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ABSTRACT

Recent advances in metagenomic sequencing have
enabled discovery of diverse, distinct microbes and
viruses. Bacteriophages, the most abundant biolog-
ical entity on Earth, evolve rapidly, and therefore,
detection of unknown bacteriophages in sequence
datasets is a challenge. Most of the existing detec-
tion methods rely on sequence similarity to known
bacteriophage sequences, impeding the identifica-
tion and characterization of distinct, highly diver-
gent bacteriophage families. Here we present Seeker,
a deep-learning tool for alignment-free identifica-
tion of phage sequences. Seeker allows rapid de-
tection of phages in sequence datasets and differ-
entiation of phage sequences from bacterial ones,
even when those phages exhibit little sequence sim-
ilarity to established phage families. We compre-
hensively validate Seeker’s ability to identify previ-
ously unidentified phages, and employ this method
to detect unknown phages, some of which are highly
divergent from the known phage families. We pro-
vide a web portal (seeker.pythonanywhere.com) and
a user-friendly Python package (github.com/gussow/
seeker) allowing researchers to easily apply Seeker
in metagenomic studies, for the detection of diverse
unknown bacteriophages.

INTRODUCTION

Bacteriophages, viruses that infect bacteria (phages, for
short), are ubiquitous and abundant in every type of biome,
and their interactions with microbial communities heavily
influence microbial ecology, impact biogeochemical cycling
in various ecosystems, and to a large extent, shape the evo-
lution of cellular organisms (1–8). Recently, the develop-
ment of non-culture based, metagenomic sequencing has
allowed researchers to detect numerous, diverse bacterio-
phages in sequence data from almost every environment,

further demonstrating their broad impact on the functions
of microbial communities, such as, for example, animal gut,
soil, and ocean microbiomes. In particular, it has been re-
cently shown that the human gut microbiota harbors abun-
dant bacteriophages (9) that profoundly influence human
metabolism and immunity (10–12), with clear therapeutic
implications (6,12,13) for diseases such as irritable-bowel
syndrome and non-alcoholic fatty liver disease (14). Yet,
our understanding of the viral diversity in the majority of
microbial communities is limited, given that most of the
microbes from such communities have not been cultivated,
complicating virus discovery (15).

Metagenomic studies using high throughput sequencing
technology generate ample amounts of short read sequences
from prokaryotic cells in microbial communities regardless
of the cultivability of cells. Hence, multiple new viruses can
be discovered from metagenomic sequencing data, substan-
tially advancing our knowledge of the virus diversity in dif-
ferent types of communities (16). However, to character-
ize habitat-specific viromes, it is essential to efficiently ex-
tract viral sequences from complex mixtures of virus and
host sequences. The existing tools for the identification
of phages and prophages rely on sequence similarity (17–
22), gene prediction (19,20,22) or distribution of nucleotide
k-mers and specific sequence signatures (21,23). Due to
this knowledge-based approach, the available methods are
largely limited to the detection of viruses with sequences sig-
nificantly similar to those of already known viruses. Because
of the high evolution rate typical of virus genome sequences,
distinct groups of viruses often have little in common with
previously recognized viruses, impeding their identification
by sequence similarity, even using the most sensitive of the
available methods for protein sequence comparison. More
recently, several deep-learning based approaches have been
proposed to overcome these challenges (24,25), but these
rely on millions of parameters and thus might be suscep-
tible to similar limitations. Given that only a small minor-
ity of viruses and prokaryotes have been formally described
so far (26–28), identification of previously unknown major
groups of bacteriophages remains an open challenge.
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Here, we introduce Seeker, an alignment-free method
that leverages recent advances in deep learning to de-
tect phages. Seeker employs Long Short-Term Memory
(LSTM) models, a type of Recurrent Neural Network
(RNN). By contrast to other sequence learning methods,
RNNs (and specifically LSTMs) maintain a long mem-
ory of sequences, and thus can identify distant dependen-
cies within sequences, to distinguish phages from bacteria.
Seeker is unbiased, alignment-free, and is not based on pre-
determined sequence features (i.e. genes, repeats, k-mers or
sequence signatures), but rather, is trained to read through
a complete DNA sequence, weighing the likelihood of it
belonging to a phage genome. This makes Seeker a fitting
choice for learning DNA sequence context including long
term dependencies and subtle patterns, with more power
than any method that explicitly extracts motifs or relies on
direct sequence similarity. The number of parameters used
by Seeker is relatively small (either 152 or 212 parameters,
dependent on the model version), precluding memorization
and overfitting, thus, the performance of Seeker is robust
and more stable compared to other approaches. Seeker is
trained on segments and thus performs better on shorter
sequences, which is critical for application to metagenomic
data. In addition, Seeker does not require substantive com-
putational resources, its runtime is linear with respect to
the input length and it is substantially faster than existing
methods. To demonstrate the utility of Seeker on specific
test cases, we used this method to identify previously un-
known phages from human and sheep gut microbiomes as
well as environmental metagenome data. Some of the de-
tected phages are highly divergent from known phage fami-
lies and at least one might become the founder of a distinct
phage family or a higher taxon.

We provide a web portal (seeker.pythonanywhere.com)
that we will maintain for at least 3 years, and a python
package (github.com/gussow/seeker) for the application of
Seeker and visualization of the results. This work demon-
strates that, by limiting model size and conducting a careful
training process, deep learning tools can overcome the lim-
itations of alignments and gene comparisons for the iden-
tification of new phages, and has the potential to facilitate
other complex sequence prediction tasks.

