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ABSTRACT

Because ambient temperature affects biochemical
reactions, organisms living in extreme temperature
conditions adapt protein composition and struc-
ture to maintain biochemical functions. While it is
not feasible to experimentally determine optimal
growth temperature (OGT) for every known micro-
bial species, organisms adapted to different temper-
atures have measurable differences in DNA, RNA and
protein composition that allow OGT prediction from
genome sequence alone. In this study, we built a
‘tRNA thermometer’ model using tRNA sequence to
predict OGT. We used sequences from 100 archaea
and 683 bacteria species as input to train two Convo-
lutional Neural Network models. The first pairs indi-
vidual tRNA sequences from different species to pre-
dict which comes from a more thermophilic organ-
ism, with accuracy ranging from 0.538 to 0.992. The
second uses the complete set of tRNAs in a species
to predict optimal growth temperature, achieving a
maximum r2 of 0.86; comparable with other predic-
tion accuracies in the literature despite a significant
reduction in the quantity of input data. This model
improves on previous OGT prediction models by pro-
viding a model with minimum input data require-
ments, removing laborious feature extraction and
data preprocessing steps and widening the scope
of valid downstream analyses.

INTRODUCTION

Environmental temperature affects every biochemical reac-
tion within an organism, from spontaneous protein fold-

ing to complex metabolite catalysis. Tools that infer an
organism’s optimal growth temperature from genomic se-
quence have potential biological and economic implications
and can improve understanding of how both individual cell
components and whole organisms adapt to their environ-
ment. However, experimentally identifying the true opti-
mal temperature of every newly discovered micro-organism
is unfeasible due to the sheer number of prokaryotes that
have been identified and the difficulty in isolating and cul-
turing many prokaryotic species. Predicting an organism’s
optimal growth temperature based on physical characteris-
tics of the genome is one way to determine optimal tem-
perature without needing to successfully culture a new
species.

Temperature has a significant effect on cell biochemistry.
In general, cellular processes speed up as temperature in-
creases, but extremely high temperatures can also denature
proteins and negatively affect biochemical reactions. Pro-
teins function best within a specific temperature window
that maximizes enzymatic reaction rate without denatur-
ing the protein, and most enzymes have evolved within an
optimal temperature range that is closely tied to environ-
mental temperature (1). Few enzymes show optimal activity
more than 10◦C above or below the optimal growth tem-
perature of the host organism (1,2). Maintaining catalytic
function at extreme temperatures requires specific changes
in genome composition, and many studies have identified
differences between thermophilic and mesophilic genomes
(1,3–11). Thermophilic proteins tend to have more hy-
drophobic residues, disulfide bonds and ionic interactions
to pack amino acid residues closely together and prevent
protein unfolding, while psychrophilic (cold-adapted) pro-
teins require fewer strong interactions between amino acid
residues (2). Significant shifts in genome composition have
also been correlated with environmental temperature con-
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ditions, affecting genome features like GC content, codon
bias and amino acid frequency (12,13).

Because physical changes in DNA, RNA and protein
composition have been correlated with optimal growth tem-
perature, multiple approaches have been taken to predict
OGT from a combination of these features. Aptekmann
et al. found a positive correlation between GC content of
tRNA regions and OGT and between information content
and optimal growth temperatures in Archaea (12). Li et al.
implemented a machine learning workflow in order to pre-
dict the OGT of micro-organisms and enzyme catalytic op-
tima from 2-mer amino acid composition and investigated a
wide range of regression models (5). Sauer and Wang used
multiple linear regression to predict the OGT of prokary-
otes from genome size and tRNA, rRNA, open reading
frame and proteome composition (13). Ai et al. targeted
a problem related to protein thermostability and classified
thermophilic and mesophilic proteins using support vector
machines and decision trees (6). Similarly, Capaldi et al. pre-
dicted bacterial growth temperature range based on genome
sequences with a Bayesian model (1).

These previously published approaches to predicting or-
ganism OGT tend to use a combination of genome and
sequence features that cover the entire Central Dogma of
molecular biology. Such models can be useful when the
end goal is to predict OGT for a newly identified species,
but they have limited downstream applications when the
end goal is understanding how cellular components adapt
or evolve under different temperature conditions, because
using many cell features to predict OGT then statistically
confounds downstream analyses involving the same cellular
components. Optimal growth temperatures predicted with a
model requiring amino acid composition as input, for ex-
ample, cannot be used in subsequent analyses investigat-
ing how proteins evolve under different temperatures––the
protein evolution results would be confounded with the ini-
tial OGT prediction. To address this, we set out to create a
model that predicts prokaryote OGT using a minimal set of
input data.

