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INTRODUCTION: Urbanization is associated with major changes in environmental and lifestyle 

exposures that may influence metabolic signatures.

OBJECTIVES: We investigated cross-sectional urban and rural differences in plasma 

metabolome analyzed by liquid chromatography/mass spectrometry platform in 500 Chinese 

adults aged 25–68 years from two neighboring southern Chinese provinces.

METHODS: We first examined the overall metabolome differences by urban and rural residential 

location, using Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) and random 

forest classification. We then tested the association between urbanization status and individual 

metabolites using a linear regression adjusting for age, sex, and province and conducted pathway 

analysis (Fisher’s exact test) to identify metabolic pathways differed by urbanization status.

RESULTS: We observed distinct overall metabolome by urbanization status in OPLS-DA and 

random forest classification. Using linear regression, out of a total of 1108 unique metabolite 

features identified in this sample, we found 266 metabolites that differed by urbanization status 

(positive false discovery rate-adjusted p-value, q-value<0.05). For example, the following 

metabolites were positively associated with urbanization status: caffeine metabolites from xanthine 

metabolism, hazardous pollutants like 4-hydroxychlorothalonil and perfluorooctanesulfonate, and 

metabolites implicated in cardiometabolic diseases, such as branched-chain amino acids. In 

pathway analysis, we found that xanthine metabolism pathways differed by urbanization status (q-

value=1.64E-04).

CONCLUSION: We detected profound differences in host metabolites by urbanization status. 

Urban residents were characterized by metabolites signaling caffeine metabolism and toxic 

pollutants and metabolites on known pathways to cardiometabolic disease risks, compared to their 

rural counterparts. Our findings highlight the importance of considering urbanization in 

metabolomics analysis.
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INTRODUCTION

Urbanization results in many changes in environments and lifestyles including a shift from 

traditional to Western diet, characterized by increasing intakes of animal-source foods, fats, 

added sugar, and refined carbohydrates (Lin et al., 2017, Popkin et al., 2012). Other lifestyle 

health behaviors also change along with urbanization, such as a decline in physical activity 

(Ng et al., 2014). In addition, environments change with urbanization, including increases in 

chemical toxicant exposures like perfluorooctanesulfonate (PFOS) (Chen et al., 2009). 

However, few studies have examined how urbanization may relate to differences in 

circulating metabolites between urban versus rural residents.

Recent advancements in metabolomics profiling enable examination of potential molecular 

mechanisms of lifestyle-related diseases that are becoming more common in urbanizing 

countries. The host circulating metabolome, a collection of all biological processes 

reflecting genetic and exogenous influences, have been suggested to be markedly altered by 
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the gut microbiome (Zhernakova et al., 2018), diseases (Menni et al., 2015), drug intake 

(Hiltunen et al., 2017), in addition to environmental exposures (van Veldhoven et al., 2019), 

diet (Shin et al., 2019), and physical activity (Ding et al., 2019). For example, the Oxford 

Street II study showed that short-term exposure to traffic-related air pollution in London was 

associated with various metabolic features in serum, including decreased levels of acyl-

carnitines (van Veldhoven et al., 2019), which are known to regulate energy metabolism in 

cardiac mitochondria (Makrecka et al., 2014). Another randomized crossover trial suggested 

that serum ketone bodies were elevated in a typical American diet (Shin et al., 2019), while a 

traditional Korea diet characterized by low intakes of animal-source foods and high intakes 

of vegetables and whole grains was associated with decreased levels of branched-chain 

amino acids (BCAAs), which have been linked to diabetes and obesity (Yoneshiro et al., 

2019, Newgard et al., 2009) (Zhou et al., 2019). Yet, these studies tend to focus only on a 

single domain of urbanization-related exposures, rather than the total set of exposures 

captured by a simple urban versus rural comparison, particularly if comparing urban and 

rural areas of different continents.

Given the lack of data on rural and urban residents living in the same geographic areas to 

control for regional and cultural influences relative to urbanization influences, we used 

plasma metabolomics data from 500 adult participants of the 2015 China Health and 

Nutrition Survey (CHNS) to examine the differences in host metabolites between urban 

(n=240) and rural (n=260) residential locations. These adults were from two neighboring 

southern provinces, Hunan and Guizhou, that were similar in geography and dietary 

patterns. We first examined urban versus rural differences in the overall metabolome. Then, 

we tested individual metabolites differences by urbanization status and conducted pathway 

analysis. In secondary analysis, we examined the associations between specific urbanization-

related lifestyle and behavioral factors with urbanization-associated metabolites identified 

from our analyses of individual metabolites.

METHODS

Study population

The CHNS is a household-based longitudinal study across 12 provinces and three megacities 

in China and is designed to capture urban and rural differences in socioeconomics, public 

resources, health behaviors, and health status. The original subjects in 1989 were selected 

using a stratified, multistage random cluster design as described previously (Popkin et al., 

2009). For the current cross-sectional analysis, we used year 2015 data from a subset of 

adults (n=500) aged 25–68 years from two neighboring Southern provinces, Hunan and 

Guizhou. The study met the standards for the ethical treatment of participants and was 

approved by the Institutional Review Boards of the University of North Carolina at Chapel 

Hill, Chinese Center for Disease Control and Prevention, and the National Institute for 

Nutrition and Health.