MATERIALS AND METHODS

Curation of phage and bacterial genomes

Phage and bacterial complete genomes were obtained
for two training steps (Figure 1A). All analyzed DNA
sequences were consecutively segmented into non-
overlapping 1 kilobase pairs (kb) sequences as this is
the recommended upper bound for input length to LSTM
models (29). Smaller or overlapping segments would
substantially increase both training and testing runtimes,
and overlapping segments could lead to excessive sequence
duplication. As bacteria have much larger genome than
phages, they yield substantially more segments, and using a
similar number of phage and bacteria genomes would yield
an imbalanced set of segments that would bias the training
toward the bacterial set. As a result, the bacterial training
set size was set to match the phage training set that was
used for training in each step.

For the first training step, we sought to curate a set
of high-confidence phage and bacterial genomes. All se-
quences used are publicly available and were downloaded
from NCBI (https://www.ncbi.nlm.nih.gov/), with the ac-
cessions available in Supplementary Table S1. The positive
set (phage genomes) was obtained from RefSeq (30) and
consisted of 80% of all unique RefSeq phages (n = 2232
phages, Supplementary Table S1). The remaining 20% of
phages were removed to maintain an independent set for
testing that would not be used during any step of train-
ing. For the negative set (bacteria genomes), we curated a
high-confidence, non-redundant set from the reference bac-
teria set (n = 75 bacteria, from the ncbi-genome-download
project). From the latter, all instances of known phage and
prophage sequences were removed using exact match of
at least 100 nucleotides with any phage in our positive
set or in phage sequences obtained from the PHASTER
database (20). This was done to enable a high-confidence
training step where the bacterial sequences were free from
any prophage contamination. These data were sorted by dif-
ficulty as described below, and training was performed on
the bacterial and phage segments until the phage segments
were exhausted. In total, this training set consisted of n =
80000 phage and bacteria fragments. Although there may
be some duplications in this set, this does not present a con-
founder to deep learning methods (31).

For the second training step, in order to expand the posi-
tive set, we obtained an additional larger set consisting of all
annotated complete genome phages found in an exhaustive
search of online databases (https://www.ncbi.nlm.nih.gov/,
https://www.ebi.ac.uk/genomes/phage.html). For bacterial
genomes, of which there are many more instances in the
data than phage genomes, we randomly sampled a single
representative per bacterial genus, and the chromosome(s)
and plasmids from that representative were included (Sup-
plementary Tables S2 and S3). The genomes were all down-
loaded from NCBI (n = 1269 bacteria; 13 443 phages). 240
bacterial and 7375 phage genomes were used for the sec-
ond training step (yielding 250000 phage and bacteria frag-
ments), 98 bacterial and 2155 phage genomes were used for
validation, and 931 bacterial and 3931 phage genomes were
left out for testing and never included in training.

Designing and training Long Short-Term Memory networks

Seeker is based on Long Short-Term Memory (LSTM) net-
works, a type of Recurrent Neural Network (RNN) that
take a sequence as input for various prediction tasks (32).
RNNs are a class of neural networks that are principally ap-
plied to sequences, as they rely on previously calculated out-
puts or states while computing the current hidden state. This
design allows RNNs to use distant information within a se-
quence and learn distant dependencies that are then used
for prediction. RNNs compute the hidden state of sequence
position t, denoted ht, by computing the non-linear func-
tion (usually the hyperbolic tangent) of the weight matrix W
when applied to the hidden state of sequence position t − 1
(ht−1) concatenated with the input from the current posi-
tion in the sequence, xt. LSTMs are a type of gated RNN
that are designed to avoid the vanishing and exploding gra-
dient problems, and thus explicitly control the contribution
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Figure 1. Seeker: a machine learning method for phage genome identification. (A) Cartoon representation of the model and training pipeline. (B) Scatter
plot showing the test scores of the model trained with an embedding layer (Python model, x-axis) versus that of the model using a sequence input layer
(Matlab model, y-axis). (C) ROC (Receiver Operating Characteristic) classification curves predicting phage vs. bacterial genome on the left-out test set.

of the previous position in the sequence to the learning at
the current position (33,34). Thus, LSTM can maintain a
longer memory, pass relevant information to the next cell
and forget the less relevant information in the process. The
gates are termed f , the forget gate, designed to forget irrele-
vant information from previous states (sequence positions);
i , the input gate, controlling how much of the current input
xt is considered; o, the output gate, controlling the output
that will be passed to the next hidden state; and c, which
connects the gates to produce a cell state.

All LSTM networks used in this work are sequence-to-
label LSTMs, using a single LSTM cell with 5 hidden units,
with a softmax and classification layer and were trained
using Adam optimizer (35), where the maximal epoch for
training is set to 100. The mini batch size used for each train-
ing iteration was set to 27, with a standard gradient-clipping
threshold set to 1. We maintained relatively small models
with a limited number of parameters (either 152 or 212 pa-
rameters, dependent on the model version), to prevent over-
fitting the data, and to preclude memorization of sequences.
By limiting the number of parameters to train to the weights
and biases of five hidden units, the input layer (either se-
quence input layer or word embedding layer), and the soft-
max classification layer, we ensured that both models had
<250 parameters to train, hence substantially reducing the
risk of overfitting associated with a large number of param-
eters, as well as reducing the training and testing times of
the models. The maximal epoch for training was initially
set to 100, and was not increased because we observed that
additional epochs were not improving performance on the
validation set.

