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Purpose: Childhood epilepsies have a strong genetic contribution,
but the disease trajectory for many genetic etiologies remains
unknown. Electronic medical record (EMR) data potentially allow
for the analysis of longitudinal clinical information but this has not
yet been explored.

Methods: We analyzed provider-entered neurological diagnoses
made at 62,104 patient encounters from 658 individuals with
known or presumed genetic epilepsies. To harmonize clinical
terminology, we mapped clinical descriptors to Human Phenotype
Ontology (HPO) terms and inferred higher-level phenotypic
concepts. We then binned the resulting 286,085 HPO terms to
100 3-month time intervals and assessed gene–phenotype associa-
tions at each interval.

Results: We analyzed a median follow-up of 6.9 years per patient
and a cumulative 3251 patient years. Correcting for multiple
testing, we identified significant associations between “Status

epilepticus” with SCN1A at 1.0 years, “Severe intellectual disability”
with PURA at 9.75 years, and “Infantile spasms” and “Epileptic
spasms” with STXBP1 at 0.5 years. The identified associations
reflect known clinical features of these conditions, and manual
chart review excluded provider bias.

Conclusion: Some aspects of the longitudinal disease histories can
be reconstructed through EMR data and reveal significant
gene–phenotype associations, even within closely related condi-
tions. Gene-specific EMR footprints may enable outcome studies
and clinical decision support.
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INTRODUCTION
Genetic factors are increasingly implicated in childhood
epilepsies, and with the advent of massive parallel sequencing
technologies more than 200 novel genetic etiologies have been
identified in the last decade.1–3 Identification of an underlying
genetic etiology is particularly relevant in the developmental
and epileptic encephalopathies (DEE), which represent the
severe end of the spectrum of the childhood epilepsies.4–6

Causative genetic etiologies can be identified in up to 30% of
individuals with DEE without explanatory structural lesions
or metabolic findings.7–11 The genetic architecture of the
childhood epilepsies is characterized by prominent hetero-
geneity; even the most common genetic etiologies including
SCN1A, SCN2A, or STXBP1 only account for 1% or less of the
patient population.9,12,13 In contrast to massive parallel
sequencing studies that are performed on tens of thousands
of individuals, understanding phenotypic data at this scale
remains a major obstacle. The disease course in childhood
epilepsies is dynamic over time,14,15 and longitudinal
information on natural history and outcome is limited due
to the rarity of each genetic cause. Furthermore, clinical

characterization of rare genetic entities is often restricted to
case series,16–19 which cannot distinguish clinical features
associated with a specific gene from clinical features shared
between related diseases.
The adoption of electronic medical records (EMR) provides

a new opportunity to leverage clinical data for genomic
research. Large national and international initiatives have
started to link biorepositories with EMR data,20,21 and several
phenotyping algorithms are already validated to extract
clinical features.22–24 However, the longitudinal aspect of
EMR data that is relevant to assess disease histories over time
largely has been unexplored. Maintaining the temporal
relationship between clinical features is critical in disorders
that follow prominent age-related patterns, such as the
childhood epilepsies. More importantly, the overall quality
of EMR data is unexplored, and clinical data entry into
EMR systems is often considered a nuisance by providers.
Therefore, accuracy and precision of clinical phenotypes in a
system primary created for billing purposes may rightfully be
questioned. Nevertheless, given the magnitude and availability
of EMR data, even limited reliability would allow for
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conclusions about longitudinal disease histories that would
otherwise require time-consuming manual chart review.
Here, we mapped EMR data in individuals with childhood

epilepsies who underwent genetic testing to Human
Phenotype Ontology (HPO) terms. We analyzed data of 658
individuals followed for a median 6.9 years with a cumulative
3251 patient years, including 232 individuals with a definite
genetic diagnosis. We assessed and identified significant
gene–phenotype associations, demonstrating that EMR data
can be used to identify gene-specific signatures even in
clinically closely related disease entities such as the childhood
epilepsies.

MATERIALS AND METHODS
Ethics statement
Informed consent for participation in this study was obtained
from subjects themselves or parents of all probands in
agreement with the Declaration of Helsinki, and the study was
completed per protocol with local approval by the Children’s
Hospital of Philadelphia (CHOP) Institutional Review Board
(IRB 15-12226).

