Skip to main content
. 2020 Nov 17;8(11):e19805. doi: 10.2196/19805

Table 4.

Performance of different deep neural network (DNN) models on the T1a-T2b-T1cc-fused images for image-based classification.

DNN models Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) Area under the curve (95% CI)
VGGd16 0.858 (0.834-0.880) 0.826 (0.791-0.858) 0.847 (0.828-0.865) 0.864 (0.842-0.886)
VGG19 0.852 (0.828-0.874) 0.704 (0.662-0.744) 0.801 (0.780-0.821) 0.828 (0.804-0.852)
ResNete-50 0.899 (0.879-0.918) 0.663 (0.620-0.704) 0.818 (0.797-0.837) 0.866 (0.844-0.888)
Inception-v3 0.844 (0.819-0.866) 0.716 (0.675-0.755) 0.800 (0.778-0.820) 0.845 (0.822-0.868)
Inception-ResNet-v2 0.925 (0.907-0.941) 0.755 (0.716-0.792) 0.867 (0.848-0.884) 0.913 (0.895-0.931)
ERN-Netf 0.820 (0.794-0.844) 0.789 (0.751-0.824) 0.809 (0.788-0.829) 0.915 (0.895-0.932)

aT1: T1-weighted magnetic resonance imaging (MRI).

bT2: T2-weighted MRI.

cT1c: gadolinium-contrast-enhanced T1-weighted MRI.

dVGG: Visual Geometry Group.

eResNet: residual neural network.

fERN-Net: efficient radionecrosis neural network.