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Abstract

Liquid biopsy for the detection and monitoring of central nervous system (CNS) tumors is of 

significant clinical interest. At initial diagnosis, the majority of patients with central nervous 

system tumors undergo magnetic resonance imaging (MRI), followed by invasive brain biopsy to 

determine the molecular diagnosis of the WHO 2016 classification paradigm. Despite the 

importance of MRI for long-term treatment monitoring, in the majority of patients who receive 

chemoradiation therapy for glioblastoma (GBM), it can be challenging to distinguish between 

radiation treatment effects including pseudoprogression, radiation necrosis (RN) and recurrent/

progressive disease (PD) based on imaging alone. Tissue biopsy-based monitoring is high risk and 

not always feasible. However, distinguishing these entities is of critical importance for 

management of patients and can significantly affect survival. Liquid biopsy strategies including 

circulating tumor cells (CTCs), circulating free DNA (CfDNA) and extracellular vesicles (EVs) 

have the potential to afford significant useful molecular information at both the stage of diagnosis 

and monitoring for these tumors. We review current liquid biopsy-based approaches in the context 

of tumor monitoring to differentiate PD from pseudoprogression and RN.
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Introduction

Glioblastoma is the most common malignant primary central nervous system tumor. GBM is 

highly aggressive and the median overall survival is only 15–23 months despite aggressive 

treatment 1. Currently, maximal resection followed by radiation therapy with concurrent 

temozolomide (TMZ) and adjuvant TMZ treatment is the standard of care. Post treatment 

surveillance involves serial MRI. A challenge faced by clinicians is the diagnosis and 

management of a gadolinium enhancing lesion on a follow-up MRI post treatment. This 

suspicious lesion could be PD or a mere post treatment radiation effects such as 

pseudoprogression or radiation necrosis (RN). Pseudoprogression and RN are distinct 

clinical entities, which when identified and managed appropriately result in better outcomes, 

while PD of the tumor is often dismal. Patients with PD have a median survival of 3–6 

months 2, and there is no standard of care. Systemic options include TMZ rechallenge, 

lomustine, and antiangiogenic therapy such as bevacizumab, but their effectiveness is 

limited. Re-radiation and re-resection can be considered depending on the location of the 

tumor and the condition of the patient 3. Conversely, antiangiogenic drugs like bevacizumab 

or cediranib decrease contrast enhancement by altering permeability of tumor vasculature 

without actual reduction in tumor burden, referred to as pseudoresponse. Distinguishing 

these clinical entities from PD is crucial to avoid unnecessary reoperations, premature 

discontinuation of adjuvant TMZ or its substitution with second line agents.

MR imaging based monitoring is the current standard of care for post-surgical monitoring. 

Contrast enhancement on imaging is indicative of disrupted blood brain barrier (BBB), but 

not tumor presence 4. Currently, MRI based Response Assessment in Neuro-Oncology 

(RANO) criteria is used to monitor treatment response in GBM patients.The criteria 

included T1 gadolinium enhancing disease, T2/FLAIR changes, new lesions, corticosteroid 

use, and clinical status 5. Adoption of RANO criteria for monitoring response is not without 

limitations. There is ambiguity in identifying radiation effects, enrolling patients into clinical 

trials and monitoring immunotherapy response 6. Advanced imaging modalities including 

diffusion-tensor imaging, perfusion imaging, MR spectroscopy (MRS), Positron Emission 

Tomography (PET) imaging have been used to identify true PD 7,8. Although, MRS 9 and 

dynamic susceptibility contrast methods 10 show promise, imaging modalities cannot 

establish a definitive diagnosis nor capture the heterogeneous molecular landscape of the 

evolving tumor which is crucial in the setting of PD. Moreover, repeated biopsies cannot be 

performed to monitor tumor progression due to high risk, surgical inaccessibility and life 

threatening complications 11. Furthermore, focal sampling cannot capture the true tumor 

heterogeneity.

As such, there is a great need for tools that can allow early diagnosis, molecular 

characterization, and assess response to therapy as well as distinguish PD from 

pseudoprogression and RN with higher sensitivity and specificity compared to current 

imaging-based technologies. Liquid biopsy refers to analysis of biofluids of patients to 

detect disease specific genomic or proteomic cargo for diagnostic and prognostic purposes. 