Patient recruitment
The current analysis was performed on individuals enrolled in
the Epilepsy Genetics Research Project (EGRP) at Children’s
Hospital of Philadelphia, which has enrolled patients with
known or presumed genetic epilepsies since 2014. Genetic
etiologies in the EGRP cohort were assessed in a clinical and
research setting, including gene panel sequencing (n= 100),
exome sequencing (n= 109), or other testing modalities
including single-nucleotide polymorphism (SNP) arrays (n=
9) or single-gene tests (n= 14). Genetic results were reviewed
and, if necessary, reclassified according to the criteria of the
American College of Medical Genetics and Genomics
(ACMG).25

Electronic medical record data extraction
During the time period of this study, all patients were
followed within the CHOP Care Network, including the main
hospital inpatient and outpatient unit and 50 satellite clinics.
Encounters outside this network could not be captured
through the medical records and were unavailable for this
study. All providers within the CHOP network use a single
unified EMR system (EPIC, Verona, WI) that can be accessed
via the Clarity database (EPIC). Every provider contact is
documented within the EMR, including clinic and emergency
room visits, hospital admissions, telephone calls, refills, and
visits for laboratory work and imaging. All documented
contacts are referred to as “encounters” within the EMR. At
every encounter, the medical personnel is responsible for
updating a current list of all active medical diagnoses, which is
termed the “problem list.” Additionally, at a subset of
encounters including inpatient and outpatient visits, providers
are required to assign “encounter diagnoses,” which are the
medical problems associated with or addressed in that
encounter. Problem lists and encounter diagnoses within the

Clarity database are encoded in Intelligent Medical Objects
terms (IMO, Northbrook, IL) that are mapped to Interna-
tional Classification of Diseases, Ninth/Tenth Revision
(ICD9/10) codes. In contrast to ICD9/10 codes, IMO provides
an intuitive language interface that includes common clinical
terminology such as “Absence seizure” or “Generalized
epilepsy” rather than ICD codes. For our study, we extracted
encounter diagnoses and problem lists for all individuals
enrolled in the study for every encounter documented in the
EMR. All information included in our study was derived from
routine clinical care; encounters for research purposes only
were not included. From each encounter, we extracted the
problem lists, encounter diagnoses, and age of the patient at
the encounter. We included IMO problems and diagnosis
terms based on a selection of ICD10 codes related to
neurological diagnoses (F00-F99, G00-G99, P90, Q00-Q07,
R25-R29, R40-R49, R56, R62, R90, and R94.01) and merged
IMO terms on the diagnosis and problem list.

Construction of a dictionary for mapping to HPO terms
For the cumulative list of diagnoses and problems, we created
a dictionary that mapped IMO terms to terms in the HPO.26

This custom dictionary was created by a team of providers
and researchers who reviewed each of the 1479 IMO terms
associated with neurology-related ICD9/ICD10 codes men-
tioned above. We used the Clinical Text Analysis and
Knowledge Extraction System (cTAKES) natural language
processing algorithm27 to generate a preliminary dictionary,
which was subsequently reviewed and adapted manually.
To avoid false annotations, we limited the annotation
of epilepsy syndromes to high-level phenotypic terms
(Supplementary Data, Table S2).

Inferring higher-level clinical concepts through parental
terms in the HPO tree (propagation)
In contrast to clinical terms, the structure of the HPO
assigns each clinical concept a place in its ontological tree.
This allows for the identification of higher-level terms,
which may be common in two individuals if two lower-level
terms are distinct (Fig. 1). For example, “Focal seizures”
(HP:0007359) and “Generalized seizures” (HP:0002197)
both have “Seizures” (HP:0001250) as a common parent
term. Identifying and assigning parental, higher-level terms
therefore enables the identification of shared phenotypic
features. In addition to the assigned HPO term derived from
the merged diagnosis and problem lists, we added all
higher-level terms for each encounter, a method that we
refer to as propagation (Fig. 1). Consistent with the general
use in the literature, we use parental terms to refer to
immediate superterms, e.g., “Seizures” (HP:0001250) is a
parent term for “Generalized seizures” (HP:0002197), which
is in turn a parent of “Absence seizures” (HP:0002121). We
use ancestors and ancestral terms to refer to higher-level
terms more generally, e.g., both “Seizures” (HP:0002197)
and “Generalized seizures” (HP:0002197) are ancestors of
“Absence seizures” (HP:0002121).
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Mapping of HPO data to time intervals
For the final analysis, the age of the patient at each encounter
was placed into 3-month time bins ranging from age 0 to 25
years, including a total of 100 bins. For example, the first time
bin includes all encounters between birth and 3 months of age.
For each time bin, all assigned and propagated HPO terms per

individual were merged and duplicates per individual removed,
duplicates referring to situations where the individual had
multiple encounters within the time bin or had multiple IMO
terms that mapped onto the same HPO term. This resulted in a
set of HPO terms per individuals per each time bin, including
all higher-level ancestral terms (Fig. 1).