The 1 kb segments were used as input for two different
types of layers resulting in different model architectures,
which were trained to input data into the LSTM layers:

a. Python Keras word embedding layer, for which the DNA
sequence input was transformed into integers (‘A’ = 1,
‘T’ = 2, ‘C’ = 3 and ‘G’ = 4), with the vocabulary size
parameter set to 5 and the input length defined to 1000.

b. Matlab sequence input layer, using channel-wise nor-
malization for zero-center normalization, for which the
DNA sequence input was transformed using one-hot en-
coding (‘A’ = 1000, ‘T’ = 0100, ‘C’ = 0010 and ‘G’ =
0001). This model was converted into a Keras model
once the training was completed.

The models performance was always assessed over com-
plete sequences, regardless of input sequence size, by assign-
ing each genome in a test set the average score predicted by
the model across all of its 1 kb segments.

Ensuring independence between the training and test set,
as well as restricting the training set and number of model
parameters used, precludes memorization of strains that are
used for training. We implemented these restrictions to en-
able a correct assessment of the approach and identification
of new, divergent phages. The training, validation and test
performance curves are provided in Figure 1B and in Sup-
plementary Figure S1.

Sorting the training data by difficulty

For both the first and second training steps, the data were
sorted by training difficulty (from easy to hard), to speed
up the convergence of the training process and hence re-
duce the risk of overfitting (36). For the first training step,
we approximated the difficulty of a training sample (phage
or bacterial) by the average area under the curve (AUC)
of the ROC obtained with LSTMs trained on its genome.
We hence trained LSTMs from randomly chosen combina-
tions of phage and bacterial genomes in the high-confidence
training, such that each phage or bacterial genome was used
to train five models, where in each iteration, the perfor-
mance was evaluated on the rest of the training set. Then,
each phage or bacterial sequence in the set was assigned
a score indicating the average performance of a network
trained using it; the training data was sorted by these scores,
and given as input to the LSTMs for the first training phase.

For the second training step, each sample was assigned
a value indicating the average performance of the LSTM
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networks generated from training step 1 on all its 1 kb seg-
ments. The step 2 training data was ordered by the perfor-
mance score and then given as input to the LSTMs for the
second training phase.

Evaluating Seeker for phages infecting bacteria of different
families

We evaluated the performance of Seeker for phages in-
fecting different bacterial families that represent different
phyla. The performance of Seeker was found to be robust
for most groups of hosts (Supplementary Figure S2). We ad-
ditionally provide a similar table (Supplementary Table S2)
showing the performance of Seeker for bacteria from differ-
ent families. Seeker scores for each bacterium in the training
and test data, which contain a representative of each bac-
terial genus, are also provided to show which bacteria are
more likely to be falsely predicted as phages by Seeker.

Comparison to VirFinder, VirSorter, DeepVirFinder, PPR-
Meta and VIBRANT

We compare the performance of Seeker to those of 5 previ-
ously developed methods for phage identification. The key
features of these methods are summarized in Table 1.

In contrast to Seeker, all other approaches that are based
purely on machine and deep learning (VirFinder, Deep-
VirFinder, PPR-meta) use between tens of thousands to
millions of parameters (Table 1). The sizes of these models
are larger than the number of independent phage training
samples, which can lead to overfitting, and can show per-
fect training performance on randomly shuffled data (38).
Moreover, all three approaches divide their training and test
sets by date of submission. Because highly similar and even
identical genomes can be submitted across numerous years,
this split does not ensure independence between the training
and test sets. Consequently, in practice, these methods used
nearly all available data for training, and it is therefore diffi-
cult to evaluate whether these approaches can predict inde-
pendent and divergent phages and bacteria, or whether they
were simply overfit to the current deposited data. Given that
only a small fraction of phages and bacteria have been iden-
tified and annotated so far (26–28), it is crucial for predic-
tion methods not to be overfit to the current data, and to
be able to predict novel, divergent genomes. We therefore
constructed four test tests, with different levels of difficulty
and divergence from existing databases of phages and bac-
teria, and used these sets to evaluate the performance of all
approaches.

The following test sets were constructed to compare
Seeker to the other approaches (Supplementary Table S3):

1. 154574 viruses assigned with a bacterial host from the
IMG/VR database were downloaded (https://img.jgi.
doe.gov/cgi-bin/vr/main.cgi), and the performances of
the six approaches were compared for different source
environments.

2. Short phage and bacteria sequences ranging 1000–5000
bp were downloaded from NCBI, and the bacterial
sequences were downsampled by quantile for a total
of 4223 phage sequences and 6854 bacteria sequences.

These sequences constitute a test set that mimics typi-
cal metagenomic data. The performances of the six ap-
proaches on these sequences were compared overall and
across ranges of sequence length.

3. Phage sequences that were submitted to NCBI after 2018
and were not used to train Seeker. These sequences were
used because more recent phage genomes may not have
been available for training the other approaches, and be-
cause phages tend to evolve much faster and diverge to
greater extents than bacteria, and therefore are likely to
constitute a test set that is less similar to the training
data used for the other approaches. We examined differ-
ent families of phages, and included families with more
than 5 phage sequences of length >750 bp submitted af-
ter 2018, yielding 2273 genomes from six families. All six
methods were applied to these genomes, and the detec-
tion (true positive) rates were calculated.