Liquid biopsy encompasses circulating tumor cells (CTCs), circulating tumor DNA 

(ctDNA), and extracellular vesicles (EVs).A longitudinal liquid biopsy based patient 

monitoring could provide better perspectives into the tumor presence, molecular status, 
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tumor evolution, response to therapy and also distinguish PD from post treatment radiation 

effects and ultimately strategize appropriate therapies to improve patient outcomes 12,13. In 

this review, we briefly discuss the clinical entities of pseudoprogression and RN in the 

context of various liquid biopsy platforms to distinguish PD from pseudoprogression and 

RN.

Pseudoprogression

Pseudoprogression is a reversible subacute post treatment radiation effect identified as an 

increase in the size of the contrast enhancing lesion, with or without neurological 

deterioration following completion of RT alone or concomitant RT-TMZ, mimicking PD 
14,15. pseudoprogression most often occurs within the first 3 months following RT/RT-TMZ, 

but can present up to 6 months afterwards. Nearly half the patients with an enhancing lesion 

within 1 month post-RT have pseudoprogression 16. Unlike patients with PD, patients with 

pseudoprogression remain asymptomatic. Some present with complications due to transient 

demyelination including worsening of pre-existing symptoms, transient cognitive decline, 

subacute rhombencephalitis or somnolence syndrome.

Pathologically, pseudoprogression corresponds to gliosis and reactive radiation-induced 

changes without evidence of viable tumor tissue17. This may represent an exaggerated 

response to therapy involving changes to the vascular endothelium and the blood brain 

barrier (BBB) as well as oligodendroglial injury leading to inflammation and increased 

vascular permeability 11. Treatment-related cellular hypoxia could also contribute to this 

abnormal enhancement 11,18. Some groups suggested pseudoprogression to be an active 

‘inflammatory’ response against the tumor considering the association between 

pseudoprogression and increased survival 19. Interestingly, patients with MGMT 

methylation show pseudoprogression twice as often 20. Considering the fact that MGMT 

methylation status is associated with response to TMZ and thus favourable prognosis 21,22, 

identification of MGMT status is useful in predicting pseudoprogression and differentiating 

it from PD 15,16,23. Conversely, patients without MGMT methylation have higher rates of 

PD, with rates of 60% occurrence 22. Recent studies have demonstrated a correlation 

between P53 overexpression and pseudoprogression 24. As such, P53 status could also be a 

potential biomarker for pseudoprogression. Emerging reports have suggested the association 

of higher expressions of interferon regulatory factor 9 (IRF9) and X ray repair cross-

complementing 1 (XRCC1) in pseudoprogression 25.

Conventional MR imaging is unable to distinguish between pseudoprogression and early 

progression, and alternative techniques have not been validated in prospective trials 7,11,26. 

The current method to distinguish the two is to perform follow-up examinations of patients 

comparing MR images at different points in time. Asymptomatic cases of suspected 

pseudoprogression are followed up by serial imaging, but when there is worsening of the 

symptoms due to transient cerebral edema, short course of corticosteroid treatment is 

initiated with close clinical surveillance and serial imaging 7.
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Radiation Necrosis

Radiation necrosis is a permanent post treatment radiation effect characterized by an 

increase in the size of the contrast enhancing lesion occurring 3 months to years after RT 11. 

Pseudoprogression and RN are often considered a spectrum of post treatment radiation 

changes. Unlike pseudoprogression, RN progresses without treatment, and has not been 

associated with better prognosis. With improvements in overall survival of patients with 

GBM, there is growing usage of reradiation, radiation surgery and hypofractionated 

radiotherapy adding to the cumulative dose of radiation received by a single patient 

contributing to the increasing incidence of RN of about 5 – 40% 27. Patients with RN can be 

asymptomatic or present with symptoms and signs of necrosis including stroke-like migraine 

attacks after radiation therapy (SMART syndrome), radiation induced cavernous 

malformations or aneurysms, Moya-Moya syndrome, mineralizing microangiopathy, tissue 

calcification, atrophy, leukoencephalomyelopathy or rarely endocrine dysfunction 28–32.

Pathologically, RN corresponds to white matter necrosis associated with calcification, 

fibrinoid deposition, vascular hyalinization and endothelial thickening which leads to 

chronic inflammatory state, oxidative stress and inhibition of neurogenesis 29,33–36. 

Radiation induced vascular injury initiates the process of necrosis; subsequently, increased 

tumor necrosis factor alpha (TNF-α) drives endothelial cell apoptosis and increased vascular 

permeability, and increased vascular endothelial growth factor(VEGF) induces small vessel 

permeability and cerebral edema 7,37–40. Conventional imaging tools cannot identify RN and 

alternative techniques have not yet been validated in prospective trials 7,11,26. Suspected RN 

can be managed with corticosteroid treatment, hyperbaric oxygen therapy, anticoagulation, 

anti-angiogenic agents like bevacizumab, laser interstitial thermal therapy or even surgery 7. 