Individual (P1) hospital visit at 6 months

Infantile spasm
Developmental regression

Extracted IMO terms:

Individual (P2) hospital visit at 7.5 months

Febrile seizure
Gross motor development 
delay

Extracted IMO terms:
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HP:0002376 - Developmental

        regression
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HP:0011097 - Epileptic spasms (propagated)
HP:0001250 - Seizures (propagated)
HP:0012638 - Abnormality of nervous system physiology 

        (propagated)
HP:0000707 - Abnormality of the nervous system (propagated)
HP:0000118 - Phenotypic abnormality (propagated)
HP:0000001 - All (propagated)
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Fig. 1 Mapping, propagation, and binning as a three-step process for clinical data harmonization from electronic medical records. We present
the hypothetical example of two individuals seen for an outpatient encounter or admission at 6 months or 7.5 months respectively. By (a) mapping clinical
diagnosis terms to Human Phenotype Ontology (HPO) terms, the clinical data are harmonized to a joint ontological framework. By adding all higher-level
(ancestral) terms, it is now possible to identify common shared higher-level terms, a method we refer to as (b) propagation. Finally, by (c) binning the
propagated unique phenotype terms (removing duplicated terms) into discrete time intervals (3 months), phenotypes can be compared across both
individuals. Shared HPO terms (e.g., “Seizures,” HP:0001250) are highlighted in bold. IMO Intelligent Medical Objects terminology.
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Assessment of EMR usage
Every individual had a unique time span during which
treatment was provided within the care network. We defined
“EMR usage” as the time period between the minimum age
and maximum age at documented patient encounters. This
definition of EMR usage is largely operational to define time
intervals where information on a given individual was
definitely unavailable and where a given individual did not
contribute to the overall analysis, i.e., outside of the EMR
usage window. For our study, we assumed that EMR usage
was uninterrupted between the minimum and maximum age
of encounters. However, this assumption does not imply that
all medical information was fully documented within the
period of EMR usage.
Each HPO term for every individual at any of the 100 time

points was coded as “present” if the time point was within
the window of an individual’s EMR usage. A term was coded
as “absent” if the time point was within an individual’s
EMR usage window, but the term was not coded for this
individual. Finally, the term was coded as “not applicable” if
the time point was outside the EMR usage window for an
individual.

Genotype–phenotype associations
Frequencies for each HPO term were determined using the
number of individuals with available data at each time point,
including both the initially assigned HPO terms and the
propagated higher-level terms. For each causative genetic
etiology in the cohort, frequencies for each HPO term at each
time point were assessed and compared with the frequency
of each HPO term in the remainder of the cohort.
The significance of the association was determined using a
two-sided Fisher’s exact test. Subsequently, for each
gene–phenotype combination the 3-month interval with the
most significant association was identified (pgxp_max). For
example, for the association of SCN1A and “Status epilepti-
cus” (HP:0002133), the most significant association was at 1
year with −log10(pgxp_max) = 6.74. Each phenotype at each
time point was analyzed independently and no information
was used from past or future time points. Correction for
multiple testing was subsequently performed using the
Benjamini–Hochberg method with a false discovery rate
(FDR) of 0.05. All statistical tests were performed using the R
Statistical Framework, including the ggplot2 package.

RESULTS
Electronic medical record data captures longitudinal
features
We analyzed data from 658 individuals with a wide range of
epilepsy syndromes and genetic etiologies, including 336 male
and 322 female individuals. Epileptic encephalopathies (n=
268) were the most common genetic etiologies, followed by
focal epilepsies (n= 156) and genetic generalized epilepsies
(n= 97). In our cohort, 102 distinct genetic etiologies were
identified, including 36 causative genes identified in two or
more individuals (Fig. 2a, Table S3). The most common

genetic etiologies in our cohort included SCN1A (n= 29),
STXBP1 (n= 22), SCN2A (n= 12), KCNQ2 (n= 8), and
KCNT1 (n= 6). The median age of seizure onset was 1.34
years (range 0 to 18 years). We restricted the analysis to
neurology-related diagnoses and problems coded by clinicians
during patient care encounters, comprising 62,104 data points
(Fig. 2b). For each subject, we defined the window of EMR
usage based on the age at first and last patient encounters, the
ages at which the individual’s disease course was captured in
the EMR. We then binned EMR usage and neurology-related
diagnoses and problems into 3-month intervals (Fig. 2c). The
number of individuals contributing to each of the 100 time
points ranged from 5 to 266 with a median of 142 individuals
per time point. EMR usage in the cohort was highest between
age 2 and age 7. The median duration of EMR usage was 6.9
years (range 0–25) with a cumulative EMR usage of 3251
patient years (Fig. 2d).