4. Finally, we obtained shotgun-sequencing datasets from
NCBI, considering that the other approaches were
trained on full genomes as opposed to shotgun se-
quences, thus providing a dataset with less similarity to
the sequences used for training by these methods (all an-
notated shotgun phage sequences [n = 419] and 1042 un-
classified shotgun bacterial sequences added to NCBI af-
ter 2017 were used to reduce class imbalance in this set).
We applied all six approaches to these genomes and cal-
culated true and false positive rates and balanced accu-
racies.

For each phage in this divergent dataset, we addition-
ally evaluated the sequence similarity against phages in ‘nr’
using blastn. We show that Seeker does not perform bet-
ter for phages that are more similar to existing phages in
nr, whereas VirFinder, VirSorter and DeepVirFinder assign
significantly higher scores to the phages that are more sim-
ilar to phages in nr (Supplementary Figure S4), supporting
the expectation that these methods are highly reliant on se-
quence similarity to previously identified phages.

To compare the runtime of Seeker to those of the five
other approaches, we downloaded a bacterial genome from
NCBI (NC 011750.1) and created 16 segments from its nu-
cleotide sequence, starting from the first base and continu-
ing in steps of 250000, so that the first segment was 250 kb,
the second one was 500 kb, and so forth, until the 16th seg-
ment (4000 kb). Each segment was used as input to each of
the methods, and the number of CPU seconds for each run
was recorded.

Identification and characterization of unknown bacterio-
phages

To identify unknown bacteriophages with Seeker, we ap-
plied Seeker to unclassified metagenomic data from four
projects. We searched for circular sequences (those with a
direct overlap > 15 bp at the genome termini) of length
>30 kb, assigned with high Seeker scores to select can-
didates that are most likely to be phages per Seeker’s
assessment (top 10% of each database and larger than
0.7), yielding 367 contigs in total (33, 61, 203 and 68
from PRJEB22623, PRJEB25190, PRJNA504765 and PR-
JNA577476, respectively, downloaded from NCBI, Supple-

https://img.jgi.doe.gov/cgi-bin/vr/main.cgi
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Table 1. Comparison of models employed for phage identification by Seeker, VirFinder, VirSorter, DeepVirFinder, PPR-Meta and VIBRANT

Name Model Parameters Count Description

Seeker Single LSTM trained with
Python or MATLAB

157 (Python model), or 212
(MATLAB model)

Segments the genome to 1K fragments, and assigns the
average score assigned by the LSTM to segments. Scores
above 0.5 were considered as phage prediction.

VirFinder (23) Three logistic regression models Each model has 10890
parameters, totaling 32,670
parameters

Searches for multiple K-mer signatures that were
frequently observed in known viral sequences. Scores are
between 0 and 1, and scores above 0.5 were considered as
phage prediction.

DeepVirFinder
(25)

Four convolutional neural
network models

Each model uses 1043001
parameters, totaling 4172004
parameters

Convolutional neural networks that extract motif
intensities in sequences and then used them as features
for prediction.

PPR-Meta (24) Three convolutional neural
network models used for phage,
plasmid and chromosome

Each model uses 564632
parameters, totaling 1693896
parameters

Convolutional neural networks for different sequence
lengths, for long sequences segments the genome into
1.2 kb fragments and reports average.

VirSorter (22) Protein similarity Not applicable. Predicts proteins in sequences and detects similarity to
known viral proteins. Predicted phages assigned with
category scores 1 or 2 were considered as phage
prediction.

VIBRANT (37) Hybrid protein similarity and
multi-layer perceptron approach

The multi-layer perceptron uses
63363 parameters

First extracts protein signatures based on HMM hits and
then applies multi-layer perceptron to those signatures.

mentary Table S4). To quantify the proportion of unknown
phages within these datasets, we ran six frame translation
on each contig, ignoring stop codons, and PSI-blasted (39)
the resulting proteins against CDD (40) and PVOG (41)
with E-value cutoff of 0.1. in addition, we applied BlastX to
each contig, with E-value cutoff of 1E-4. From these, hits to
terminase, capsid and portal proteins were retained, where
311 contigs (85%) had a hit to at least one of these three.
For each identified protein, the maximum percent of iden-
tity was obtained using BlastX against NR (Supplementary
Table S4).

The resulting sequences were then filtered to include only
those with <1% overlap with existing phage sequences (us-
ing BlastN, query coverage less than 1%). The protein se-
quences of these candidates were predicted using Prodigal
(42) (v2.6.3) with the parameter set for metagenome mode
(-p meta). The protein sequences of these candidates were
compared to the phage subset of the NR protein database
(accessed December 2020) using BlastP. We filtered for can-
didates in which fewer than 50% of the predicted proteins
had BlastP hits to the proteins in this database and less than
33% of the proteins had hits to a single phage family (with
E-value < 1e–6). The candidates that met these criteria
were taken to represent ‘unknown’ phages and five of these
were annotated and characterized (Supplementary Data 1–
3). In addition to these, we selected 8 divergent phages
that were not detected with VirFinder or VirSorter (some
of which are highly divergent), and included annotations
for some of their key protein sequences (Supplementary
Data 4, 5).

Each predicted protein sequence of the candidate phages
was used as a query for psi-blast (39) against the NR
database (accessed December 2019) to construct a multiple
sequence alignment (MSA). The resulting MSA was used
as a query against the NCBI CDD database (accessed
12/2019 (40)) with an E-value cutoff of < 0.1. Additional
annotations were generated with hhblits (43), using the
MSAs constructed above as queries to search the PDB
database clustered to 70% maximum pairwise sequence

identity (downloaded from http://wwwuser.gwdg.de/
~compbiol/data/hhsuite/databases/hhsuite dbs/, accessed
December 2019).

