysis commonly seen in tu-
mors, has been employed in clinical trials for various can-
cers, with promising anti-tumor activities (NCT00633087
and NCT00096707; Dwarakanath et al. 2009; Stein et al.
2010). Lactate dehydrogenase A, which is essential for lac-
tate production, has been found to be a poor prognostic
marker for metastatic cancers (Mori et al. 2019; Pelizzari
et al. 2019). Preclinical study showed that targeting lac-
tate dehydrogenase A has therapeutic potential (Le et al.
2010) (Fig. 1, metabolic reprogramming).

In addition to glycolysis, the TCA cycle is often altered
in cancer. PDK is critical for the TCA cycle. The xenobi-
otic pyruvate analog dichloroacetate (DCA) can bind to
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PDK and block its activity (Michelakis et al. 2008). Clini-
cal trials of DCA in advanced colon and brain cancer pa-
tients achieved favorable outcomes (NCT01111097;
Dunbar et al. 2014; Khan et al. 2016). Moreover, metfor-
min, which influences the TCA cycle by targeting mito-
chondrial complex I, is an approved drug for type 2
diabetes. Interestingly, it has also been indicated to sup-
press cancer metastasis in preclinical studies (Karadeniz
et al. 2020; Xie et al. 2020), and is now under clinical trials
for cancer treatment (NCT01340300, NCT01697566, and
NCTO01717482; Kasznicki et al. 2014; Saraei et al. 2019).

Refueling immune stress

Although immune checkpoint blockade therapy has
achieved remarkable success in some cancers, treatment
resistance is commonly observed at late stage disease.
Tumor cells have developed multiple resistance mecha-
nisms to overcome the native or treatment-induced im-
mune stress as described above. Targeting these
resistant pathways to restore immune stress is crucial
to sustain immune therapy responses. To this end, thera-
peutic strategies targeting T cells or tumor intrinsic im-
mune stress-relieving pathways have been developed
and are under preclinical/clinical evaluations (Fig. 1,
immunosurveillance).

To restore or enhance immune cell activity in tumors to
suppress metastasis, T cells isolated from patients are ge-
netically engineered and reinfused. Chimeric antibody re-
ceptor engineered T-cell (CAR-T) and genetically
modified T-cell receptors (TCR-T) are two main technol-
ogies used in this regard, which improve the ability of T
cells in tumor recognition and killing. CAR-T has been ap-
proved for lymphoma treatment.

Moreover, both CAR-T and TCR-T are under numerous
clinical trials for solid tumor treatments, and promising
results have been observed in some cases (Zhang and
Wang 2019; Fuca et al. 2020).

Activation of additional inhibitory immune checkpoint
pathways is one of the most common strategies that tu-
mor cells employ to release immune stress. To reduce
T-cell exhaustion, antibodies that target additional check-
points have been developed and are under clinical trials,
such as VISTA (NCT02812875), TIM-3 (NCT03489343),
LAG-3 (NCT00351949), TIGIT (NCT03945253), and B7-
H3 (NCT02923180) (Qin et al. 2019).

In addition to these well-established targets, a new im-
munosuppressive checkpoint Siglec-15 has also been
identified and proven to be essential for metastasis (Taka-
miya et al. 2013; Wang et al. 2019a). Targeting Siglec-15
showed promising results in both preclinical and clinical
studies (Wang et al. 2019a). Moreover, as CD38 of T cells
mediates PD-1/PD-L1 blockade resistance and enhances
metastasis (Chen et al. 2018), coinhibition of CD38 and
PD-L1 could improve the anti-metastasis effects.

In addition to developing new T-cell surface targets,
high-throughput screenings have been performed to iden-
tify novel intracellular candidates to boost T-cell activity.
Previous studies found that RNA helicase Dhx37 and
endoribonuclease REGNASE-1 modulate CD8" T-cell



activation through the NF-xB pathway and by targeting
BATF, respectively, to promote metastasis (Dong et al.
2019a; Wei et al. 2019). This suggests that Dhx37 and
REGNASE-1 could serve as new targets to reinforce im-
mune stress and suppresses metastasis.