Diagnoses and active medical problems at 62,104 patient
encounters are mapped to 286,085 HPO terms across 3-
month time intervals
For each of the 62,104 patient encounters, we extracted the
clinical terms assigned as a diagnosis or active medical
problem from the EMR, representing the diagnosis and active
problems that appear in the official patient letter generated
from this patient encounter. We then mapped the 1479
unique neurologic diagnoses and problems coded by provi-
ders to 350 discrete terms in the HPO after binning into 100
discrete 3-month intervals. The HPO represents a controlled
dictionary with defined semantic relationships.26 For every
individual and at each time interval, we also added all higher-
level parental (ancestral) terms in the HPO, generating a total
of 528 discrete HPO terms. In total, the mapping to defined
HPO terms, inclusion of higher-level terms, and binning to
100 discrete time intervals resulted in 286,085 HPO terms.24,28

This mapping allowed us to identify common higher-level
terms between individuals at each time point and to
determine the true frequency of each phenotypic term in
the cohort, as more specific terms resulted in an inclusion of
all higher-level phenotypic terms, even though these higher-
level terms may not have been directly mapped (Fig. 3a,
Supplementary Data).

Clinical features in genetic epilepsies have characteristic
time-dependent distributions
We next assessed the distribution of each phenotypic feature
over time to determine whether known phenotypic features are
represented correctly in the EMR. We found that the
distribution of phenotypic features reflects the known age-
dependent distribution of many clinical diagnoses associated
with neurodevelopmental disorders. For example, febrile
seizures (HP:0002373) typically occur between 6 months and
6 years and did, in fact, map to the corresponding time intervals
(Fig. 3b).29 Likewise, infantile spasms (HP:0012469) represent a
distinct seizure type that manifests in infancy but may continue
throughout early childhood in genetic epilepsies, which is

GANESAN et al ARTICLE

GENETICS in MEDICINE | Volume 22 | Number 12 | December 2020 2063



reflected in the mapping of this term based on EMR data
(Fig. 3c).30 Further examples include neurological speech
impairment (HP:0002167; Fig. 3d),31 generalized myoclonic
seizures (HP:0002123; Fig. 3e),32 attention deficit–hyperactivity
disorder (ADHD, HP:0007018; Fig. 3f),33 and generalized
hypotonia (HP:0001290; Fig. 3g).34,35 The observed time-
dependent distribution of the above clinical features and other
phenotypic features (Supplementary Data) suggests that within
the wider cohort, our mapping and EMR diagnoses capture the
age-dependent distribution of these phenotypes correctly, even
though individual terms may have been inadequately assigned
by the treatment providers.

EMR data allows for the identification of time-dependent
gene–phenotype associations
We next analyzed the association of the 528 HPO terms with
the 36 genetic etiologies identified in two or more individuals
included in our study (Table S4). When limiting the analysis
to the most significant time interval for each gene–phenotype
association and excluding HPO modifier terms that specify
age of onset, severity, or specific quality of phenotypic

features, 859 nominally significant associations were identi-
fied (Table S5). The nominally significant associations were
used to reconstruct longitudinal phenotype maps for each
genetic etiology (Fig. 4 and Supplementary Data). For the
global analysis of gene–phenotype associations, we corrected
for multiple testing using the Benjamini–Hochberg procedure
with an FDR of 0.05. Four associations were significant after
multiple testing, including “Status epilepticus” (HP:0002133;
p= 1.84e−7) with SCN1A at 1.0 years, “Severe intellectual
disability” (HP:0010864; p= 2.96e−6) with PURA at 9.75
years, and “Infantile spasms” (HP:0012469; p= 2.85e−5) and
“Epileptic spasms” (HP:0011097; p= 3.54e−5) with STXBP1
at 0.5 years. These gene–phenotype associations replicate the
known natural history for SCN1A,36 PURA,37 and STXBP1,16

and demonstrate that our EMR data mapping and harmoni-
zation approach correctly identifies known gene–phenotype
associations in our cohort that were previously reported. We
manually reviewed patient charts for SCN1A at 1.0 years,
PURA at 9.75 years, and STXBP1 at 0.5 years and found that
that phenotypic terms were accurate and not biased by
individual providers.
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Factors driving gene–phenotype associations can be
identified from EMR data
We next examined how significant gene–phenotype associa-
tions emerged from our cohort. As our primary analysis only
included the most significant association across time for each
gene–phenotype combination, we expanded the analysis for
three gene–phenotype associations across all time intervals
(Fig. 5a). We included the association of “Status epilepticus”
(HP:0002133) with SCN1A, “Severe intellectual disability”