Plasma metabolomic profiling

Fasting blood was collected via venipuncture with ethylenediamine tetraacetic acid (EDTA) 

as an anticoagulant, by certified clinicians from the local China Center for Disease Control 
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and Prevention (CCDC) with extensive training and experience in processing clinical fasting 

blood samples. Blood samples were immediately refrigerated at −2–8 °C, and within three 

hours, samples were transported in refrigerator to laboratories and centrifuged to separate 

plasma, which were stored at −80 °C until processing. All sites followed the same 

standardized protocol for the collection, processing, and storage of blood samples with strict 

quality control. Our laboratories were accredited in College of American Pathologists (CAP) 

laboratory accreditation program and International Organization for Standardization (ISO) 

15189 program.

The global metabolomics analysis was performed using an integrated, ultrahigh performance 

liquid Chromatography-tandem mass spectrometry (UPLC-MS/MS) at Metabolon’s partner 

campus in China. Each sample was accessioned into the Metabolon Laboratory Information 

Management System (LIMS) system and assigned a unique identifier, which was used to 

track all sample handling, tasks, results, etc. Samples were processed by an automated 

MicroLab STAR system (Hamilton Company), with several recovery standards and controls 

added prior to the first step in extraction as technical replicates for quality control (QC), 

which were DL-2-fluorophenylglycine, tridecanoic acid, d6-cholesterol and 4-

chlorophenylalanine (Evans et al., 2014). Proteins were precipitated with methanol under 

vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed by centrifugation to 

remove protein, dissociate small molecules, and recover chemically diverse metabolites. The 

resulting extract was divided into five fractions: two samples for analysis by two separate 

reverse phase (RP)/UPLC-MS/MS with positive ion mode electrospray ionization (ESI); one 

for analysis by RP/UPLC-MS/MS with negative ion mode ESI; one for analysis by 

Hydrophilic Interaction Liquid Chromatography (HILIC)/UPLC-MS/MS with negative ion 

mode ESI; and one for backup.

A Waters ACQUITY UPLC (Waters, Milford, MA) and a Thermo Scientific Q-Exactive 

high-resolution/accurate MS (ThermoFisher, Waltham, MA), interfaced with heated 

electrospray ionization (HESI-II) source and Orbitrap mass analyzer (35,000 mass 

resolution) were used in all methods. The extract was dried then reconstituted in solvents 

compatible to each method. Each reconstitution solvent contained a series of standards at 

fixed concentrations to ensure injection and chromatographic consistency. Specifically, one 

aliquot of each sample extract was analyzed using acidic positive ion conditions, 

chromatographically optimized for more hydrophilic compounds: the extract was gradient 

eluted from a C18 column (Waters UPLC BEH C18–2.1×100 mm, 1.7 μm) using water and 

methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). A 

second aliquot was analyzed using acidic positive ion conditions, chromatographically 

optimized for more hydrophobic compounds: the extract was gradient eluted from the same 

afore-mentioned C18 column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% 

FA and was operated at an overall higher organic content. A third aliquot was analyzed using 

basic negative ion optimized conditions using a separate dedicated C18 column. The basic 

extracts were gradient eluted from the column using methanol and water, with 6.5mM 

Ammonium Bicarbonate at pH 8. The fourth aliquot was analyzed via negative ionization 

following elution from a HILIC column (Waters UPLC BEH Amide 2.1×150 mm, 1.7 μm) 

using a gradient consisting of water and acetonitrile with 10mM Ammonium Formate, pH 
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10.8. The MS analysis alternated between MS and data-dependent MSn scans using dynamic 

exclusion, which ranged 70–1000 m/z.

For quality assurance, the following types of controls were analyzed in concert with the 

experimental samples: a pooled sample generated by taking a small portion of each 

experimental sample (i.e., technical replicate), a pool of well-characterized human plasma 

maintained by Metabolon, extracted water samples (i.e., process blanks), aliquot of solvents 

used in extraction (i.e., solvent blanks), and a cocktail of QC standards that were carefully 

chosen not to interfere with the measurement of endogenous compounds were spiked into 

every analyzed sample, allowed instrument performance monitoring and aided 

chromatographic alignment. Experimental samples were randomized across the platform run 

with QC samples spaced evenly among the injections. Instrument (6%) and overall process 

variabilities (13%) were determined by calculating the median relative standard deviation 

(RSD) for the standards added to each sample prior to injection into the mass spectrometers 

and for all endogenous metabolites present in all of the pooled matrix samples.