Corticosteroids reduce radiation induced radiation induced inflammatory response, decrease 

BBB leakiness and reduce cerebral edema41. Hyperbaric oxygen therapy stimulates 

angiogenesis and restores blood supply after radiation induced vascular injury. It is even 

suggested as a prophylactic option in patients with high likelihood of developing RN 42,43. 

Anticoagulants like heparin and warfarin inhibit cytokine release, prevent platelet 

aggregation and coagulation 44,45. Anti-VEGF agents reduce small vessel permeability and 

BBB leakiness 46–49. Laser interstitial thermal therapy focuses on thermal coagulation of 

peri-necrotic region of abnormal angiogenesis 50. Surgery reduces mass effect, edema and 

decreases intracranial pressure in addition to providing true tissue diagnosis 51,52. No 

controlled randomized clinical trials have been performed to establish the most beneficial 

regimen to manage RN.

Circulating tumor cells

Circulating tumor cells are cancer cells that leave the primary tumor and enter circulation. A 

fraction of these CTCs have the potential to invade distant sites and progress to metastasis 
53. Epithelial to mesenchymal transition (EMT) within the tumor enables some cells to gain 

a phenotype associated with increased motility and invasion 54,55. CTCs are found either as 

single cells or in clusters, the latter of which have higher metastatic potential 56–58. CTCs 

are hypothesized to be either randomly detached cells or metastatic tumor subclones. In 

either case, they contain the genomic, transcriptomic and proteomic characteristics of the 

primary tumor 12 and can be valuable tools to provide insight into the primary tumor 59,60. 
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Studies in multiple cancers have shown the possibility of CTC based diagnosis 61–63, 

monitoring 64–73 and prognosis 74–77. These studies have also demonstrated that the 

presence, phenotype and the methylation status of markers within CTCs in peripheral 

circulation have prognostic significance 57,78,79.

GBMs rarely form clinically evident extracranial metastases 80. This is attributed to the 

inability of glioma cells to survive in extracranial sites, and tolerate the immune system 
60,81. However, recent evidence of CTCs detected in blood of GBM patients (Table 1) 
59,60,81,82 poses questions about the conventional theories of GBM dissemination, opening 

the field of CTC based liquid biopsy in brain tumors 59,60,82. Although the capability of the 

detected GBM CTCs to metastasize has not been established, they can be used as tools to 

diagnose and monitor GBM 59,60. Previous studies have used positive selection (surface 

marker based selection), negative selection (depletion of blood cells) or other novel 

platforms for CTC detection (Table 1).

GBM-CTCs were shown to contain tumor specific molecular characteristics and invasive 

mesenchymal signature 59. Macarthur et al., showed an increase in CTC numbers post 

radiotherapy in a patient suggestive of PD, indicating the potential of CTCs in distinguishing 

PD from radiation effects 82. Gao et al. identified CTCs in all grades of glioma patients, and 

showed that CTC detection can reliably identify PD from RN 83. These studies provide a 

proof of principle that patients with GBM have CTCs in their peripheral blood. They 

demonstrate the potential of molecular characterization of these cells for minimally invasive 

tumor profiling and identification of PD from radiation effects. Recently, CTC clusters were 

also identified in the blood of GBM patients 81. Interestingly, Lui et al., demonstrated the 

capacity of intravenously injected CTCs to ‘reseed’ the primary site using a xenograft model 

and showed that CTCs also demonstrated stemness phenotype more resistant to treatments 
84. This strengthens the notion that CTCs are a subset of aggressive primary GBM cells, 

with EMT and stemness characteristics.

Although current studies report a very high specificity, the sensitivity of CTC detection is 

variable, from 20.6% to 82% 59,60,82. Higher sensitivities are required to establish CTCs as a 

potential diagnostic modality to diagnose and monitor brain tumors. Most studies 

inadequately characterize CTCs, are underpowered, use limited numbers of surface markers 

for CTC enrichment, have samples collected at variable time points along the disease course 

and lack long-term followup. Furthermore, CTCs were not detectable in each of multiple 

samples of a given patient at a given time point. This could indicate the lack of sensitivity of 

current techniques in detecting CTCs or the rarity CTCs in blood (1 cell per 109 blood cells). 

CTC analysis requires large volumes of fresh blood, and immediate sample processing. 