Amber-readthrough is a genetic code in which the ribo-
some does not stop at the stop-codon UAG, but rather con-
tinues the process of protein synthesis. This is usually ac-
complished via a suppressor tRNA that recognizes UAG
and allows the readthrough to occur, as documented previ-
ously for several phages from gut metagenomes (44). Two of
the novel phages reported here employ amber-readthrough.
For these phages, the initial prediction of protein-coding
genes was performed using the standard genetic code. In
both cases, the following was observed: (a) the homolog of
the large terminase subunit (TerL) was small and contained
a TAG stop codon but aligned to the full length of TerL
sequences from other phages when the stop codon was ig-
nored; (b) when translating with an amber-readthrough ge-
netic code, the size of most of the genes substantially in-
creased, enabling us to annotate genes for which otherwise
no homologs were detected. Given these lines of evidence,
these phages are assumed to be using an amber-readthrough
genetic code, most likely, for translation of the late genes as
previously demonstrated (44). The tRNAs were annotated
in the amber-readthrough genomes using tRNA-scan-SE
(45) (v2.0) with a bitscore cutoff of 35.

In addition, we annotated eight phages from the four
metagenomic projects, which were identified by Seeker but
missed by most other approaches (Supplementary Data 4,
5, Supplementary Figures S6 and S7).

For each candidate phage and its relatives, a phyloge-
netic tree was constructed based on the predicted termi-
nase large subunit protein sequence. To create an alignment,
terminase sequence was run against NR using PSI-Blast,
and sequences with e-value <0.01 were retrieved. Sequences
were then clustered at 70% identity using mmclust (46).
The resulting sequences were aligned using muscle (47), and
then filtered to include those with <50% gaps. The resulting
alignment was used to construct a tree using FastTree, with
default parameters (48).

http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/
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RESULTS

Seeker: a method to differentiate phage genome sequences
from bacterial ones

Seeker employs LSTM networks, a type of neural net-
work that is structured to learn order dependence in predic-
tion problems (32). Conceptually, LSTM networks process
DNA by looking at each position in the sequence and pass-
ing information from one step in the network to the next,
thus allowing information to persist. This persistence allows
LSTMs to learn subtle patterns in the data which are in-
accessible to other existing machine learning methods and
contribute to the classification of the input sequences.

To train the model to differentiate phage from bacterial
sequence, the genomes in the dataset were segmented into
fragments of 1 kb which were then converted into vectors
to be used as the input for the LSTM models (see Materials
and Methods for details, Figure 1). We required a set of se-
quences from each category (phages and bacteria). Seeker
was trained via two steps. When combining all training and
testing data, the cumulative dataset consists of n = 15675
phages and n = 1344 bacteria, with roughly 330000 training
segments for both phages and bacteria (Figure 1A). For the
first training step, we curated high-confidence data of posi-
tive (phages, n = 2232) and negative (bacteria, n = 75) sam-
ples. The relatively small subset of the bacterial genomes
was used to make a balanced training set, with approxi-
mately equal numbers of samples (1 kb segments) from bac-
teria and phages, given that bacterial genomes are much
larger and hence yield many more fragments (see Materi-
als and Methods for details; Figure 1, Supplementary Table
S1). To maximally speed up the convergence of the train-
ing process, the input was ordered by training difficulty (36)
(see Materials and Methods for details). Following train-
ing the models on the high-confidence set, we expanded the
training to include a more diversified set of bacteria and
phage strains (n = 13443 phages, n = 1269 bacteria; see
Materials and Methods for details; Supplementary Table
S1). At this point, a test set was set aside from these data
for method assessment, and the remaining genomes were
divided into training and validation sets (Figure 1). Thus,
the sets used in constructing the method are training and
validation, and evaluations were performed on the sepa-
rate test set. We assessed the method against the test set,
by assigning each genome in the test set the average score
predicted by the model across all of its 1 kb segments, and
found that the classification scores assigned by the two mod-
els are strongly correlated (Pearson’s ρ$= 0.95), and can
distinguish viral from bacterial sequences with high con-
fidence (Python model AUC = 0.91, Matlab model AUC
= 0.92, Figure 1, Supplementary Table S1). Bacterial plas-
mids were included in the bacterial test sets and showed a
slightly lower performance compared to bacterial chromo-
somes (TNR = 0.79, Supplementary Table S1).

We next compared Seeker to existing approaches for
phage genome identification VirSorter (22), VirFinder (23),
DeepVirFinder (25), PPR-Meta (24) and VIBRANT (37).
For the purpose of training, other approaches divided the
genomes into training and test sets based on the year
of deposition in NCBI databases. Because closely related,
highly similar viruses and bacteria are deposited across dif-

ferent years, this does not ensure independence between
training and test sets. Thus, neither the test sets used by
other approaches nor the test set used to formally evalu-
ate Seeker (Figure 1C) would be appropriate for compar-
ison. To produce an unbiased comparison of these meth-
ods, we evaluated their performances across four differ-
ent test sets, in order to compare the strengths and weak-
nesses of each method. First, to compare the ability of
all approaches to recover environmental phages that are
highly similar to previously identified ones, we used phage
genomes from the IMG/VR database, across different en-
vironment categories. Because the IMG/VR dataset was
composed by searching for explicit genome similarity to
known phages, this is an example of a collection of famil-
iar phages and their close relatives. Therefore, unsurpris-
ingly, all approaches perform well on this data, but the
most recent approaches, namely, Seeker, PPR-Meta, Deep-
VirFinder and VIBRANT, show the best performances
(Figure 2A and B). Second, to evaluate the ability of these
methods to distinguish phage sequences from bacterial ones
in short contigs, which typically comprise metagenomic
data, we downloaded short sequences of phages and bac-
teria (1K–5K of length) from NCBI (Supplementary Table
S3). Seeker shows the best accuracy on this dataset (Fig-
ure 2C), whereas approaches that utilize sequence similarity
(VirSorter and VIBRANT) predictably are the least accu-
rate on short sequences due to their low true positive rate
on this type of data (Figure 2C). Seeker is also the most sta-
ble across different ranges of sequence length (Figure 2D),
whereas the rest of the approaches tend to show better per-
formance for longer sequences, especially, those methods
that utilize sequence similarity (VirSorter and VIBRANT,
Figure 2D).