Raw data was extracted, peak-identified, and QC processed using Metabolon’s hardware and 

software built under Microsoft’s .NET framework. Chemicals were identified by comparing 

to purified standards or recurrent unknown entities in Metabolon’s library, which maintained 

based on authenticated standards containing mass-to-charge ratio (m/z), chromatographic 

data, MS/MS data, and retention time/index (RI). RI of each compound was based on its 

elution relationship (assuming a linear fit) with two surrounding standards, which were 

isotopically labeled metabolites given a fixed RI value (Evans et al., 2009). Metabolites were 

identified based on three criteria: RI within a narrow RI window of the proposed 

identification, accurate mass match to the library (+/− 10 ppm), and the MS/MS forward and 

reverse scores between the experimental data and authentic standards. The MS/MS scores 

are based on a comparison of the ions present in the experimental spectrum to the ions 

present in the library spectrum. While there may be similarities between these molecules 

based on one of these factors, the use of all three data points can be utilized to distinguish 

and differentiate biochemicals. More than 3300 commercially available purified standard 

compounds have been acquired and registered into LIMS for analysis on all platforms for 

determination of their analytical characteristics. Additional mass spectral entries have been 

created for structurally unnamed biochemicals, which have been identified by virtue of their 

recurrent nature (both chromatographic and mass spectral). These compounds have the 

potential to be identified by future acquisition of a matching purified standard or by classical 

structural analysis.

Metabolon data analysts use proprietary visualization and interpretation software to confirm 

the consistency of peak identification among the various samples and to remove system 

artifacts, mis-assignments, and background noise. Library matches for each compound were 

checked for each sample and corrected if necessary. Peaks were quantified using area-under-

the-curve. A total of 1108 unique metabolite features were detected and quantified in our 

sample, among which 725 metabolites were at Level 1 identification according to the 

Metabolomics Standards Initiative (Sumner et al., 2007); 165 metabolites were at Level 2 

and labeled as “Biochemical Name*”; 17 metabolites were at Level 3 and labeled as 

“Biochemical Name**”; 200 metabolites were at Level 4 and each was assigned a unique 
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number after “X -”. Each compound was corrected in run-day blocks by registering the 

medians to equal one with values below detection limit imputed by the minimum detected 

quantity.

Urbanization assessment

To account for potential misclassification of a dichotomous measure of urban-rural 

environments based solely on population density, we employed a validated urbanization 

index that encompasses 12 dimensions of urbanized environments that go beyond the typical 

standards of population size and/or density (Jones-Smith and Popkin, 2010). Specifically, 

our urbanization index distinguishes urban characteristics on a continuous scale (0–120 

points) based on the following 12 measures with each allotted a maximum of 10 points: 

population density, economic activity, traditional markets, modern markets, transportation 

infrastructure, sanitation, communications, housing, education, diversity, health 

infrastructure, and social services, which were measured using standardized community and 

household questionnaires. This urbanization index has been shown to relate to health 

outcomes, reflecting its utility in studies of urbanization and health outcomes (Jones-Smith 

and Popkin, 2010, Inoue et al., 2018). Using this complex measure of urbanization, we 

dichotomized urbanization index by median to define urban (76.1–99.6) and rural areas 

(39.2–73.1).

Urbanization-related factors

Sociodemographic and behavioral factors were measured using questionnaires during 5-day 

household visits. We dichotomized educational attainment by high school completion. We 

calculated per capita household income by dividing the total gross household income by the 

number of household members. Physical activity in metabolic equivalent of tasks (METs) 

per week were calculated using 7-day recalls of all domestic, occupational, transportation, 

and leisure activities using the Compendium of Physical Activity (Ng and Popkin, 2012). 

Dietary intakes were assessed using three consecutive 24-hour recalls by trained 

interviewers and household food inventories during the same 3-day period. Three-day 

average nutrient intakes were estimated using a Chinese food composition table (Yang, 

2005), with total energy intake validated by doubly labeled water (Pearson correlation 

coefficient men: 0.56; women: 0.60) (Yao et al., 2003). We calculated percent energy (% 

kcal) from animal-source foods, a strong indicator of Westernized diet in China (Popkin and 

Du, 2003). We estimated diet diversity using the number of food groups consumed, 

including staple grains, fruits, vegetables, nuts, eggs, meat, seafood, and dairy products.

Statistical analysis

We used chi-squared tests and Wilcoxon rank sum tests to compare categorical and 

continuous characteristics with non-normal distributions between urban and rural 

participants, respectively.

To provide insights into the urban versus rural differences in the overall metabolome, we 

first performed a supervised multivariate analysis, Orthogonal Partial Least Squares 

Discriminant Analysis (OPLS-DA) using the SIMCA software (Version 16, Umetrics, 

Umeå, Sweden). We used a 7-round cross-validation to compute the diagnostic Q2Y value, 
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which is a measure of model predictive ability. To prevent overfitting, we used permutation-

based validation, during which Q2Y of the model using un-permuted data was compared 

with the Q2Y of each model built using each of the 999 permutated data sets. Our model 

passed this permutation-based validation (Supplementary Fig. 1), as Q2Y of the model using 

un-permuted data was found to be better than any of the models built using the permutated 

data sets. Additionally, we performed principal component analysis (PCA) as a quality 

assessment tool for OPLS-DA. In OPLS-DA, we used the Variable Importance in Projection 

(VIP) score, which reflects the variability of urbanization status explained by each 

metabolite and provides loading weights for each metabolite (Mehmood et al., 2012), to 

assess the contribution of each metabolite to the urban-rural separation.