Also, detection is currently limited by technological constraints 12,85. Several factors 

including localization of the primary tumor, circulation dynamics and entrapment in 

capillary beds limit CTC detection. Furthermore, EMT may alter the surface marker profiles, 

which may negatively affect CTC-assay performance 29,86. Furthermore, the role of CTCs as 

diagnostic screening modalities is debatable as the disease would be in an advanced stage 

with CTC dissemination, but it can probably be a good monitoring tool for disease 

progression and prognosis. Nevertheless, CTCs can provide a distant insight into the primary 

tumor, and analysis using complementary technology could potentially indicate the presence 
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of a tumor, monitor disease progression, therapeutic responses, and reflect the genetic 

characteristics of the primary tumor.

Circulating Tumor DNA

Circulating tumor DNA (ctDNA) is a subtype of circulating, cell-free DNA (cfDNA) that 

originates from tumor cells and is composed of small fragments of DNA (180–200 base 

pairs in length) 85,87. CtDNA is typically released during tumor cell death and rapidly 

cleared by phagocytic processes. As such, the concentration of cfDNA is about very low 

(10–100 ng/ml) in plasma in normal individuals and in early stage cancers. However, the 

levels could be almost 10-fold higher in patients with advanced cancers 87. The challenge in 

ctDNA based liquid biopsy is two-fold, in extraction and in targeted detection. At the level 

of extraction, optimization of methodologies would increase the chance that these markers 

are detected. At the level of detection sensitive technologies, including droplet digital PCR, 

BEAMing (beads, emulsion, amplification, and magnetics) and next generation sequencing, 

allow identification of targeted mutations in various biofluids 85.

Studies in multiple cancers have demonstrated the utility of cfDNA based diagnosis 88–91, 

monitoring and assessing response to therapy 92–96. Growing evidence also suggests that 

cfDNA concentration correlates with tumor burden, cancer stage, cellular turnover, and 

response to therapy 87,97. However, the application of this strategy to gliomas has been 

hindered by the relatively low abundance of detectable molecular alterations in plasma 

(<10% of patients) as compared to other tumor types, likely due to the BBB 87.

However, emerging studies have reported the detection of tumor specific mutations in the 

cfDNA of patients with glioma (Table 2) 87,98–110. Detection of glioma specific alterations 

such as TERT 105,111, EGFRvIII 102, IDH1108 and histone mutations 112 has shown promise 

in minimally invasive diagnosis, molecular profiling and classification of tumors. EGFR 

gene is amplified in 30–40% of GBMs and nearly 50% of them express the in-frame deleted 

variant of EGFR receptor, EGFRvIII and represents an aggressive subtype of GBM 113–119. 

IDH1 mutations occur in 10% GBMs 120. TERT promoter mutations occur in 60% of 

GBMs, associated with poorer outcomes. Simultaneous presence of IDH1 and TERT 

promoter mutations confer survival benefit for GBM patients. H3K27M mutation status has 

both diagnostic and prognostic significance in diffuse midline glioma 121. Furthermore, 

identification of prognostic markers such as MGMT can be valuable to guide therapy 
98,101,107,109,110. Considering the association of MGMT promoter methylation with 

pseudoprogression, a positive MGMT methylation status can suggest the likelihood that a 

contrast enhancing lesion indicates pseudoprogression. Emerging studies also suggest the 

possibility of using ctDNA analysis to pursue treatment alternatives 100 as well as assess 

response to immunotherapy 100,122. Recent studies have shown the ability of ctDNA based 

longitudinal follow up in GBM patients. Miller et al. showed that CSF ctDNA based 

sequencing analysis can be used to track the evolution of tumors 104. Arruda and Mourliere 

showed that the levels of tumor specific mutation status in ctDNA fraction of CSF parallels 

the disease status, correlating with progressive disease 103,123,124.

CSF studies have consistently shown higher sensitivities in ctDNA detection compared to 

blood based analysis 101,105–107, however, serial monitoring may not be practical 
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considering the invasiveness of CSF collection. While recent studies have explored the 

potential of alternative biofluids such as urine 123, blood based detection has shown 

promising sensitivity and is more practical for serial monitoring. cfDNA is shed by virtually 

all cells in the body; it is especially difficult to identify ctDNA within this background. 

Furthermore, ctDNA fragments have a very short half-life and require rapid processing 12. 

Most cfDNA studies in glioma have small sample sizes and have used various methods of 

mutant detection to allow meaningful comparisons. Lack of standardized procedures for 

sample collection, isolation, and analysis has been another major hurdle for the field, making 

it challenging to compare sensitivities across various studies. Nevertheless, development of 

sensitive technologies for ctDNA capture and tumor specific mutant and methylation status 

can provide minimally invasive diagnosis and monitoring for GBMs, providing insights into 

the spatiotemporal heterogeneity over time and therapy.