(HP:0010864) with PURA, and “Infantile spasms”
(HP:0012469) with STXBP1. We excluded the association of
“Epileptic spasms” (HP:0011097) with STXBP1 as this
phenotypic term is the direct parent term of “Infantile
spasms” (HP:0012469) and therefore added no additional
information. The association of the significance over time
demonstrates that the association peak for all three associa-
tions occurs at discrete time points. To better understand
features leading to the observed patterns, we examined the
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frequencies of the specific phenotypes in individuals with and
without the genetic etiology (Fig. 5b–d).
We found two patterns. For “Status epilepticus” (HP:0002133)

with SCN1A and “Infantile spasms” (HP:0012469) with
STXBP1, the phenotypic features show a high frequency in
the gene-positive group for SCN1A at 1.0 years and STXBP1 at
0.5 years. The PURA signal is only based on three individuals
between 10 and 15 years, all individuals assigned the phenotypic
term “Severe intellectual disability” (HP:0010864). The fre-
quency of this phenotypic term increased in the overall cohort
over time, but only at the age of 9.75 years is this discrepancy
large enough to generate the most extreme p value (p= 2.96e
−6). The phenotypic associations with PURA further highlight
that we are only able to make assertions about phenotypic
associations within the range of EMR usage. EMR usage for all
three PURA-related disorders only overlapped between 4.75
years and 10 years, indicating that important phenotypic
associations outside this age window were largely inaccessible
to us and were likely missed.

DISCUSSION
In our study, we assessed whether data derived from EMR
might aid in identifying longitudinal phenotypic patterns for
genetic epilepsies. Within the limitations of this study, we
demonstrate that heterogeneous EMR can be harmonized and
mapped through a common framework such as the HPO.
Using this tool, we discovered time-dependent associations
between genetic etiologies and phenotypes that recapitulate
essential aspects of the natural history of these conditions.
Our study may therefore provide a general framework to
reconstruct age-dependent phenotypes in genetic epilepsies
and neurodevelopmental disorders from EMR data. While
this approach can only capture a subset of the phenotypic
depth, EMR data are ubiquitously available, and such a
framework can assist in supplementing growing genetic data
sets with longitudinal phenotypes.
The age dependence of clinical features in our study

demonstrates two important properties of longitudinal
phenotypes. First, even though our study included 658
individuals, no more than 266 individuals contribute to each
time point (Fig. 2b, c). We expect that similar limitations will
apply to many studies performed in pediatric settings and
emphasize the importance of controlling for the time window
when individuals received care within the health-care system.
In our study, we refer to this window of health-care utilization
as EMR usage. Second, clinical features have characteristic
trajectories in our cohort (Fig. 3), reflecting the time-
dependent nature of clinical characteristics such as febrile
seizures (1–5 years), infantile spasms (6 months–5 years), and
ADHD (5 years and older). The distinct patterns of 528
phenotypic features generate a complex pattern over time that
drives associations between features and specific genetic
etiologies. The time-dependent associations for specific
phenotypes potentially can be used as a quality control
mechanism to assess the validity of additional data sets given
concerns that true associations in EMR data sets may be

contaminated by templated notes and copy-forward
mechanisms.
Given the rarity of individual genetic epilepsy syndromes,

knowledge about the natural history of these disorders is
typically acquired through case series. While this method is
well suited to delineate the phenotypic range of specific
genetic etiologies, comparisons between disorders are
challenging. We reasoned that capturing phenotypic
features longitudinally across a large patient cohort would
allow significantly associated clinical features to emerge.
Applying this framework, we identified that “Infantile
spasms” (HP:0012469), present in 12% of our cohort, only
shows a significant association with STXBP1. In addition,
this most significant association was limited to a relative
narrow time interval around 6–9 months. Our framework
therefore allows us to identify significant gene–phenotype
associations in conditions with a broad phenotypic range,
using real-world data derived from an ongoing collection of
clinical data captured in the EMR. We acknowledge that
many other genetic etiologies included in our study are
known to be associated with infantile spasms. However,
these etiologies were too rare in our cohort or the age when
infantile spasms typically emerge was outside the period of
EMR usage for individuals with other genetic etiologies.
While our study was primarily focused on identifying
phenotype association with single genes, we observed that
further associations can be captured when genes are
grouped (Supplementary Data).
The data extraction and mapping algorithms applied in our