On the other hand, targeting tumor-intrinsic pathways
to overcome the immune checkpoint blockade therapy re-
sistance could also restore immune stress. Given that
PTEN loss induced PI3K-AKT activation results in im-
munotherapy resistance, PI3Kp inhibitor treatment sig-
nificantly improved the anti-PD-1 and anti-CTLA4
efficacy in mouse models (Peng et al. 2016). Enhancing tu-
mor antigenicity is another strategy to elevate immuno-
surveillance. To this end, a modified herpes simplex
virus that infects tumor cells and promotes their destruc-
tion to enhance immune response has been approved for
melanoma treatment. More oncolytic viruses are current-
ly under clinical trials (Mondal et al. 2020). Moreover, el-
evating antigen presentation of tumor cells could also
increase tumor antigenicity and enhance immune stress.
Jaeger et al. (2019) found that low-level inhibition of
HSP90 amplifies and diversifies the antigenic repertoire
presented by tumor cells on MHC class I molecules, sug-
gesting that targeting HSP90 in tumor cells could serve as
a novel immunotherapeutic approach. In line with this
notion, five HSP90 inhibitors are currently under clinical
evaluation for cancer therapy (Yuno et al. 2018). Epigenet-
ically, histone deacetylases have been found to down-reg-
ulate HLA class I expression and inhibit antigen
processing and presentation (Ritter et al. 2017). Consis-
tently, the histone deacetylase inhibitor Panobinostat
was found to elevate CD8" T-cell infiltration in associa-
tion with PD-1/PD-L1 blockade treatment in metastatic
Merkel cell carcinoma patients (Ugurel et al. 2019).

Targeting anoikis resistance and releasing fluid shear
stress

Preclinical studies indicated that DZ-50, which is a quina-
zoline-based al adrenoceptor antagonist Doxazosin-de-
rived compound, significantly inhibits prostate cancer
metastasis by targeting anoikis resistance (Garrison
et al. 2007; Hensley et al. 2014). T0070907, which is a per-
oxisome proliferator-activated receptor y (PPARy) inhibi-
tor, has been showed to inhibit cancer progression and
metastasis by reverting anoikis resistance in hepatocellu-
lar carcinoma and breast cancer models (Schaefer et al.
2005; Zaytseva et al. 2011). Moreover, talinl has also
been reported to promote prostate cancer metastasis by
conferring anoikis resistance (Sakamoto et al. 2010), indi-
cating the therapeutic potential of targeting this protein.
Collectively, these results indicate that targeting anoikis
resistance could be feasible as an anti-metastasis treat-
ment (Fig. 2).

Mechanosensing carriers, such as liposomes and micro-
aggregates that can respond to shear stress have been de-
veloped for cardiovascular disease treatment (Wang et al.
2017). Such shear-activated systems could specificity
deliver anti-tumor drugs to malignant cells that are under
shear stress. However, there are still many technical chal-
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lenges that need to be overcome before clinical success of
such applications.

Restoring metastatic-organ specific stresses

Most existing cancer treatments do not distinguish tu-
mors residing in different metastatic organ sites. Howev-
er, some organs, such as the brain and bone, have unique
structures and microenvironments that are distinct from
the rest of the body, suggesting that organ-specific strate-
gies could be developed to reduce metastasis. Moreover,
accumulating knowledge about the mechanisms underly-
ing organ-specific metastasis also provides insights into
the development of such anti-metastasis therapeutics.

For brain metastasis, reinforcing the blood-brain barrier
could decrease the risk of brain colonization. In this re-
gard, molecules that mediate the blood-brain barrier
transmigration serve as attractive targets. Preclinical
studies suggested that treatment with the protease inhib-
itor Pefabloc reduces the crossing of the blood-brain barri-
er by tumor cells and reduces brain metastasis in
preclinical models of melanoma (Fazakas et al. 2011). As-
trocytes have been recognized as an essential stromal con-
tributor to brain metastasis (Chen et al. 2016; Priego et al.
2018), and previous studies indicated that STAT3 activa-
tion in astrocytes is required for brain colonization (Priego
et al. 2018). Treatment with silibinin, a STAT3 inhibitor,
significantly impairs astrocytes and decreases brain me-
tastasis in both mouse models and patients (Priego et al.
2018).

As tumor cells hijack functions of osteoblasts and
osteoclasts to disrupt bone homeostasis and to enhance
osteolytic or osteoblastic metastasis, bone stromal cell tar-
geting agents, such as bisphosphonates and the RANKL-
neutralizing antibody Denosumab, have been used for re-
lieve complications from bone metastasis (Holen and
Coleman 2010). However, these treatments do not im-
prove overall survival and have significant severe side ef-
fects in patients such as jaw necrosis and renal toxicity.