Extracellular vesicles

Tumor cells actively release stable membrane bound nanobodies called EVs. They carry 

functional genomic and proteomic cargo from their parental cells and deliver that 

information to surrounding and distant recipient cells to modulate their behavior. EVs are 

identified to modulate and reprogram the tumor microenvironment to promote tumor 

proliferation, reprogram metabolic activity, induce angiogenesis, escape immune 

surveillance, acquire drug resistance and undergo invasion 125. They can also be detected in 

biofluids including plasma, CSF, urine etc. Their stable configuration confers a protective 

niche for tumor derived mRNA, miRNA and proteins. EVs are classified according to size 

and biogenesis pathway: microvesicles (100–1000 nm) are formed by budding of the plasma 

membrane, exosomes (30–150 nm) are formed by the fusion of intracellular multivesicular 

bodies with the plasma membrane, apoptotic bodies (1000–5000 nm) are produced and 

released by dying cells, and large oncosomes ( >1 μm ) are formed by non-apoptotic blebs 

from plasma membrane 85,126,127. Detection of tumor specific EVs amidst the vast 

background of normal EVs derived from every other cell of the body is challenging. 

Methodologies to allow for optimal EV isolation and sensitive technologies for EV cargo 

analysis are being developed.

Emerging reports have demonstrated the utility of EVs as biomarkers of cancer diagnosis 
3,128–130 and prognosis 131–133. Quantitative studies demonstrated that EV numbers in 

plasma were higher in patients with GBM patients compared to controls and the numbers 

dropped with therapy 134–137. Higher numbers were noted in PD compared to patients with 

stable disease or pseudoprogression 134,135. However, nanoparticle tracking analysis or flow 

cytometry based EV quantification methods are non-specific and non-representative of true 

tumor derived EV burden. Nevertheless, these studies indicate that the pattern of EV 

dynamics parallel the disease course in the broad sense.

Recent EV based mRNA studies have reported sensitivities between 28% and 82% for the 

detection of EGFRvIII in EVs extracted from serum of GBM patients 138,139. In addition, 

analysis of CSF-derived EV mRNA has shown higher sensitivities in IDH mutant detection 

compared to blood based EV analysis 140,141. Several protein based EV analysis methods 

have been used for tumor specific EV characterization 142,143. Shao et al. used micro nuclear 
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magnetic resonance system chip based EV protein analysis and identified EGFRvIII, PDPN 

and IDH1 proteins in the plasma EVs of glioma patients. The sensitivities were higher for 

EGFRvIII and PDPN (68%) than they were for IDH1 (16%)142. Chandran et al. showed that 

detection of syndecan-1 in plasma (sensitivity, 71%) can differentiate high grade gliomas 

from low grade gliomas. Other groups have explored EV miRNAs including miR-301a144, 

miR-182–5p, miR328–3p, miR-339–5p, miR-340–5p, miR-485–3p, miR-486–5p and 

miR-543145 miR-21, miR-222, miR-124–3p146, miR-320 and miR-574–3p, as well as a 

small noncoding RNA, RNU6147 as diagnostic tools. Specifically, Lan et al. and Santangelo 

et al. showed that serum miR-301a levels 144, miR-21, miR-222 and miR-124–3p levels 146 

in serum EVs were higher in GBM patients and paralleled the clinical disease course, with 

levels decreasing with surgical resection and increasing with recurrence 144.

Recent studies have explored the potential of fluorescent labelled EV quantification using 

imaging flow cytometry. Ricklefs et al. used imaging flow cytometry to show that EVs with 

double positive tetraspanin expression (CD63+/CD81+) are enriched in patient plasma 

samples 148. Galbo et al. showed that CD9+/GFAP+/SVN+ EVs can predict response to 

therapy 149. These studies highlight the possibility of monitoring GBM EVs using surface 

marker analysis. Jones et al. identified protoporphyrin positive EVs in plasma of patients 

with malignant glioma undergoing fluorescence guided surgery with 5-Amino levulinic acid 

(5-ALA) as a potential diagnostic strategy to identify and monitor malignant gliomas. As the 

drug is currently approved only for surgical resection, the potential of the drug in a 

longitudinal setting has not yet been evaluated 150.

The ability of GBM-EVs to cross the BBB has always been a topic of debate, which could 

be the reason for lower sensitivities of target detection in blood based EV analysis. Garcia-

Romero et al. recently demonstrated that tumor specific EVs are capable of crossing intact 

BBB and navigating into plasma, using an orthotopic xenotransplant mouse model of human 

glioma-cancer stem cells featuring an intact BBB141.

