Skip to main content
. 2020 Nov 17;8(11):e16503. doi: 10.2196/16503

Table 2.

Machine learning algorithm and category of outcome.

Variable Number of studies (percentage based on column total)

LRa (n=77), n (%) Non-LR (n=50), n (%) Both (n=15), n (%) Total (n=142), n (%)
Machine learning algorithm

Logistic regression 77 (100) N/Ab 15 (100) 92 (64.8)

Artificial neural network N/A 15 (30) 5 (33) 20 (14.1)

Support vector machine N/A 9 (18) 1 (7) 10 (7.0)

Deep neural network N/A 8 (16) 1 (7) 9 (6.3)

Random forest N/A 7 (14) 1 (7) 8 (5.6)

Decision tree N/A 2 (4) 5 (33) 7 (4.9)

Gradient boosting N/A 3 (6) 2 (13) 5 (3.5)

Naïve Bayes N/A 4 (8) 0 (0) 4 (2.8)

Ensemble of algorithms N/A 2 (4) 0 (0) 2 (1.4)
Category of outcome

Premature birth 9 (12) 12 (24) 3 (20) 24 (16.9)

In vitro fertilization 7 (9) 13 (26) 2 (13) 22 (15.5)

Obstetric labor 13 (17) 1 (2) 2 (13) 16 (11.3)

Pregnancy-induced hypertension 12 (16) 4 (8) 0 (0) 16 (11.3)

Fetal distress 1 (1) 9 (18) 0 (0) 10 (7.0)

Gestational diabetes 7 (9) 2 (4) 1 (7) 10 (7.0)

Cesarean section 4 (5) 3 (6) 2 (13) 9 (6.3)

Fetal development 4 (5) 1 (2) 0 (0) 5 (3.5)

Small-for-gestational-age infant 3 (4) 1 (2) 1 (7) 5 (3.5)

Others 17 (22) 4 (8) 4 (27) 25 (17.6)

aLR: logistic regression.

bN/A: not applicable.