Transfer RNAs (tRNAs) are a vital and universal part of
life, with remarkably conserved structure and function. Al-
though most tRNAs have a standard ‘cloverleaf’ structure
with an acceptor arm, D-arm, anticodon arm and T-arm,
mutants have been identified that lack the T-arm, D-arm or
both (14,15). We chose to focus on tRNA sequences with
this model because of the ubiquity and conservation of tR-
NAs across domains, because RNA base pairing chemistry
is known to be affected by temperature, and because single-
base mutations in tRNAs can dramatically affect function
and temperature sensitivity (16,17).

We refer to this model as a ‘tRNA thermometer’ because
it uses tRNA sequence features as an indicator of an or-
ganism’s optimal growth temperature, thus measuring the
‘temperature’ of the genome. Although biologists may be
familiar with the concept of an ‘RNA thermometer’, here
we use a similar term with a different context. The tRNA
thermometer model uses a Convolutional Neural Network
(CNN) to classify and predict prokaryote OGT using tRNA
sequences as input data. Because the model uses only tRNA
features, it is possible to use predicted optimal tempera-
tures from this model in downstream analyses evaluating

the effects of temperature on other cellular components, in-
cluding protein and genomic features. Essentially, with only
∼4000 bp of sequence (∼0.1% of the genome), this CNN
model can predict OGT as well as summary data from the
entire rest of the genome. Because it uses fewer features
than previous OGT-prediction models and does not require
feature extraction, it is also easier to use and removes re-
searcher bias in selecting features.

MATERIALS AND METHODS

Data collection and distribution

A list of species for which optimal growth temperature has
been determined was obtained from Sauer et al. and all ex-
isting genome assemblies were downloaded for each species,
resulting in an initial set of 36 529 Bacteria and 276 Archaea
genomes, with optimal growth temperatures ranging from
4 to 103◦C (13). tRNA sequence and positions were pre-
dicted for each genome using tRNAscan-SE (version 2.0.3;
(18,19)). rRNA sequence and positions were predicted for
each genome using barrnap (version 0.9; (20)).

A single genome was selected for each species, and
only tRNA sequences from that genome were used in the
CNN predictions. Genome assemblies were considered low-
quality and removed if 16S, 23S and 5S rRNA sequences
could not be predicted by barrnap. For species with mul-
tiple remaining genome assemblies, the assembly with the
highest number of predicted tRNA sequences was chosen
as the single ‘best’ assembly. Selecting genome assemblies in
this way resulted in genomes for 165 unique archaea species
and 2375 unique bacteria species. However, the distribu-
tion of optimal temperatures for this species set was highly
skewed, with nearly 40% of archaea and nearly 70% of bac-
teria genomes having predicted optimal temperatures of 28,
30 or 37◦C. These three temperatures are common prokary-
ote culture temperatures so we decided to remove obser-
vations at these temperatures to reduce the bias and help
balance the dataset, since we could not be sure that these
were true adaptive growth temperatures rather than culture
temperatures. After removing species with OGT listed at 28,
30 or 37◦C, the dataset contained 683 bacteria species with
41 853 predicted tRNAs and 100 archaea species with 5474
predicted tRNAs. In the final dataset, 70% of bacteria tR-
NAs come from species with OGTs between 20 and 40◦C,
and 24% of archaea tRNAs come from species in this tem-
perature range. The range of optimal temperatures included
in the dataset spans nearly 100◦C and as expected, tRNA
structures in the dataset appear consistent despite the large
variation in species’ optimal growth temperatures (Figure
1). Sequences were used to train and test the model as-is
and were not processed further to identify specific tRNA
mutants or non-standard structures.

Prediction method

We used Convolutional Neural Networks (CNNs) for OGT
prediction. CNNs are neural network (NN)-based machine
learning models with at least one convolutional layer. They
can predict both categorical (classification) and continu-
ous (regression) targets depending on the configuration of
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Figure 1. Sample structures for Lysine tRNAs calculated using predicted MFE are consistent even in species with extreme differences in optimal growth
temperature. (A) Aequorivita sublithincola, with OGT = 4◦C, (B) Lactobacillus frumenti, with OGT = 40◦C, (C) Pyrolobus fumarii, with OGT = 103◦C.
These tRNA structures were calculated and displayed using the ViennaRNA Web Services (41).

downstream layers. When the input is a continuous or dis-
crete signal such as images, sensor data, or base pair se-
quence, CNNs are useful because they automatically ex-
tract features from the input and can capture both local and
global features. Moreover, thanks to weight sharing at the
convolutional layers and downsampling at the pooling lay-
ers, CNNs have fewer parameters that need to be learned
than regular NNs. Thus, CNNs require less training data
and have lower risk of over-fitting. Additionally, other ma-
chine learning models have no prior knowledge of how in-
put values are organized, and are not able to take advantage
of the relative positions within a sequence, (i.e. they can-
not determine consecutive bases in a sequence). CNN ar-
chitectures naturally have this prior neighborhood knowl-
edge. CNNs have been shown to be successful predicting
a target by using genomic sequence data: Wang et al. pre-
sented a sequence-based deep CNN model that accurately
predicts the TF binding intensities to given DNA sequences
(21), and Zeng et al., and Zhuang et al. predict enhancer–
promoter interactions with DNA sequence data and CNNs
(22,23).