Next, we used random forest classification (10000 trees) with hold-out validation in JMP 

Pro (version 13, SAS institute, Cary, NC) to determine whether urban and rural participants 

could be discriminated based on overall metabolome data. We randomly split data into 

training (70%), validation (15%), and test (15%) datasets. The distribution of urban versus 

rural participants were roughly balanced across training (e.g., 46.6%), validation (51.9%), 

and test (50.0%) datasets, which was similar to the full sample (48%). We evaluated the 

classification performance based on sensitivity and specificity using receiver operating 

characteristic (ROC) curve and metabolite importance based on training dataset using G2, 

the likelihood-ratio of chi-square when a given metabolite was added to the tree.

To identify metabolites that differed by urbanization status, we used a linear regression 

model adjusted for age, sex, and province to examine the associations between urbanization 

status and individual metabolites relative abundance, which was log2 transformed for 

normality assumption. We exponentiated regression coefficients with base two to calculate 

the urban versus rural ratio and adjusted p-values for multiple hypothesis testing for 890 

metabolites at the Level 1 and Level 2 assignment using positive false discovery rate (pFDR, 

q value) (Storey et al., 2004, Storey, 2002).

Additionally, we performed pathway analysis on the Metabolon portal (Metabolon Inc., 

Durham, NC) to investigate which metabolic pathways demonstrated statistically significant 

differences between urban and rural participants. We calculated enrichment score as (k/m)/

[(n-k)/(N-m)] for each pathway that reflect the degree to which a given pathway was 

overrepresented in either urban or rural participants, where k and m are numbers of 

significant metabolites (q-value<0.05 in linear regression) and detected metabolites in the 

given pathway, respectively, and n and N are numbers of significant metabolites (q-

value<0.05 in linear regression) and detected metabolites in all pathways, respectively. We 

used Fisher’s exact test to estimate p-value for each pathway, which was adjusted by pFDR. 

We removed 218 Level 3 and Level 4 metabolite features from pathway analysis, giving a 

total of 890 metabolites from 112 metabolic pathways.

In secondary analyses, we assessed the associations between the following six urbanization-

related factors: education, income, physical activity, energy intake, animal-source foods 

(%kcal), and diet diversity, with log2 transformed relative abundance of urbanization-

associated metabolites identified in linear regression models (q-value<0.05) adjusting for 

age, sex, and province. We exponentiated regression coefficients with base two and thus an 
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exponentiated coefficient >1 indicates a positive association and vice versa. We adjusted p-

values using pFDR (Storey et al., 2004, Storey, 2002). We used SAS (Version 9.4, SAS 

Institute Inc., Cary, NC) and R 3.6.0 (http://www.r-project.org) to perform statistical tests.

RESULTS

Our sample was similar in age and sex across rural and urban areas (Table 1). We found that 

compared to rural participants, urban participants had higher educational attainment, 

income, and diet diversity, but lower physical activity. Total energy intake and animal-source 

food consumption did not differ by urbanization status.

Using OPLS-DA and random forest classification, we assessed the discrimination between 

urban and rural participants based on their overall metabolome (Fig. 1). We observed a good 

separation (model explained variation: R2Y=58.7%, model predictive ability: Q2Y=35.5%) 

of the overall metabolome by urbanization status on the horizontal OPLS-DA axis (Fig. 1a). 

The PCA biplot also showed a good separation between urban and rural samples 

(Supplementary Fig. 2). In random forest classification to determine how well metabolites 

on their own could distinguish urban and rural participants (Fig. 1b), the high values of areas 

under the ROC curve (AUC) for training (1.00), validation (0.91), and test (0.88) datasets 

indicated reliable and powerful models with high sensitivity and specificity. To further aid in 

interpreting Fig. 1, we show metabolites in order of their contributions to urban and rural 

separation in OPLS-DA (VIP score) and random forest classification (G2) in Supplementary 

Tables 1 and 2, respectively. A metabolite of fungicide chlorothalonil, 4-

hydroxychlorothalonil (G2=15.83) had the highest contribution to the random forest 

classification, followed by theobromine (xanthine metabolism, G2=2.86), gamma-

tocopherol/beta-tocopherol (tocopherol metabolism, G2=2.35), cis-3,4-methyleneheptanoyl 

carnitine (medium-chain acyl-carnitine, G2=1.69), perfluorooctanesulfonate (PFOS, 

xenobiotic chemical, G2=1.20), and 1-methylxanthine (xanthine metabolism, G2=1.11).

To identify the association between urbanization status and individual metabolites, we used a 

linear regression adjusted for age, sex, and province and found that urbanization status was 

associated with 266 classified metabolites at q-value<0.05 (Supplementary Table 3), 

including 112 lipids, 58 amino acids, and 47 xenobiotics. Among these urbanization-

associated metabolites, 84 and 30 metabolites were the top contributors in OPLS-DA 

(VIP≥1.5) and random forest classification (G2≥0.5), respectively. Urbanization status had 

the strongest association with 4-hydroxychlorothalonil (q-value=2.03E-23), a known 

pollutant, with 2.91 (95% confidence interval: 2.41, 3.51) times the relative abundance of 4-

hydroxychlorothanlonil in urban versus rural participants. Additionally, urban status was 

associated with 1.29 (1.1, 1.5) times as much PFOS as rural status in units of relative 

abundance (q-value=5.22E-03). Among the 15 metabolites at q-value<1.0E-05 (including 

three partially characterized metabolites), the relative abundance of six metabolites from the 

xanthine metabolism pathway (theobromine, theophylline, paraxanthine, 1,7-dimethylurate, 

1-methylxanthine, caffeine) was more than doubled in urban versus rural participants. These 

results are summarized in a volcano plot in Fig. 2. The boxplots show the unadjusted 

differences in the distributions of relative abundance by urbanization status (Supplementary 

Fig. 1), for those 15 metabolites (q-value<1.0E-05) where we found evidence of differences 
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by urban versus rural status in the linear regression models adjusted for age, sex, and 

province.

