Table 4.
Performance of different deep neural network (DNN) models on the T1a-T2b-T1cc-fused images for image-based classification.
| DNN models | Sensitivity (95% CI) | Specificity (95% CI) | Accuracy (95% CI) | Area under the curve (95% CI) |
| VGGd16 | 0.858 (0.834-0.880) | 0.826 (0.791-0.858) | 0.847 (0.828-0.865) | 0.864 (0.842-0.886) |
| VGG19 | 0.852 (0.828-0.874) | 0.704 (0.662-0.744) | 0.801 (0.780-0.821) | 0.828 (0.804-0.852) |
| ResNete-50 | 0.899 (0.879-0.918) | 0.663 (0.620-0.704) | 0.818 (0.797-0.837) | 0.866 (0.844-0.888) |
| Inception-v3 | 0.844 (0.819-0.866) | 0.716 (0.675-0.755) | 0.800 (0.778-0.820) | 0.845 (0.822-0.868) |
| Inception-ResNet-v2 | 0.925 (0.907-0.941) | 0.755 (0.716-0.792) | 0.867 (0.848-0.884) | 0.913 (0.895-0.931) |
| ERN-Netf | 0.820 (0.794-0.844) | 0.789 (0.751-0.824) | 0.809 (0.788-0.829) | 0.915 (0.895-0.932) |
aT1: T1-weighted magnetic resonance imaging (MRI).
bT2: T2-weighted MRI.
cT1c: gadolinium-contrast-enhanced T1-weighted MRI.
dVGG: Visual Geometry Group.
eResNet: residual neural network.
fERN-Net: efficient radionecrosis neural network.