We set two prediction problems in this study. One is a bi-
nary classification model that can take two tRNA sequences
from different organisms as input. This classification model
predicts which tRNA sequence in the pair comes from a
micro-organism with higher optimal growth temperature,
and requires only a single tRNA from each genome for
the classification. The second model uses a CNN regres-
sion model that predicts the optimal growth temperatures

of bacteria and archaea. In both cases, a CNN model was
chosen to allow automatic feature extraction. This made it
possible to use tRNA sequences as direct input and did not
require manual extraction of hundreds of sequence features
or assessment of the correlation of each individual feature
with OGT. In both models, tRNA sequences were obtained
as described above, then one-hot encoded. Because not all
tRNA sequences are the same length, shorter sequences
were padded with zeros to produce a final 4xL matrix of
0s and 1s, where L is the length of the longest tRNA in the
input data.

Models

Temperature classifier model based on individual tRNA se-
quences. In the first model, we built a CNN classification
model that can take paired sets of tRNAs and predict which
tRNA belongs to a micro-organism with higher optimal
growth temperature. Before presenting our classifier model,
in Equations (1) and (2) we introduce the data structure.
In Equation (1), dataset D has N micro-organisms. Each
micro-organism mi has a corresponding OGT ti. In Equa-
tion (2), because each organism in the dataset has more than
one tRNA, ni is the number of tRNAs in micro-organism
mi. Since there are a different number of tRNAs in each
micro-organism, ni ’s are different for each mi. tRNAi

j is
the jth tRNA of ith micro-organism mi and, it is an instance
in R4 ×L space. The input space is 4 × L dimensional be-
cause there are 4 bp (one-hot encoding), and the length of
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the longest tRNA in the dataset D is L.

D = {{m1,t1} , . . . , {mi ,ti } , . . . {mN,tN}} ,

i ∈ I= {1, . . . , N} (1)

mi =
{

tRNA1
i , . . . , tRNAj

i , . . . tRNAni
i

}
,

tRNAj
i ∈ R4×L, j ∈ ji = {1, . . . ni } , ∀i ∈ I (2)

To predict which tRNA comes from an organism with
higher OGT, we built a CNN classifier with two branches,
each of which was fed an input tRNA sequence. Each
branch starts with at least one pair of convolutional and
pooling layers. After the last pooling layer, branches are
flattened and merged. Convolutional and dense layers use
a Rectified Linear Unit (ReLU) activation function. Two
output nodes at the end are activated with the Softmax
function which provides class probabilities. We predict the
output as a binary label that indicates whether the first
branch input or the second branch input has a higher OGT.
The loss function of the model is the categorical cross en-
tropy, and it is minimized with the Adam optimizer (24).
Parameters of the model (e.g. layer sizes, number of lay-
ers, optimizer parameters and dropout rate etc.) were se-
lected with hyper-parameter optimization. To train and test
our classifier model, we created a dataset of tRNA pairs
from the original dataset given in Equations (1) and (2).
In the classification dataset each sample is in the form of
{{tRNA1, tRNA2}, y}, where y ∈ {0, 1} is the class label.
We used tRNA pairs only if their micro-organism OGTs
were different by at least 1◦C (Figure 2A).

Species OGT predictor model. The CNN regression model
to predict species’ OGT starts with two convolutional and
subsequent maximum pooling layers. After the last pool-
ing layer there is a single flattening layer before multiple
fully connected dense layers. The activation function of the
convolutional and dense layers is Rectified Linear Units
(ReLU; Figure 2B). The output node is a continuous vari-
able and is activated linearly. The loss function of the model
is the mean squared error, and it is minimized with the
Adam optimizer. In Figure 2, we provide the general struc-
ture of the models. Dots mean the model may have more lay-
ers of the given type. The number of layers for each model
is selected with the hyper-parameter optimization.

To train and test the regression model, we created a
dataset as in Equations (1) and (2), where each sample is
in the form {tRNA, t}. t is OGT of the related tRNA. We
trained the CNN model by considering each tRNA as in-
dependent of all other tRNAs in the organism. Once we
trained the model, we had ni tRNA-based OGT predictions
for the micro-organism mi; one for each tRNA. We deter-
mined the OGT prediction of the species as a whole by cal-
culating the median of all tRNA-based OGT predictions. In
Equation (3), t̂i is the OGT prediction of i th micro-organism
mi and, t̂ j

i is the OGT prediction of j th tRNA of i th micro-
organism.

t̂i = median
(

t̂1
i , . . . , t̂ j

i , . . . , t̂ni
i

)
,

where j ∈ ji = {1, . . . , ni } ,∀i ∈ I (3)