Although both CSF and plasma/serum based EV analysis is promising, the superiority of a 

biofluid for EV based monitoring is still unclear. However, plasma/serum based monitoring 

is more practical for the purposes of longitudinal monitoring as repeated CSF sampling is 

not feasible 151. Biofluids such as urine and saliva need to be explored. Small sample sizes, 

variable technologies, lack of a gold standard method of EV characterization makes it 

difficult to make meaningful comparisons. However, these initial EV biomarker discovery 

studies show promise and their potential in longitudinal setting is yet to be explored.

Blood Brain Barrier

Although CSF is considered as the ideal biofluid for liquid biopsy based diagnosis and 

monitoring due to the anatomic proximity to the primary tumor, plasma and serum are easily 

accessible and minimally invasive. CSF collection is highly invasive, requires trained 

professionals and has several potential complications. The utility of blood based liquid 

biopsy depends on the inherent ability of the liquid biopsy substrates (CTCs, CtDNA, EVs) 

to cross the BBB and reach peripheral circulation. The BBB provides both physical and 

biochemical barriers with a continuous network of tight and adherens junctions between 

brain capillary endothelial cells preventing paracellular diffusion of hydrophilic 
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molecules153. The most obvious path for these substrates is circumnavigation of the BBB at 

the regions of BBB disruption. Despite the fact that GBM is a highly aggressive and invasive 

brain tumor with a disruption of BBB, large sections of BBB remain intact 152. Wide scale 

disruptions of BBB usually occur with the progression of disease.

CTCs are large and require disrupted BBB to navigate their way into the bloodstream. This 

could be one of the reasons for their low abundance in blood. It is unlikely for the 

hydrophilic ctDNA to cross an intact BBB. CtDNA could enter the bloodstream via the sites 

of BBB disruption. Studies have shown higher ctDNA levels in blood in high grade gliomas 

than low-grade gliomas87, which can partly be attributed to the BBB disruption in high 

grade gliomas. A positive correlation between the extent of BBB disruption and ctDNA 

levels in the blood was identified by Nabavizadeh and colleagues, indicating the ability to 

detect ctDNA as a function of BBB disruption strengthening this notion 154. Morad et al 

demonstrated using in vitro and in vivo BBB models, the ability of native tumor derived EVs 

to breach the intact BBB and reach the circulation via transcytosis155. Kur et al showed a 

neuronal activity driven uptake of hematopoietic cell derived EVs by neurons across the 

BBB via transcytosis156. These studies provide a proof of principle that tumor specific EVs 

navigate through the intact BBB, and reach the peripheral circulation. However, further 

investigation is required to unveil the ability of liquid biopsy substrates to reach peripheral 

circulation as well as determine the optimal biofluid for monitoring disease progression.

Future directions

Promising developments in the field of liquid biopsy can aid clinicians making diagnostic 

and therapeutic decisions to manage GBMs. The potential of combining both liquid biopsy 

fractions, cfDNA from dying cells and actively secreted EVs from live cells might be a 

better representation of the ongoing tumor dynamics. Recent clinical application of liquid 

biopsy based diagnostics such as cobas EGFR Mutation Test version 2, which monitors 

T790M mutation status in plasma cfDNA in non-small cell lung cancer patients to aid the 

use of osimertinib 157,158, and ExoDx Prostate IntelliScore (EPI Test, Bio-Techne), a non-

invasive EV based urine test measures three mRNAs considered to be important genomic 

RNA biomarkers that can guide urologists in determining the true need for a prostate biopsy 
159,160 have shown promise of liquid biopsy for minimally invasive diagnostics and 

prognostics. However, there are several challenges along the pathway of blood-based 

biomarker development from discovery to clinical utility, and systematic approach to tackle 

these hurdles is critical to develop a blood based biomarker with clinical utility. These 

aspects are extensively reviewed elsewhere 151,161,162. Ideally, an advanced machine 

learning model 163,164 integrating clinical, imaging and liquid biopsy based molecular 

characterization could help decision making during follow-up. With the advent of sensitive 

technologies, liquid biopsy could be the future of tumor diagnosis, monitoring and therapy 

response.