In pathway analysis, we assessed the degree of urban-rural difference for each metabolic 

pathway measured by enrichment score and identified the pathways that differed by 

urbanization status using Fisher exact test. We found that xanthine metabolic pathway had 

the highest enrichment score (3.45) and statistically significant difference between urban and 

rural participants (q-value=1.64E-04, Table 2, pathways ordered by q-value). While the other 

pathways were not statistically significant after pFDR adjustment, some were nominally 

significant at p-value<0.05, including sphingomyelins, glutathione, dipeptide, acyl-glycine, 

and tocopherol metabolic pathways. In Fig. 3, we show that all of the identified metabolites 

in the xanthine metabolism pathways were derived from caffeine.

In secondary analysis to examine the association between key urbanization-related lifestyle 

and behavior factors with urbanization-associated metabolites, we used a linear regression 

adjusting for age, sex, and province and found clear differences in pathways and direction of 

associations across four factors (education, physical activity, energy intake, and diet 

diversity) (Fig. 4, Supplementary Table 4–7). Specifically, we found that high school 

education, physical activity, total energy intake, and diet diversity were associated with 107, 

103, 11, and 100 of the 266 metabolites identified by the linear regression at q-value<0.05, 

respectively, whereas per capita household income and animal-source food consumption 

were not associated with any of these metabolites. All of these factors were associated with 

HXGXA (polypeptide), leucylglutamine (dipeptide), and PFOS. Metabolites positively 

associated with urbanization status (i.e. urban versus rural ratio >1 and q-value <0.05) 

tended to be positively associated with education, energy intake, and diet diversity, but 

negatively associated with physical activity, including xanthine metabolites, cysteinylglycine 

disulfide from glutathione metabolism, and two known pollutants, 4-hydroxychlorothalonil 

and PFOS.

DISCUSSION

Using plasma global metabolomics analysis in 500 Chinese adults from two neighboring 

provinces, we found profound urban and rural differences in overall host metabolome and in 

individual metabolites. Specifically, we observed a separation of the overall metabolome by 

urbanization status in OPLS-DA and good discrimination (AUC=0.88 in test datasets) of 

urban and rural participants based on their overall metabolome in random forest 

classification. Additionally, we identified 266 metabolites that differed across rural and 

urban areas using linear regression, including xenobiotics from dietary sources and 

pollutions, such as caffeine metabolites, 4-hydroxychlorothalonil, and PFOS, as well as 

metabolites known to be involved in etiologies of cardiometabolic diseases, such as BCAAs 

(Newgard et al., 2009) and fibrinogen peptide A (Eisenberg et al., 1985), suggesting 

potential differences in environmental exposures and health status between urban and rural 

adults.

Among all detected metabolites, 4-hydroxychlorothalonil had the strongest statistical 

association with urbanization status in the linear models (lowest q-value and second largest 
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urban versus rural ratio) and the greatest contribution to distinguishing urban and rural 

participants using random forest classification. The almost tripled relative abundance of 4-

hydroxychlorothalonil in urban versus rural participants on average was concerning because 

4-hydroxychlorothalonil is a major metabolite of chlorothalonil, which is mainly used as a 

broad-spectrum fungicide and a probable human carcinogen (Rossi, 1999) that has been 

banned by both European Union and Switzerland since 2019. Several unpublished studies 

using mice and rat models reported by the United States Environmental Protection Agency 

(EPA) suggested that long-term dietary exposure to chlorothalonil may relate to greater 

incidence of renal and stomach tumors (Rossi, 1999), and one study using amphibians 

showed that environmental chlorothalonil, at a concentration to which humans are 

commonly exposed, may relate to higher mortality, elevated corticosterone levels, and 

damaged immune cells (McMahon et al., 2011). A few unpublished studies reported by the 

EPA also suggested that 4-hydroxychlorothalonil may relate to renal tubular degeneration in 

dogs and reduced pup body weight in rats (Rossi, 1999), and one study using zebrafish 

showed that 4-hydroxychlorothalonil may have endocrine-disrupting properties (Zhang et 

al., 2016). Another toxic chemical in our study, perfluorooctanesulfonate (PFOS), was 29% 

higher in relative abundance in urban versus rural participants and was the fourth important 

metabolite to distinguish urbanization status in random forest classification. PFOS has been 

shown to be adversely associated with body weight, thyroid function, and lipid and glucose 

metabolism in humans (Saikat et al., 2013) (Coperchini et al., 2017) and animal studies (Lai 

et al., 2018). Our findings show positive association between energy intake and diet diversity 

with 4-hydroxychlorothalonil and PFOS, indicating that water and food contaminations are 

the likely sources of these chemicals. Indeed, both chlorothalonil and PFOS were detected in 

water in China (Fang et al., 2019, Jin et al., 2009), with higher PFOS concentration in 

surface water in urban than rural areas (Chen et al., 2009) and chlorothalonil persisted in 

common produce like cabbage (Hou et al., 2016). In contrast, we found that physical activity 

was negatively associated with 4-hydroxychlorothalonil and PFOS. Our observed 

associations may relate to sweating during physical activity, as induced perspiration could 

accelerate the elimination of toxic chemicals like polychlorinated biphenyls in the human 

body (Genuis et al., 2013).