Hyper-parameter optimization

Selecting the optimal combination of hyper-parameters is
important because hyper-parameter values have a signifi-
cant effect on the performance of CNN models. There are
a large number of hyper-parameters and the possible val-
ues of each results in millions of potential hyper-parameter
combinations. These hyper-parameters define the model
structure and need to be selected by the user before train-
ing. In this study we used Bayesian optimization to deter-
mine parameter values for layer size, the number of lay-
ers, the number of filters, kernel size, pooling size, strides,
dropout rate, batch size and beta1, beta2, learning rate
of the Adam optimizer. The search space for each hyper-
parameter is listed in Supplementary Table S1 and selected
hyper-parameters are provided in Supplementary Table S2.

x∗ = arg min
x ∈X

f (x) (4)

In Equation (4), x∗ corresponds to the best combination
of hyper-parameter values. Selecting x∗ from the possible se-
lection set X is defined in Equation (4), where f (x) is the loss
(e.g. mean squared error, mean absolute error and classifica-
tion error) on the validation set. It is not possible to try each
combination of hyper-parameters to find x∗ since there are
millions of potential hyper-parameter combinations. Thus,
there is a need for an intelligent way to select candidate
hyper-parameters. The optimization-based approach that
we use maximizes the expectation of the improvement (EI)
on the performance. There are several ways to estimate ex-
pected improvement, and we used a tree-structured Parzen
Estimator (TPE) provided in the Hyper-opt python pack-
age to find x∗ (25,26). The TPE is a sequential optimization
approach: it uses historical performance to sequentially se-
lect the candidate set of hyper-parameters, and then itera-
tively chooses new hyperparameters to test by maximizing
performance. Bergstra et. al. provide formulations and al-
gorithms about EI and TPE in detail (25). We allow the al-
gorithm to run 50 iterations to select the best combination
of hyperparameters to use in each model.

Data splitting procedure

To evaluate the performance of each proposed model, we
investigated two scenarios. First, we split the species ran-
domly into training, validation and test sets. Second, we
controlled for evolutionary relatedness and split data ac-
cording to phylogenetic distance.

Random split. Model evaluation commonly uses k-fold
cross-validation or a random split of the training, test and
validation datasets. In the first part of the computational re-
sults, we held out 5% of all species as a validation set to fine-
tune hyper-parameters and then used the rest of the species
for 5-fold cross-validation: 76% for training and 19% for
testing in each iteration of the model. Hyper-parameter op-
timization was done once during the first iteration, and hy-
perparameters were selected according to performance on
the validation set. We repeated the whole set of tests five
times.

Phylogenetic distance split. Random train-test data splits
work well for prediction models, and previous OGT-
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Figure 2. OGT prediction models. Input tRNA sequences are one-hot encoded and padded with 0s to make the matrix. (A) The general structure of the
temperature classifier model. The model has two channels. Both channels are fed a tRNA. Each channel starts with a convolutional layer and a maximum
pooling layer. The sequence is flattened and passed to two fully connected and dropout layers. The two channels are concatenated and then passed to fully
connected layers. The output layer has two neurons for binary classification. (B) The general structure of the regression model. The input layer is followed
by two convolutional layers and a maximum pooling layer. Then, data are processed through fully connected dense layers, resulting in a single OGT
prediction for each tRNA. This figure shows the general structure only, and the exact number of layers are selected with hyper-parameter optimization.
Selected hyper-parameters are provided in the Supplementary Files.

prediction models use a random training/test split to
evaluate their model (5–6,9,13). However, the random
training/test split does not account for evolutionary relat-
edness between species. Previous machine learning studies
have found that similarity between individuals can provide
overly optimistic results because the training and test data
sets may contain closely related species. Washburn et al.
(27) considered this situation in the prediction of mRNA
expression levels, and found that machine learning models
trained without taking evolutionary history into account
were able to recognize species similarity and use it to inform
predictions. Additionally, Washburn et al. states that ignor-
ing shared evolutionary history can exaggerate model per-

formance and possibly lead researchers to conclude that cer-
tain model features are important, when in fact, the model
test set is contaminated by similar observations that are
present in both the training and test sets. In fact, if the
aim of using a predictive model is only to predict accurate
OGTs/class labels, splitting training and test sets randomly
is valid. However, if researchers would like to obtain bi-
ological insights from the model (i.e. to answer questions
like which tRNA properties are correlated with high/low
OGT), a dataset split by phylogenetic distance will provide
better insights. A model trained using a phylogenetic dis-
tance train/test split is also likely to be more transferable to
other problems. This is because by constraining the model
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and removing all information from phylogenetically related
species, we push the model to extract other rules from the
sequence that are more transferrable.