Third, we required a test set that was not seen during the
training of any of the methods. Thus, we obtained environ-
mental sequences from six phage families that were added
to the NCBI databases after 2018, and therefore, were not
represented in the training datasets used to train any of
the previous methods (Supplementary Table S3). Applied
to these phage sequences, Seeker performed better than any
of the other five approaches (Seeker overall True Positive
rate (TPR) = 0.90, VirFinder TPR = 0.79; VirSorter TPR
= 0.57; DeepVirFinder TPR = 0.78; PPR-Meta TPR = 0.7;
VIBRANT TPR = 0.52, Figure 3A and B). Furthermore,
Seeker showed a more stable performance with less variance
compared to other approaches (Figure 3B).

Fourth, to obtain a test set with even less similarity to
the sequences used for training, we tested all three meth-
ods on shotgun-sequencing datasets from the NCBI (n =
419 phages, n = 1042 bacteria, see Methods, Supplementary
Table S3d). We found that Seeker outperformed the other
methods (Figure 3C). In addition, Seeker scores on phages
in this dataset were not correlated with contig length, in
contrast to VirFinder, VirSorter and DeepVirFinder (Sup-
plementary Figure S3). As this is the most divergent dataset
examined, we further evaluated whether the performance of
different approaches was better for phages with higher se-
quence similarity to known ones. We found that the scores
assigned by Seeker were not higher for phages that are more
similar to those in existing databases, whereas the scores ob-
tained with the other approaches that had non-random true
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Figure 2. Comparison of the performance of Seeker to those of other approaches for the IMG/VR dataset and for short phage and bacterial sequences. (A)
True positive rates of Seeker (yellow), VirFinder (Blue), VirSorter (red), DeepVirFinder (green), PPR-Meta (purple) and VIBRANT (brown) for phages
in the IMG/VR data set. (B) Overall true positive rates of the nine data points in panel (A); the error bars show standard deviations of the rates; the color
code is the same as in panel A. (C) Balanced accuracy, true positive rate (TPR), precision (positive predictive rate) and true negative rate (TNR) of the six
methods, for short sequences mimicking metagenomics data; the color code is the same as in panel A. (D) Balanced accuracy of the six methods for short
sequences mimicking metagenome projects, for three ranges of sequence lengths; the color code is the same as in panel A.

positive rate (VirFinder, VirSorter DeepVirFinder) were
significantly higher for more familiar phages (Supplemen-
tary Figure S4). Together, these results indicate that Seeker
is stable and not confounded by contig length, and is able to
detect phages that are divergent from those that were seen
during training. In addition, Seeker is substantially faster
than all existing approaches, and its runtime is linear with
respect to the input length (Figure 3D).

Using Seeker for phage discovery

Encouraged by the results of Seeker testing against di-
verse sets of known phages, we used this method to search
metagenomic sequence datasets for previously undetected
phage genomes. At this stage, we sought to practically
demonstrate Seeker’s utility to detect novel phages with lim-

ited similarity to known ones in metagenomic data sets,
which we envision as the most common use for Seeker. We
filtered four metagenomic sequencing projects for circular
contigs with a high Seeker score, for a total of 367 candidate
phage genomes (Supplementary Table S4). Each candidate
was then searched for the protein sequences of three phage
markers, i.e. protein-coding genes that are represented in
all known tailed phages (41), namely, terminase (large sub-
unit), capsid and portal proteins (see Methods for details).
We found that, for 311 of the candidates (85%), we were
able to detect at least one of these markers (Figure 4A, Sup-
plementary Table S4), most often, the terminase, the most
conserved of the three protein markers sequence-wise. The
remaining candidates are either not phages and therefore
false positives, or contain extremely divergent forms of these
markers. In the majority of the candidates where the mark-
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Figure 3. Performance of Seeker compared to those of other approaches on divergent sequence datasets. (A) The true positive rates of Seeker (yellow),
VirFinder (Blue), VirSorter (red), DeepVirFinder (green), PPR-Meta (purple) and VIBRANT (brown) for environmental sequences from six bacteriophage
families deposited in NCBI databases after 2018. (B) The overall true positive rates for the six data points in panel (A); the error bars show the standard
deviations of the rates; the color code is the same as in panel A. (C) The balanced accuracy, true positive rate (TPR), precision (positive predictive rate) and
true negative rate (TNR) for the six approaches, on the shotgun sequencing test set; the color code is the same as in panel A. (D) The CPU times (seconds,
y-axis) for Seeker (yellow), VirFinder (Blue), VirSorter (red), DeepVirFinder (green), PPR-meta (purple) and VIBRANT (brown) depending on the input
size (x-axis).

ers were detected, the sequences of the marker proteins are
substantially dissimilar from their closest known homologs,
with <50% identity (Figure 4B and C), further indicating
the novelty of these phages detected by Seeker. A similar
analysis applied to these four metagenomic projects with-
out filtering for circular contigs resulted in equivalent per-
formances (Supplementary Table S5, Figure S5).