The fact that xanthine metabolism pathways differed by urbanization status in our sample 

may reflect different urban and rural dietary habits, given that all of the detected metabolites 

from xanthine metabolism pathways are derived from caffeine and were positively 

associated with urbanization status. Caffeine is present in various foods and drinks, 

including coffee and tea that are more frequently consumed in urban versus rural residents in 

China (Zhang et al., 2011). One caffeine metabolite, theophylline, which is a bronchodilator 

that can treat asthma and other lung diseases, was higher in urban than rural participants, 

indicating that urban participants in our sample may be more likely to take this medication 

compared to rural participants. A potential reason for this difference is the heavier air 

pollution in urban versus rural areas, as a study in Switzerland has shown that traffic-related 

air pollution was positively associated with incidence of adult-onset asthma among never-

smokers aged 18–60 years (Künzli et al., 2009).

In addition, we found that urbanization status was positively associated with metabolites 

involved in inflammation and metabolic disturbances, like leucine and isoleucine, two 
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BCAAs which have been shown to be related to increased risk of type 2 diabetes (Lotta et 

al., 2016, Newgard et al., 2009, Wang et al., 2011). Additionally, we found that the 

urbanization status was positively associated with cysteine-glutathione disulfide, a 

metabolite formed upon oxidative stress of glutathione. Oxidative stress has been shown to 

be involved in the development of cardiovascular diseases (CVD) (Alfadda and Sallam, 

2012, Cervantes Gracia et al., 2017, Khosravi et al., 2019). Together, these results are 

consistent with the higher CVD risks in urban versus rural Chinese adults observed in a 

study of adults aged 35–70 years across 12 provinces between 2005 and 2009 (Yan et al., 

2017) and a study of adults aged 45 years and older from 1991 to 2011 (Zhang, 2019). 

Conversely, we found that urbanization status was positively associated with a few 

metabolites potentially beneficial to cardiovascular health, such as alpha-tocopherol and 

gamma-tocopherol/beta-tocopherol, which are antioxidants with vitamin E activity that 

protect fatty acids from oxidation (Shahidi and De Camargo, 2016), as well as 1,2,3-

benzenetriol sulfate, a gut microbiota-derived phenolic compound with anti-inflammatory 

properties (Larrosa et al., 2009), while negatively associated with Fibrinopeptide A, a well-

established marker for coronary thrombosis (Eisenberg et al., 1985).

Our study has several strengths. First, we used the large, population-based CHNS, which 

provided metabolomics data from residents of two adjacent provinces, reducing confounding 

from geography and culture. Second, our data included detailed measures of environmental 

factors and behaviors, such as income, diet, and physical activity, allowing us to investigate 

the potential contributions of these factors to urban and rural differences in plasma 

metabolites. Third, we used the urbanization index that encompasses 12 diverse components 

of urbanization to categorize urban and rural areas, reducing potential misclassification by 

simple dichotomous characterization of urban and rural areas that uses only population 

density. Yet our study also has some limitations, including the cross-sectional design and 

relied on global metabolomics analysis only. For future identification of metabolite features 

assigned to Level 3 or Level 4 identification that contributed to the urban-rural separation in 

OPLS-DA (VIP≥1.5) or random forest classification (G2≥0.5), or nominally differed across 

urban and rural areas (p-value<0.05 in GLM), we provided the mass and retention index for 

these metabolites in Supplementary Table 8. It is possible that the accidental enrichment of 

metabolites with exogenous sources, such as tocopherols added into dietary supplements, 

may lead to misinterpretation of the pathway analysis. However, vitamin or mineral 

supplement use was uncommon in our participants; few urban (n=7) and rural participants 

(n=1) used supplements. We found that participants who took supplements within 24 h 

before blood sample collection, compared to those who did not, were not different in any of 

the detected cofactors and vitamins by urban (Supplementary Table 9, 0.32≤q-value≤0.81) 

and rural areas (0.45≤q-value≤0.81), suggesting that it was unlikely that the enrichment of 

tocopherol metabolic pathway in urban versus rural participants was due to the use of 

supplements.