To account for evolutionary relationships across species,
we tested each model with a phylogenetically informed
training/test split. A simple phylogenetic relationship be-
tween species was calculated as the relative relationship be-
tween species based on species’ taxa id and the NCBI Com-
mon Tree (28,29). The tree was converted to a simple dis-
tance matrix using the ‘ape’ R package (30). The phylo-
genetic distance matrix was used to split species into clus-
ters. For this purpose, we applied hierarchical clustering to
species by minimizing the Ward variance (31). After pre-
serving 5% of the species for the validation set, the rest of
the species were split into 10 clusters, 8 of which were used
as a training set and 2 of which were used as the testing set.
This procedure was repeated five times, and each cluster was
included in the test set only once. We repeated the whole set
of tests five times.

Model attention. To determine how the importance as-
signed to the tRNA stem structures affects model predic-
tions, we selectively mutated each set of paired bases in the
tRNA structure for 55 Escherichia coli tRNAs for which
structure information is available (32). For each paired nu-
cleotide we mutated the original DNA base to all three other
nucleotides (e.g. G → A, T and C in turn) which would dis-
rupt a single Watson/Crick base pairing interaction within
the transcribed tRNA. This resulted in a set of 5793 new
tRNA sequences, each with a single nucleotide change that
disrupted one set of pairing interactions. We then predicted
OGT for these new sequences and compared predictions to
OGT predictions for the original E. coli tRNA sequences.

Software and computation power. We implemented the
proposed prediction method in Python 3.6 using Keras
(2.2.5) to build and train the CNN model. For the distance
split, species were clustered hierarchically with Sklearn
(0.21.2) to find clusters related to phylogenetic distance. We
have used the Keras-vis [https://github.com/raghakot/keras-
vis] package to investigate model attention (33). Tests were
carried out on a computer with a GeForce RTX 2080 GPU,
64 GB RAM and Intel(R) Core(TM) i7–7800X CPU run-
ning at 3.5 GHz.

RESULTS

Model 1: Temperature classifier based on individual tRNA
sequences

We first built a model that uses a single tRNA to distinguish
which of two species comes from a higher optimal growth
temperature environment. Data was split into training and
test sets either randomly or with phylogenetically informed
distance splitting as described above. All tests were repeated
five times and results represent the average and the standard
deviation of these runs.

For both the random and phylogenetic data splits we cal-
culated and presented accuracy and F1 score results when
temperature differences are greater than 0◦C, 5◦C, 10◦C,
20◦C and 30◦C in Tables 1 and 2. For bacteria genomes,
including phylogenetic information as well as the tRNA

sequence improved predictions (Figure 3A). Interestingly,
the model results showed that in archaea genomes, a sin-
gle tRNA pair contains enough signal to distinguish be-
tween genomes from species adapted to different optimal
growth temperatures, even when phylogenetic relationships
between species have been deliberately removed (Figure
3B). Unsurprisingly, the model performs better when there
are larger temperature differences between the species be-
ing compared. It is possible that the model learned species
OGT, rather than sequence features related to OGT, so we
also verified that the model was not just predicting the same
direction for a given species in the results (i.e. was not always
predicting ‘lower OGT’ for a given species).

Model 2: Species OGT prediction

We next asked whether it was possible to use information
from all tRNAs within a species to predict overall species
OGT using a regression CNN model. As with the classifica-
tion model, prediction accuracy was compared using both
random and phylogenetically informed data splits. Data
were split into hyper-parameter validation, training and test
sets as described in the classification model. Root mean
squared error (RMSE) and the coefficient of determina-
tion (r 2) were used to evaluate model performance for both
the random and phylogenetic distance split models. A good
model will have both low RMSE and high r 2. Low RMSE
indicates how closely the model can pinpoint a species’
OGT, while high r 2 indicates that most of the variance in
the true OGT dataset is explained by the OGT predictors.
RMSE and r2 were compared for each domain individually
as well as the combined domains (Table 3 and Figure 4).

Results indicate that tRNA sequence alone can accu-
rately predict both archaea and bacteria OGTs. Perfor-
mance in all three datasets is highest for the randomly split
dataset, achieving 0.862, 0.818 and 0.875 r 2 in archaea, bac-
teria and combined archaea & bacteria datasets, respec-
tively (Table 3 and Figure 4).