We explored in detail five of the unknown phages dis-
covered by Seeker in this set, with an explicit focus on the
phages that bore the least sequence similarity to known
phages (see Materials and Methods for details), starting
with two phages detected in the gut metagenomes. The
first of these phages (OLNE01000568.1), which we refer
to as Flitwick, was detected in a human gut metagenome.
Flitwick has a 33716 bp circular genome, with 25 pre-
dicted genes, and uses an alternative genetic code, with
readthrough of amber stop codons. This could, in part,
explain why this phage has not been previously identi-
fied. We annotated 13 of Flitwick’s genes (52%, Figure 5A,
Supplementary Data 1–3), in particular, several encoding
structural proteins including the major capsid protein and
the large terminase subunit. We additionally detected four
tRNA genes in the phage genome one of which is predicted
to be the suppressor of the amber stop codon. The position
of Flitwick in the phylogenetic tree of the large terminase
subunit shows that this is a distinct member of the Siphoviri-
dae family (Figure 5B).

The second phage (ODAI012083904.1), which we refer
to as Regulus, was detected in sheep rumen metagenome
(Methods). Regulus has a 432079 bp circular genome and
is thus a previously unknown ‘jumbo’ phage (49), with 554
predicted genes, of which we were able to annotate 127
(23%). Regulus also uses an amber-readthrough genetic
code. In the phylogenetic tree of the large terminase sub-
units, Regulus forms a distinct branch in the Myoviridae
family (Figure 5D).

Identification of these phages with Seeker illustrates its
ability to detect phage sequences that are distantly related
to phages that were seen during training, and additionally,
demonstrates that Seeker does not depend on the genetic
code used by a phage.

We next explored in detail 3 of the environmental
metagenome phages detected by Seeker, all of which are
divergent from any known phage family. The first of
these (SDBT01001083.1), which we named Ignotus, has a
46652 bp circular genome with 88 predicted genes, of which
17 (19%) could be annotated (Figure 6A). The predicted ter-
minase and capsid protein are too divergent to be reliably
aligned with the other phage terminase or capsid proteins
(although recognized at a statistically significant level), and
therefore, we were unable to reconstruct a phylogenetic tree
(Supplementary Data 1–3). Thus, Ignotus will, probably,
become the founder of a distinct phage family or a higher
taxon.
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Figure 4. Terminase, capsid and portal proteins in candidate novel bacteriophages. (A) The Venn diagram shows, for each metagenomic project analyzed
(marked with different shapes), the percentage of circular contigs identified by Seeker with different combinations of the three phage markers detected
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The second phage in this set (WNFG01000004.1), named
Alastor, has a 164 887 bp circular genome with 223 pre-
dicted genes, of which 68 (31%) could be annotated (Fig-
ure 6B, Supplementary Data 1–3). The major capsid and
portal proteins of this phage are moderately similar to pro-
teins in a subset of the phages in the family Herelleviri-
dae, but its terminase is highly divergent from known termi-
nases (Figure 6D). The last phage we analyzed from this set
(WNGI01000014.1), named Wulfric, has a 103078 bp cir-
cular genome with 133 predicted genes, of which 43 (32%)
could be annotated (Figure 6C, Supplementary Data 1–3).
Phylogenetic analysis of the large terminase subunits shows
that Wulfric is a distinct member of the family Podoviridae
(Figure 6E).

Additionally, we discovered eight new phages from
the four metagenomic projects that were identified by
Seeker but not by most of the other approaches (Sup-
plementary Figures S6 and S7 and Supplementary Data
4,5). Phylogenetic trees for the predicted terminase se-
quences of this set indicated that five phages formed deep
branches within Caudovirales (namely, WNGN01000162.1,
SDBU01000213.1, SDBT01001087.1, WNGL01000548.1
and OLNE01000281.1). Of the remaining three, for one,
we were able to identify the portal and tail proteins,
but not the terminase (SDBT01001081.1). The termi-
nases of the remaining two phages (SDBT01000149.1 and
SDBT01000023.1) were too divergent to be reliably aligned
with other phage terminase, and therefore, we were un-
able to reconstruct a phylogenetic tree for these cases. Con-
ceivably, these highly diverged phages represent new phage
groups, perhaps, with a family rank.

DISCUSSION

Bacteriophages play vital roles in nearly every ecosystem
on earth and, through their presence in microbiomes, di-
rectly impact human health. Metagenomic sequencing has
brought about a new era of bacteriophage discovery, where
the crucial hurdle is the ability to extract viral sequences

and discover unknown bacteriophages from a large pool
of metagenomic sequences. Existing methods, which mostly
detect phage sequences based on direct similarity to the
phages present in the current databases, are often inade-
quate for detection of phages distantly related to the known
ones, and are slow when applied to long sequences and large
datasets.

Neural networks are often described as black boxes. This
is due to their structure, which includes a large number
of parameters, and their use of non-linear functions that
transform the input into an uninterpretable numeric form.
Nevertheless, recent advances in deep learning have demon-
strated the enormous power these approaches can wield in
detecting otherwise opaque patterns and trends in complex
datasets (50). Here, we utilize LSTM neural networks that,
to our knowledge, have not been previously employed to
detect the origin of a DNA sequence, to enable alignment-
free detection of viral sequences from large-scale sequenc-
ing data. These LSTM networks, despite a limited num-
ber of parameters and training data, are able to detect im-
plicit, long-range patterns within the data. This feature is
further demonstrated by the detection of previously un-
known phages using Seeker. Some of the discovered phages
are highly divergent from known phage families and might
become the founders of distinct phage families (Figures 5
and 6, Supplementary Figures S6 and S7).