Conclusion

Liquid biopsy strategies offer minimally invasive tools for diagnosis as well as monitoring 

brain tumors for response to therapy and for predicting treatment related changes. Despite 
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recent advances in liquid biopsy based biomarking brain tumors, the sensitivity of detection 

in brain tumors have been low. As of now, there are no clinically applicable circulating 

biomarkers for the diagnosis and monitoring of GBMs, but promising developments in the 

field with complimentary sensitive technologies have moved the needle closer to a clinical 

assay. Biobanking and appropriate sample collection and handling protocols are needed to 

allow the field to harvest and save biofluids for development and validation of biomarkers 

and technologies. Ideally, a three-pronged monitoring approach correlating clinical status, 

imaging characteristics and liquid biopsy based molecular characterization, to provide a 

comprehensive clinical and molecular snapshot of the tumor in space and time, to assess the 

evolution of the tumor, and identify true PD from radiation effects could be a potential 

solution to the current challenge.
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Figure 1. 
a. Patients with glioblastoma, post-surgical resection and chemoradiation, are monitored 

using serial MR imaging. A gadolinium enhancing lesion on contrast enhanced magnetic 

resonance imaging (MRI) could either be true progressive disease (PD), or radiation effects 

such as pseudoprogression or radiation necrosis (RN). Liquid biopsy strategies including 

circulating tumor cells (CTCs), circulating free DNA (CfDNA), extracellular vesicles (EVs) 

can provide minimally invasive modalities of monitoring brain tumors. b. Three-pronged 

monitoring approach using integrating clinical status, imaging modalities and liquid biopsy 

strategies could be a potential solution for tracking the tumor evolution over time and 

therapy. Blood vessel image from Smart Servier.
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Table 1.

Summary of studies using circulating tumor cell-based analysis for GBM.

Author, Year Biofluid Methodology of CTC enrichment Genetic cargo evaluated Diagnostic 
sensitivity

Potential role

Sullivan, 2014 Blood CTC-iChip microfluidic technology; 
characterization using antibody cocktail, 

STEAM: SOX2, tubulin-3, EGFR, 
A2B5 and cMET.

SERPINE1, 
TGFB1,TGFBR2,VIM; 

EGFR amplification

39% Diagnosis/
Prognosis

Muller, 2014 Blood Density gradient centrifugation 
followed by fluorescence 

immunocytochemistry using anti- GFAP 
antibody

EGFR amplification 20% Diagnosis/
Prognosis

Macarthur, 
2014

Blood Density gradient centrifugation 
followed TERT promotor-based CTC 

detection assay

TERT 72%: pre-
radiotherapy 8% 
post-radiotherapy

Prognosis/
Monitoring

Malara, 2016 Blood Vimentin positive cell sorting and short 
time expansion

- 2/2 Prognosis/
Monitoring

Gao, 2018* Blood CTCs detection based on the aneuploidy 
of chromosome 8 examination by 

CEP8-FISH

Chromosome 8 aneuploidy 24 of 31 (77%) 
GBM (82%)

Diagnosis/
Prognosis/
Monitoring

Krol, 2018
λ Blood Parsortix microfluidic system SOX2 7/13(53.8%) Diagnosis/

Prognosis/ 
Monitoring

Abbreviations.CEP8, Centromere Probe (CEP) 8; CTC, circulating tumor cells; EGFR, epidermal growth factor receptor; FISH, Fluorescence in 
situ Hybridization; GBM, Glioblastoma; GFAP, glial fibrillary acidic protein; SERPINE1, Serpin Family E Member 1; SOX2, SRY (sex 
determining region Y)-box 2; TERT, Telomerase reverse transcriptase; TGFB1, Transforming Growth Factor Beta 1; TGFBR2, Transforming 
Growth Factor Beta Receptor 2;

*
These described cases in this series are not limited to GBM

λ
The study evaluates for CTC clusters
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Table 2.

Summary of studies using circulating free DNA-based analysis for GBM.

Author, Year Biofluid Methodology of cfDNA 
analysis

Genetic cargo evaluated Diagnostic 
sensitivity

Potential role

Balana, 2003 Plasma Methylation Specific PCR 
assay

MGMT methylation status 81% Prognosis; 
Treatment 
selection

Liu, 2010* CSF, serum Methylated DNA 
immunoprecipitation RT-PCR 

analysis

MGMT, p16INK4a, TIMP3, 
THBS1 promoter 
hypermethylation

CSF, 50% Serum 
50%

prognosis

Lavon, 2010* Serum Methylation Specific PCR 
assay

MGMT promoter 
methylation status

51% Diagnosis

Boisselier. 2012* Plasma DNA amplification by COLD 
PCR and further 

characterization by digital PCR

IDH1 mutation 60% Diagnosis

Salkeni, 2013 Plasma Long range PCR amplification EGFRvIII deletion variant 23% Monitoring