One drawback of randomly splitting data into training
and test sets is that similarity between individual observa-
tions in the training and test sets may lead to overly opti-
mistic model performances. When the end goal of a model
is prediction, species relatedness is less of an issue. How-
ever, biological insights are more difficult to draw from a
model that does not control for population structure within
the dataset, since causal elements (in this case, causal nu-
cleotides in the tRNA sequence) are confounded by struc-
ture due to shared evolutionary history. The model ac-
counting for phylogenetic distance achieved 0.772, 0.370
and 0.590 r 2 in archaea, bacteria and combined archaea &
bacteria datasets, respectively (Table 3 and Figure 4)

Regression model attention

One criticism of convolutional neural networks is that they
create a ‘black box’ that can be difficult to interpret, making
it hard to draw meaningful biological insight from a model.
To try to understand what portions of the tRNA sequence
matter for OGT prediction, we correlated tRNA features
to OGT predictions, then calculated attention statistics and
evaluated the effects of directed mutagenesis on model pre-
dictions in bacteria. We found that both GC content and

https://github.com/raghakot/keras-vis
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Table 1. Classification model accuracy performance with archaea, bacteria and combined dataset

Temperature
difference Archaea Bacteria Archaea + bacteria

Random
Phylogenetic

distance Random
Phylogenetic

distance Random
Phylogenetic

distance

>0◦C 0.814 ± 0.011 0.684 ± 0.025 0.756 ± 0.001 0.538 ± 0.001 0.728 ± 0.023 0.564 ± 0.029
>5◦C 0.889 ± 0.010 0.749 ± 0.029 0.824 ± 0.002 0.557 ± 0.012 0.788 ± 0.030 0.585 ± 0.039
>10◦C 0.930 ± 0.005 0.807 ± 0.025 0.830 ± 0.005 0.612 ± 0.016 0.853 ± 0.033 0.605 ± 0.0512
>20◦C 0.974 ± 0.004 0.902 ± 0.011 0.882 ± 0.005 0.660 ± 0.024 0.914 ± 0.032 0.622 ± 0.063
>30◦C 0.992 ± 0.002 0.954 ± 0.008 0.921 ± 0.007 0.694 ± 0.035 0.950 ± 0.037 0.636 ± 0.071

Table 2. Classification model F1 score with archaea, bacteria and combined dataset

Temperature
difference Archaea Bacteria Archaea + bacteria

Random
Phylogenetic

distance Random
Phylogenetic

distance Random
Phylogenetic

distance

>0◦C 0.845 ± 0.008 0.722 ± 0.013 0.716 ± 0.005 0.512 ± 0.025 0.737 ± 0.022 0.579 ± 0.053
>5◦C 0.911 ± 0.006 0.786 ± 0.018 0.801 ± 0.003 0.529 ± 0.027 0.805 ± 0.025 0.612 ± 0.062
>10◦C 0.944 ± 0.003 0.840 ± 0.015 0.825 ± 0.004 0.614 ± 0.033 0.879 ± 0.026 0.644 ± 0.072
>20◦C 0.980 ± 0.003 0.925 ± 0.006 0.893 ± 0.005 0.688 ± 0.036 0.933 ± 0.025 0.669 ± 0.079
>30◦C 0.994 ± 0.001 0.966 ± 0.005 0.934 ± 0.006 0.731 ± 0.039 0.961 ± 0.027 0.681 ± 0.087

Figure 3. CNN classification results for models built for each phylogenetic domain and with either (A) randomly split training and test datasets or (B)
phylogenetically informed training and test datasets.

Table 3. Regression model performance with archaea, bacteria and combined dataset

Method Archaea Bacteria Archaea + bacteria

RMSE r2 RMSE r2 RMSE r2

Random split 8.06 ± 0.967 0.862 ± 0.024 6.76 ± 0.106 0.818 ± 0.005 7.31 ± 0.115 0.875 ± 0.003
Phylogenetic distance split 11.06 ± 1.005 0.772 ± 0.043 12.67 ± 0.862 0.370 ± 0.085 13.23 ± 1.643 0.590 ± 0.108

minimum free energy of folding (MFE) were correlated with
OGT predictions for individual archaea tRNAs (r = 0.79
and -0.63, respectively), and more moderately correlated
with OGT predictions for individual tRNAs in bacteria (r =
0.27 and −0.26 for GC content and MFE, respectively; Sup-
plementary Figure S1). There was also a trend in OGT pre-
dictions for different amino acid species, with certain amino
acids being consistently assigned particularly high or low
OGT values relative to other tRNAs (Supplementary Fig-
ure S2).

To determine which parts of the tRNA were important
for model OGT predictions, we calculated the CNN acti-

vation values to determine the attention paid to each nu-
cleotide in the tRNA, then normalized the activation values
by tRNA length to get relative attention per base. While at-
tention varied per nucleotide, results were consistent across
all models and indicated that on average, the model paid
most attention to nucleotides in the T arm and the anti-
codon arm (Figure 5A and Supplementary Figure S3). We
used the predicted structure to determine the start and end
of each stem-loop structure in each tRNA and summed the
normalized CNN activation values over the length of the
structure to determine total attention for each stem-loop
structure. The anticodon arm and T arm sequences are sig-
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Figure 4. CNN model performance when data are split randomly (A–C) and split with phylogenetic distance (D–F). Purple = bacteria, orange = archaea.
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Figure 5. Model attention differs across the tRNA for the model trained on Archaea data with a phylogenetic data split. (A) Mean and standard error
for the relative percent attention paid to each nucleotide in the tRNA, averaged across all tRNAs. Colors indicate the average positions of the stem-loop
structure across all tRNAs: purple = acceptor stem, green = D arm, orange = anticodon arm, blue = T arm. (B) Average percent attention paid to each
arm as a whole; Acc = acceptor, D = D arm, AC = anticodon arm, T = T arm.

nificantly more important for model predictions than the
acceptor arm or D arm for both the random data split and
for the phylogenetically informed data split (Figure 5B and
Supplementary Figure S3, ANOVA P < 2e-16).