In conclusion, our findings suggest that urbanization status was associated with profound 

perturbation of host plasma metabolites in Chinese adults, including higher levels of 

hazardous chemicals, caffeine metabolites, and a few inflammatory metabolites in urban 

versus rural adults. These metabolites differences reflect changes in environment, lifestyle, 
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and diet related to urbanization. Our findings suggest that urbanization should be considered 

in metabolomic analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
(a) Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) score plot for 
the separation of plasma metabolome by urban and rural status. T [1] and t [2] are the 

first two latent variables (i.e., linear combinations of metabolite data) in the OPLS-DA 

model using all identified metabolite features, where t [1] is the class-predictive latent 

variable that captures the variation in metabolites between urban and rural areas and t [2] is 

the class-orthogonal latent variable that includes systematic variation in metabolite data 

uncorrelated with urbanization status. Together, t [1] and t [2] provide the best separation of 

the urban and rural samples in OPLS-DA. (b) Receiver operating characteristic (ROC) 
curve for the discrimination of urban and rural metabolome using random forest 
classification.

AUC, area under the curve.
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Fig 2. Volcano plot for the association between urbanization and individual metabolites.
X axis is the urban versus rural ratio of metabolites relative abundance and y axis is the -

log10(q-value) based on linear regression adjusting for age, sex, and province. Metabolites 

types (super-pathway) are indicated by different colors and shapes. Metabolites with q-

value<1.0E-05 are labeled (excluding three partially characterized metabolites).
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Fig 3. Biochemical pathway of xanthine metabolism.
Urbanization status was positively associated with all of the detected metabolites in xanthine 

metabolism (q-value<0.05), which are indicated in red. Metabolites colored in black were 

not detected in this study. Note that xanthine was categorized to purine metabolism per 

Metabolon’s definition.
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Fig 4. The association between key urbanization-related factors and urbanization-associated 
with metabolites.
Direction of associations and statistical significance are indicated by color and shading, 

respectively. Metabolites are ordered by types (super-pathways), which are differentiated by 

color. Models were adjusted for age, sex, and province. A total of 266 metabolites were 

tested. Metabolites that were not associated with any of the factors (q-value≥0.05) are not 

listed in the figure. Per capita household income and animal-source food consumption were 

not associated with any of the metabolites at q-value<0.05 and thus not shown in the figure. 

* Metabolites at Level 2 identification according to the Metabolomics Standards Initiative.
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Table 1.

Characteristics of the China Health and Nutrition Survey participants with plasma metabolomic data, median 

(interquartile range) or %

Urban
a

Rural
a

P-value
b

N 240 260

Age 54.6 (46.4–60.3) 51.8 (44.3–60.1) 0.193

Women 57.9 60.4 0.575

Completed high school education 46.7 15.8 <0.0001

Per capita household income (¥1000) 20.3 (12.4–34.0) 12.8 (5.1–21.5) <0.0001

Physical activity (METS/wk)
c 63.8 (18.9–111.8) 130.5 (57.8–253.3) <0.0001

Total energy intake (kcal)
d 1872.8 (1435.3–2293.7) 1744.3 (1400.7–2188.79) 0.112

Animal-source foods (%kcal)
d 24.0 (16.7–32.7) 24.0 (14.8–33.9) 0.862

Diet diversity
e 12.0 (10.0–14.0) 10.0 (8.0–12.0) <0.0001

a
We used a 12-component index with a continuous scale of 0–120 points to assess multiple aspects of urbanization, including population density, 

economic activity, transportation infrastructure, and sanitation. We dichotomized this urbanization index by median (=73.1) to define urban (76.1–
99.6) and rural areas (39.2–73.1).

b
Urban-rural differences in categorical variables were assessed with χ2 and continuous variables were assessed with Wilcoxon rank sum test.

c
Physical activity in metabolic equivalent of tasks (METs) per week was measured by 7-day recalls of all domestic, occupational, transportation, 

and leisure activities.

d
Nutrients intake was estimated using 3 consecutive 24-h recalls and household food inventories by trained interviewers, with total energy intake 

validated by doubly labeled water.

e
A count of number of food groups consumed, including staple grains, fruits, vegetables, nuts, eggs, meat, seafood, and dairy products.
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Table 2.