Recent studies indicated that Notch signaling is in-
volved in bone metastasis (Sethi et al. 2011; Sethi and
Kang 2011). In breast cancer, the Notch ligand Jaggedl
promotes osteoclast maturation and activates osteoblasts
to increase the production of IL-6, which in turn promotes
tumor progression and bone metastasis (Sethi et al. 2011).
Chemotherapy-induced Jaggedl in osteogenic cells fur-
ther provides a protective niche for tumor cells in bone
(Zheng et al. 2017). A fully humanized monoclonal anti-
body against Jagged-1 (Zheng et al. 2017) effectively
blocks Notch signaling with minimal toxicity in vivo. Im-
portantly, treatment with the antibody significantly re-
duces bone metastasis and synergistically enhances
chemotherapy efficacy in mouse models (Fig. 3D; Zheng
et al. 2017).

Concluding remarks and perspectives

The emergence, growth, and metastatic spread of malig-
nant tumors has been viewed as a continuous attrition
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process that selects for clonal or heterogeneous popula-
tions of cancer cells that survive and thrive against all
odds. Such clones with enhanced fitness not only can
survive the cancer-specific stresses better, but often
gain increased metastatic potentials. This is not only
because of their overall survival fitness but also as a con-
sequence of prometastatic genes and pathways activated
by stress-relieving pathways, as discussed in this review.
It is therefore not surprising that metastasis fitness genes
might be already giving tumor cells a survival advantage
in the primary tumors, and allows their enrichment in
the expanding clonal populations that eventually seed
distant metastasis. This view of metastasis as a by-prod-
uct of stress-coping mechanisms questions the tradition-
ally self-imposed requirement of the field, that
“metastasis genes” always have to be strongly enriched
in metastatic lesions compared with the primary
tumor. This concept is in line with the fact that there
have not been metastasis-specific genetic mutations
identified by genomic sequencing of human cancers
(Vogelstein et al. 2013), and that gene expression profile
of primary tumors can predict the risk of metastasis
(van ‘t Veer et al. 2002).

It is also worth noting that such fitness-boosting genes
may use distinct mechanisms or engage different stromal
populations at different organ sites during cancer pro-
gression. For example, RANKL has been shown to be es-
sential for the expansion of mammary gland progenitors
during mammary gland development and is also critical
in the initiation of BRCA1l mutation-driven breast
cancer (Nolan et al. 2016; Sigl et al. 2016). Once reaching
the bone, tumor-derived RANKL stimulates osteoclasto-
genesis and the development of osteolytic lesions. Like-
wise, Jaggedl promotes primary tumor growth through
increasing proliferation, chemoresistance and angiogene-
sis (Xiu et al. 2020) while exacerbating bone metastasis
by engaging Notch signaling in osteoblasts and osteo-
clasts (Sethi et al. 2011). Such multi-functional fitness
promoting factors represent ideal therapeutic targets giv-
en their involvement in different stages of cancer
progression.

The present review summarizes some of the key path-
ways involved in stress-relief during metastatic progres-
sion. However, this is by no means a comprehensive
compilation of all major mechanisms known to date. Ad-
ditional and critical stress pathways such as oxidative
stress and ER stress are likely to play key roles in modu-
lating metastatic efficiency but are not covered here due
to space limitations. Furthermore, all these pathways are
interconnected by complex feedback regulations. For in-
stance, the interplay among hypoxia, metabolic stress,
and immunosurveillance has been well recognized (Krzy-
winska and Stockmann 2018; Petrova et al. 2018). The
interconnected nature of the stress-relief pathways im-
plies the possibility of targeting key regulatory nodes to
achieve simultaneous disruption of multiple pathways,
but also indicates potential risk of therapeutic escape
by compensational feedback mechanisms. Nevertheless,
the clinical success of immune checkpoint blockade
therapy and synthetic lethal treatment of BRCA-defi-
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cient cancers with PARP inhibitors underscores the po-
tential of dramatic clinical response when a key anti-
tumor stress mechanism is restored. Notably, many
such therapies are well tolerated by healthy tissues as
the targeted stress-relief mechanisms are more critically
required for malignant tissues. With rapid increase in the
knowledge of metastatic stress pathways and metastasis
fitness genes, we can anticipate additional breakthroughs
in coming years in the prevention and control of meta-
static cancers.
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