We selectively mutated 55 E. coli tRNAs to disrupt
Watson/Crick base pairing and predicted OGT for each
new sequence to determine how alterations in stem struc-
ture affect model OGT predictions. Results varied between
the random-split and phylogenetic-split models. Mutations
in the T arm of the tRNA led to a significantly different
variance in OGT predictions for the random-split model,
with some tRNA OGT predictions changing by 20 or 30◦C
(Bartlett test of homogeneity of variances, p = 1.917e-15),
although the mean remained unchanged as did the mean
and variance of predictions for other tRNA arms. In the
phylogenetically informed model, disrupting Watson-Crick
base pairing did not affect model variances.

DISCUSSION

A machine learning model to predict prokaryote OGT

In this paper we discuss the application of a tRNA ther-
mometer machine learning model that predicts prokaryote
optimal growth temperatures. Unlike previous models, we
aimed to produce a model concentrating on only one el-
ement of cell biochemistry - the tRNA sequence - to pre-
dict OGT. An initial classification model was able to distin-
guish between pairs of tRNAs to identify which came from
a species with higher OGT, suggesting that even individ-
ual tRNA sequences contain signatures of thermal adap-
tation. A second model uses the aggregate of effects from
all tRNAs in an organism - together these sequences con-
tain enough signal to predict organism OGT using a CNN
regression model.

The classification model was able to classify species OGT
from a single tRNA with an accuracy greater than 0.8 for all
temperature differences above 10◦C in models where data

was split randomly. In all cases, models performed best
when phylogenetic information was available to help with
predictions, suggesting that species-specific differences in
tRNA composition are indicative of tRNA thermal adap-
tation. This extra information about species relatedness was
not available in the phylogenetic split model, resulting in
lower classification accuracies. However, classification ac-
curacies remained relatively high when classifying Archaea
sequences, which may be due to the wider range of OGTs
available for Archaea species. The joint model with both ar-
chaea and bacteria tRNA sequences frequently performed
worse than either the archaea or bacteria model alone, likely
because it needed to learn relevant sequence features for two
separate domains and learn rules that applied across a much
larger phylogenetic distance.

Literature results using multiple linear regression to pre-
dict OGT achieved an r 2 of 0.938 for archaea, 0.767 for bac-
teria, and 0.835 for a combined dataset by using genomic,
tRNA, rRNA, open reading frames and proteome derived
features and splitting training and test sets randomly (13).
However, when only genomic and tRNA derived features
are used by the authors, they achieved 0.616 r 2 (13). On
the other hand, the proposed random-split CNN model
achieves 0.875 r 2 and shows a 42% improvement over lit-
erature r 2 results for both the bacteria dataset and the com-
bined bacteria and archaea dataset with only tRNA se-
quences as input. It is interesting that the CNN model out-
performs in bacteria and in the combined dataset, but not
in the archaea dataset. This may be due to the small num-
ber of archaea species with genome assemblies and OGT
information that were available to train the model.

Model predictions are correlated with GC content and tRNA
MFE

Although the regression model merges information from all
tRNA species to produce a final OGT prediction, its pre-
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dictions for individual tRNA species vary by amino acid.
In the archaea models, there was a strong negative correla-
tion between tRNA MFE and predicted OGT and a strong
positive correlation between tRNA GC content and pre-
dicted OGT. The correlations in bacteria were weaker, but
had the same directionality. These correlations suggest that
the model is learning information about secondary and ter-
tiary tRNA structure and using it to make predictions, de-
spite the fact that only the primary sequence was explicitly
provided. Both MFE and GC content affect tRNA stability
and function (16).

Post-transcriptional modifications affect tRNA stability

Post-transcriptional modifications affect tRNA stability
and can include methylation, thiolation, reduction and iso-
merization of nucleotide bases. Although some modifica-
tions are shared across all tRNAs, others are specific to a
single tRNA species or domain of life (34,35). These modifi-
cations affect tRNA stability, maturation, degradation, and
function and have been studied in organisms with a range
of optimal growth temperatures, from psychrophiles to hy-
perthermophiles (16,36–37). Post-transcriptional modifica-
tions can have opposing effects on tRNA stability. Pseu-
douridine, for example, is a common and highly conserved
post-transcriptional RNA modification that can stabilize
tRNA stem structures, while dihydrouridine has the oppo-
site effect and promotes stem flexibility in tRNAs (38,39).
Despite the links between post-transcriptional modifica-
tions, optimal growth temperature and tRNA function, de-
tails about post-transcriptional modifications were not in-
cluded in this model. Experimentally determined positions
of tRNA post-transcriptional modifications exist for only
a few species, and the complexity and specificity of tRNA
post-transcriptional modification chemistry means that the
accuracy of current prediction models varies considerably
across species and is not always better than random assign-
ment (40).