study have several limitations, including the restriction to
diagnosis and problem lists related to neurology-related
ICD9/10 codes and our inability to assess negated
phenotypes.38,39 Despite these conceptual limitations, our
study provides a general model that outlines the three critical
components of any framework to capture longitudinal
phenotypic data: data extraction, mapping/harmonization
techniques, and strategies for temporal binning. Addressing
these limitations can be conceptualized as improving one of
these components within this framework.
There are additional notable limitations of an automated

EMR extraction approach compared with a traditional
retrospective chart review. These limitations must be weighed
against the potential benefit of the automated extraction
approach, which allows for significantly larger sample sizes
due to the prohibitive cost of manual chart review. For
example, the encounter diagnoses and problem lists are
entered by various health-care providers, which may intro-
duce bias, including a potential lack of detail in the coded
features. This limitation becomes particularly relevant when
trying to assess the absence of significant associations. We
therefore do not claim that our approach generates a detailed
representation of the overall phenotypic landscape but
identifies features that emerge despite the inherent limitations
of EMR data.
A further limitation is our focus on a single health-care

network. While this allowed us to include homogeneous data
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and perform manual chart review, we cannot claim that our
methods are immediately generalizable to other data sets of
combined genomic and EMR data. However, our study
presents a first attempt to show that EMR data can
reconstruct some aspects of the disease history in genetic
epilepsies. This may be further tested in future EMR/exome
data sets once these resources become available.
To harmonize EMR data, we had to commit to several

arbitrary decisions that may have affected our results and
could be modified and improved in future studies. For
example, we assumed that care during the window of EMR
usage is uninterrupted within our health-care system. In
principle, we cannot exclude that a subset of individuals
received care at other institutions within this period that was
not documented. However, both our manual chart review and
clinical experience suggested that this assumption was correct
for the majority of individuals and that the proportion of
individuals with interrupted or parallel outside care was
relatively small. A further deliberate decision was the choice
of bin width, which we set at 3 months based on our
assumption of the relevant time frame in which changes in
neurological phenotypes would manifest. We explored the
effect of bin width (Supplementary Data) and found that
adjusting bin width may result in better detection of some
phenotypic associations, as is the case of stronger associations
of neonatal seizure phenotypes with KCNQ2 when decreasing
bin width (Supplementary Data).
We believe that the methodology developed in our study is

widely generalizable to multicenter data, where information
on complex phenotypic histories can be provided in a de-
identified format. In parallel to collaborative data sets in
genomic studies, this would allow for joint analysis of large
cohorts to provide information about the natural history of
rare disorders, supplementing the role of manual phenotyping
in such studies. Likewise, we expect that our method can
further be refined by adding more granular phenotypic data,
such as phenotypic terms derived from full-text patient notes
or standardized data elements within the EMR. As our
method is built to identify associations with rare genetic
conditions at specific time intervals, our tools can be validated
in a guided manner, allowing for a review of a small subset of
patient charts only at specific time points.
Finally, we chose HPO version 1.2 (release format version:

1.2; data version: releases/2017–12–12; downloaded on 10
March 2018) for our analysis, which was the most recent
version at the time of initial data analysis. This HPO version
does not yet fully reflect the latest seizure classifications of the
International League Against Epilepsy (ILAE).4 Efforts to
update the HPO are currently underway within the epilepsy
community. Such improvements could easily be integrated
into future iterations of our general framework.
In summary, our study demonstrates that EMR data can be

used to elucidate aspects of the longitudinal disease histories
in epilepsies and neurodevelopmental disorders. This is
accomplished in our study through harmonization of clinical
terminology through the HPO framework and binning into

discrete time intervals. Using this method, we show that
several genetic etiologies including SCN1A-, STXBP1-, and
PURA-related disorders have time-dependent associations
with distinct clinical features that stand out from the wider
group of known or presumed genetic epilepsies. Identifying
disease trajectories using large-scale phenotypic data may
become a critical component for clinical decision support and
learning health-care systems, particularly in rare genetic
neurological disorders where available clinical information is
limited.
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