Like any computational approach, Seeker is not devoid
of limitations. First, although the overall performance is re-
liable and robust, it does not perfectly distinguish phages
from bacterial genomes, and some bacteria and phages are
misclassified. To facilitate estimation of where Seeker could
fail, we provide the complete table of Seeker scores for bac-
teria in the training and test sets which contain a repre-
sentative from every bacterial genus (Supplementary Table
S1d). In addition, we analyzed Seeker’s performance across
phages infecting multiple bacterial families representing dif-
ferent phyla and found that the performance of Seeker is
robust with respect to the phage and host diversity (Sup-
plementary Figure S2, Table S2). Seeker was not trained on
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eukaryotic DNA and cannot be used to detect eukaryotic
contamination in metagenomic sequence data. Eukaryotic
sequences might be misidentified as phages, therefore users
suspecting eukaryotic contamination should take appropri-
ate steps to filter out potential eukaryotic sequences. Nei-
ther was Seeker trained to identify prophages within bacte-
rial genomes, and its ability to do so has not been tested.
Developing a fast and reliable method to detect prophages
is desirable, but expanding Seeker into an alignment-free
approach for prophage identification would be highly chal-
lenging. Such an expansion would require explicit training
on prophage sequences, along with the development of a
sophisticated method to scan bacterial genomes and to ac-
curately define the threshold scores to distinguish prophage
sequences from the surrounding bacterial sequences, with

good true positive and true negative rates. For these rea-
sons, we expect a follow-up to this work, incorporating a
version of Seeker as the first filtering step, with a second,
reference-based step, will be valuable to enhance the speed
and accuracy of prophage identification.

A comparison of Seeker with five methods for phage
identification in sequence databases, VirSorter (22),
VirFinder (23), DeepVirFinder (25), PPR-Meta (24) and
VIBRANT (37), demonstrated a more robust, more reliable
and much faster performance of Seeker on diverse test
sets. Our comparisons demonstrate that most approaches
perform well on datasets containing familiar phages with
high levels of similarity to known phages (Figure 2A and
B). However, for large metagenomic sequence data, the
long runtime and computational requirements of some
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Figure 6. Novel bacteriophages identified by Seeker in environmental metagenomes. (A–C) Annotated gene maps of the phages Ignotus, Alastor and
Wulfric, respectively. (D, E) Phylogenetic trees constructed from the large terminase subunits of the phages Alastor and Wulfric, respectively.

approaches (Figure 3D) lead to practical limitations, as
it may take days or even weeks along with considerable
computational resources to analyze large data sets. In
addition to speed, a major advantage of Seeker is that it
maintains a high level of performance when applied to
viral sequences with little similarity to those seen during
its training and thus is well suited to discover new groups
of phages (Figure 3A–C). Importantly, VirSorter and
VIBRANT offer annotation of virus genomes, in addition
to prediction, which is valuable and can compensate for the
long runtime for some cases.

Seeker is freely and publicly available, as a webtool
(seeker.pythonanywhere.com), a command-line tool and a
Python package (github.com/gussow/seeker). Researchers

can easily utilize any of these options to process their
metagenomic datasets and rapidly discover previously un-
known phages. Given its ability to detect a wide diver-
sity of bacteriophages, we expect that widespread applica-
tion of Seeker leads to the discovery of numerous phages,
some of which would represent distinct families or even
higher taxa in the forthcoming new phage taxonomy (51).
More generally, this work demonstrates that LSTM neural
networks can learn long-term dependencies within DNA
sequences and thus can efficiently tackle tasks that are
not easily amenable to standard techniques based on ex-
plicit sequence similarity. Future studies are warranted to
evaluate the approach developed here for other sequence
categories.

https://seeker.pythonanywhere.com
https://github.com/gussow/seeker
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lightning-fast iterative protein sequence searching by HMM-HMM
alignment. Nat. Methods, 9, 173–175.

44. Ivanova,N.N., Schwientek,P., Tripp,H.J., Rinke,C., Pati,A.,
Huntemann,M., Visel,A., Woyke,T., Kyrpides,N.C. and Rubin,E.M.
(2014) Stop codon reassignments in the wild. Science, 344, 909–913.

45. Lowe,T.M. and Eddy,S.R. (1996) TRNAscan-SE: a program for
improved detection of transfer RNA genes in genomic sequence.
Nucleic Acids Res., 25, 955–964.
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50. Eraslan,G., Avsec,Ž., Gagneur,J. and Theis,F.J. (2019) Deep learning:
new computational modelling techniques for genomics. Nat. Rev.
Genet., 20, 389–403.

51. Adriaenssens,E.M., Sullivan,M.B., Knezevic,P., van Zyl,L.J.,
Sarkar,B.L., Dutilh,B.E., Alfenas-Zerbini,P., Łobocka,M., Tong,Y.,
Brister,J.R. et al. (2020) Taxonomy of prokaryotic viruses: 2018–2019
update from the ICTV bacterial and archaeal viruses subcommittee.
Arch. Virol., 165, 1253–1260.

https://www.arxiv.org/abs/1611.03530