The regression model attaches more importance to the
regions of the input tRNA sequence that make up the anti-
codon and T arm structures, and mutating the structure of
the T arm significantly changed the variance of model OGT
predictions for the randomly split dataset. Interestingly, the
T arm and anticodon arms are the regions of a tRNA at
which post-transcriptional modifications are most concen-
trated. Although the regression model is not given informa-
tion about post-transcriptional modifications, these modifi-
cations are often specific to a certain base and are known to
affect tRNA folding and stability, especially in thermophiles
(16,37). The fact that both the model with randomly as-
signed training and test datasets and the model with phylo-
genetically informed training and test datasets focus on the
anticodon and T arms suggests that the CNN may be identi-
fying signals related to post-transcriptional modifications in
these regions. The T arm is also important for tRNA struc-
ture because its interactions with the D arm bend the tRNA
into its appropriate three-dimensional (3D) structure. In its
folded state, the T arm forms the elbow region of the 3D
tRNA. The elbow region is typically hydrophobic and is im-
portant for tRNA interactions with other RNAs and pro-
teins (16).

Disrupting Watson/Crick base pairing in this region of
the tRNA increases model OGT prediction variance, sug-
gesting that the model may be recognizing the importance
of this region for maintaining tRNA structure and function.
Results differ slightly between the random-split model and
the phylogenetic-split model. The increase in OGT predic-
tion variance for mutations in the T arm suggests that the
random-split model is looking at least partially for species-
specific differences in this region. The increased correla-
tion between MFE and OGT prediction suggests that the
phylogenetic-split model is looking more at overall tRNA
stability. However, the model is less accurate because it can-
not use information about species relationships or post-
transcriptional modifications that would likely influence
both MFE and species OGT.

The benefits of these models are threefold. First, the num-
ber of prokaryote sequences is growing, but additional in-
formation is often not available for these species, and de-
veloping culture protocols for new species can be challeng-
ing. Understanding likely OGT for new species is useful be-
cause it provides a starting point for labs wishing to develop
culture protocols and further study these species. Knowing
OGT may also be useful in industrial processes requiring
thermostable proteins, as this can provide insight into which
species proteins are likely to be useful in such processes.
Second, by using only the tRNA sequences we created a
highly focused model that is independent of other cellular
components. We use a minimum proportion of the over-
all genome sequence for predictions––only ∼0.1% of total
DNA in prokaryotes––to predict OGT. This is beneficial for
downstream comparisons of temperature effects on protein,
DNA, or other RNA features of the cell, as the OGT pre-
dictions from the tRNA model are independent of other cell
components. Third, by using sequence data as direct inputs
to the CNN model, we made use of automatic feature ex-
traction and allowed the model to determine which tRNA
features were most relevant. This removed researcher bias
and did not require initial assumptions about which com-
ponents of the tRNA sequence were most important.

The importance of phylogenetic relationships between species

Although this model is able to accurately predict OGT
within phylogenetic groups, it was unable to maintain high
accuracy when predicting across phylogenetic groups, as
demonstrated by the drop in prediction accuracy for the
phylogenetic split in both the classification and regression
models. These results indicate the importance of accounting
for phylogeny when trying to extrapolate or draw biological
insight from machine learning or other prediction models.
In the current models, phylogeny is not part of the dataset,
but the model clearly benefits from the shared evolutionary
history between species in the dataset.

CONCLUSION AND FUTURE WORK

The current model shows that individual tRNA sequences
contain signatures of organism thermal adaptation and that
a CNN can pick up on these signals to accurately predict op-
timal growth temperature. Certain tRNA features, includ-
ing MFE and GC content seem to be particularly important
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for determining organism OGT. To minimize inputs and
simplify data pre-processing requirements, this model uses
tRNA primary DNA sequences. However, incorporating in-
formation about secondary and tertiary structures and/or
post-transcriptional modifications may improve future iter-
ations of this model, since these features are widely recog-
nized to affect tRNA structure, function and temperature
sensitivity (16). Additionally, the current model demon-
strates the importance of phylogeny for model predictions,
with model accuracy decreasing when phylogenetic rela-
tionships between species are hidden. Future studies may
wish to determine how far insights from one group of organ-
isms can be transferred - transfer may be limited to within
species, clades or superkingdoms, depending on the traits at
hand.
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