Pathway enrichment analysis

Sub-pathway k
a

m
a

Enrichment Score
a

P-value
b

Q-value
b

Xanthine Metabolism 11 11 3.45 1.47E-06 1.64E-04

Sphingomyelins 16 27 2.05 0.001 0.068

Partially Characterized Molecules 7 9 2.65 0.004 0.150

Glutathione Metabolism 5 7 2.42 0.028 0.480

Dipeptide 8 14 1.94 0.030 0.480

Fatty Acid Metabolism (Acyl Glycine) 4 5 2.70 0.030 0.480

Tocopherol Metabolism 4 5 2.70 0.030 0.480

Pregnenolone Steroids 5 8 2.11 0.056 0.788

Carnitine Metabolism 2 2 3.36 0.089 0.998

Polypeptide 2 2 3.36 0.089 0.998

Polyamine Metabolism 4 7 1.93 0.124 1.000

Phosphatidylcholine (PC) 8 18 1.50 0.136 1.000

Glycine, Serine and Threonine Metabolism 5 10 1.69 0.147 1.000

Long Chain Polyunsaturated Fatty Acid (n3 and n6) 7 16 1.48 0.171 1.000

Chemical 9 22 1.38 0.181 1.000

Tobacco Metabolite 2 3 2.24 0.214 1.000

Leucine, Isoleucine and Valine Metabolism 11 30 1.24 0.262 1.000

Fatty Acid, Amide 1 1 3.35 0.299 1.000

Ketone Bodies 1 1 3.35 0.299 1.000

Modified Peptides 1 1 3.35 0.299 1.000

Hemoglobin and Porphyrin Metabolism 2 4 1.68 0.346 1.000

Vitamin A Metabolism 2 4 1.68 0.346 1.000

Sterol 3 7 1.44 0.350 1.000

Gamma-glutamyl Amino Acid 6 17 1.19 0.399 1.000

Monoacylglycerol 5 14 1.20 0.412 1.000

Medium Chain Fatty Acid 4 11 1.22 0.427 1.000

Plasmalogen 4 11 1.22 0.427 1.000

Fatty Acid Metabolism (Acyl Choline) 3 8 1.26 0.446 1.000

Food Component/Plant 17 54 1.06 0.449 1.000

Dihydrosphingomyelins 2 5 1.34 0.470 1.000

Fatty Acid Metabolism (Acyl Carnitine, Polyunsaturated) 2 5 1.34 0.470 1.000

Glycolysis, Gluconeogenesis, and Pyru.. 2 5 1.34 0.470 1.000

Purine Metabolism, Adenine containing 2 5 1.34 0.470 1.000

Methionine, Cysteine, SAM and Taurine.. 7 22 1.07 0.502 1.000

Inositol Metabolism 1 2 1.68 0.509 1.000

Sphingolipid Synthesis 1 2 1.68 0.509 1.000

Sphingosines 1 2 1.68 0.509 1.000

Fatty Acid Metabolism (Acyl Carnitine, Monounsaturated) 3 9 1.12 0.535 1.000

Fibrinogen Cleavage Peptide 3 9 1.12 0.535 1.000
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Sub-pathway k
a

m
a

Enrichment Score
a

P-value
b

Q-value
b

Fatty Acid Metabolism (Acyl Carnitine, Medium Chain) 2 6 1.12 0.578 1.000

Tryptophan Metabolism 6 20 1.00 0.581 1.000

Fatty Acid, Monohydroxy 5 17 0.98 0.609 1.000

Primary Bile Acid Metabolism 3 10 1.00 0.615 1.000

Urea cycle; Arginine and Proline Metabolism 6 21 0.95 0.635 1.000

Acetylated Peptides 1 3 1.12 0.656 1.000

Diacylglycerol 1 3 1.12 0.656 1.000

Fatty Acid, Amino 1 3 1.12 0.656 1.000

Fatty Acid, Branched 1 3 1.12 0.656 1.000

Glycerolipid Metabolism 1 3 1.12 0.656 1.000

Pyrimidine Metabolism, Orotate containing 1 3 1.12 0.656 1.000

Endocannabinoid 2 7 0.96 0.669 1.000

Purine Metabolism, (Hypo)Xanthine/Inosine containing 2 7 0.96 0.669 1.000

Glutamate Metabolism 3 11 0.91 0.686 1.000

Pyrimidine Metabolism, Uracil containing 3 11 0.91 0.686 1.000

Benzoate Metabolism 8 30 0.89 0.718 1.000

Alanine and Aspartate Metabolism 2 8 0.84 0.744 1.000

Phenylalanine Metabolism 2 8 0.84 0.744 1.000

Histidine Metabolism 4 16 0.83 0.753 1.000

Eicosanoid 1 4 0.84 0.759 1.000

Fatty Acid Metabolism (Acyl Carnitine, Hydroxy) 1 4 0.84 0.759 1.000

Fructose, Mannose and Galactose Metabolism 1 4 0.84 0.759 1.000

Purine Metabolism, Guanine containing 1 4 0.84 0.759 1.000

Phosphatidylinositol (PI) 1 5 0.67 0.831 1.000

Fatty Acid, Dicarboxylate 7 31 0.75 0.867 1.000

Fatty Acid Metabolism (Acyl Carnitine, Long Chain Saturated) 1 6 0.56 0.882 1.000

Androgenic Steroids 4 21 0.63 0.915 1.000

Long Chain Monounsaturated Fatty Acid 1 7 0.48 0.918 1.000

Nicotinate and Nicotinamide Metabolism 1 7 0.48 0.918 1.000

Lysophospholipid 4 22 0.60 0.933 1.000

Phosphatidylethanolamine (PE) 1 8 0.42 0.942 1.000

Lysine Metabolism 2 15 0.44 0.965 1.000

Tyrosine Metabolism 1 17 0.19 0.998 1.000

Secondary Bile Acid Metabolism 2 24 0.27 0.998 1.000

a
Enrichment score was calculated using (k/m)/[(n-k)/(N-m)], where k is the number of significant metabolites [positive false discovery rate (pFDR) 

adjusted p-value, q-value<0.05] in the sub-pathway, m is the total number of detected metabolites in the pathway, n is the total number of 
significant (q-value<0.05) and classified metabolites (n=266), and N is the total number of detected and classified metabolites (N=890). A total of 
112 metabolic pathways were tested. Only metabolic pathways with k>0 are shown here.

b
P-value for each sub-pathway was calculated using Fisher’s exact test and pFDR adjusted.
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