Majchrzak-

Celińska, 2013*
Serum Methylation Specific PCR 

assay
MGMT, RASSF1A, 
p15INK4B, p14ARF 
promoter methylation

81% Diagnosis

Bettegowda 2014* Plasma Droplet digital PCR TP53, EGFR, PTEN <10% Diagnosis

Wang, 2015* Serum CSF Methylation Specific PCR 
assay

MGMT promotor 
methylation

Serum, 21% CSF, 
43%

Prognosis

De Mattos-Arruda, 

2015*
CSF, 

Plasma
Targeted capture massively 

parallel sequencing
IDH1, TP53, PTEN, EGFR, 
FGFR2, ERBB2 mutations

- Monitoring

Schwaederle, 

2016*
Plasma Next generation sequencing TP53, NOTCH1 27% Molecular 

profiling, 
Prognosis

Juratli, 2018* CSF, 
Plasma

Nested PCR TERT promoter mutations CSF, 92% 
Plasma, 8%

Diagnosis

Piccioni. 2019* Plasma Guardant360® cfDNA digital 
next generation sequencing 

assay

TP53, NF1, MET, APC, 
PDGFRA mutations MET, 

EGFR, ERBB2 
amplifications

55% Molecular 
profiling, 
treatment 
selection

Miller, 2019* CSF Next generation sequencing IDH1, IDH2, TP53 
mutations; CDKN2A, 

CDKN2B deletions; EGFR 
amplification

49% 
(posttherapy)

Prognosis, 
Monitoring

Mouliere, 2019* CSF, 
Plasma 
Urine

Tumor-guided capture 
sequencing

Matched clonal and private 
mutations

CSF, 50% 
Plasma, 50% 
Urine, 13%

Diagnosis

Cordova, 2019 Plasma Droplet digital PCR TERT promoter mutations 46% Monitoring

Abbreviations.APC, adenomatous polyposis coli; CDKN2A, Cyclin Dependent Kinase Inhibitor 2A, CDKN2B, Cyclin Dependent Kinase Inhibitor 
2B; CfDNA, circulating free DNA; CSF, cerebrospinal fluid; EGFR, epidermal growth factor receptor; ERBB2, Erb-B2 Receptor Tyrosine Kinase 
2; FGFR2, Fibroblast growth factor receptor 2; IDH, isocitrate dehydrogenase; MGMT, O(6)-Methylguanine-DNA methyltransferase; NF1, 
neurofibromatosis type 1; PDGFRA, platelet-derived growth factor receptor alpha; PTEN, Phosphatase and tensin homolog; RASSF1A, Ras 
association domain family 1 isoform A; RT-PCR, real time polymerase chain reaction; TERT, Telomerase reverse transcriptase; THBS1, 
Thrombospondin 1; TIMP3, TIMP Metallopeptidase Inhibitor 3.

*
These described cases in this series are not limited to GBM.
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Table 3.

Summary of studies using extracellular vesicle EV-based analysis for GBM.

Author, Year Biofluid Methodology of EVanalysis Genetic cargo 
evaluated

Diagnostic 
sensitivity

Potential role

Skog, 2008 Serum Nested RT-PCR EGFRvIII 
mRNA

EGFRvIII 28% Diagnosis

Shao, 2012 Plasma Micro nuclear magnetic 
resonance system chip based 

EV protein analysis

EGFRvIII, IDH1, 
PDPN proteins

68% (EGFRvIII, 
PDPN) 16% IDH1

Diagnosis

Chen & Balaj, 2013 CSF, 
Serum

BEAMing (beads, emulsion, 
amplification, magnetics) RT-

PCR and ddPCR

IDH1 mutation 62.5% 0% Diagnosis

Akers, 2013 CSF RT-PCR miR-21 85% initial cohort, 
87% validation 

cohort

Diagnosis/
Monitoring

Manterola, 2014 Serum RT-PCR miR-320, miR-574–
3p, RNU6–1 
expression

miR-320, 65%, 
miR-574–3p, 59%, 

RNU6–1, 73%

Diagnosis

Koch, 2014 Plasma Flow cytometry: size of 300 
nm or greater and Annexin V 

positivity

- - Monitoring

Evans, 2016 Plasma Flow cytometry: Annexin V 
positivity

- - Monitoring/ 
Prognosis

Garcia-Romero, 

2017*
Plasma Fast Cold-PCR IDH1 mutation 48% Diagnosis

Galbo, 2017* Serum Imaging flow cytometry- 
fluorescent labelled antibodies

CD9+/GFAP+/SVN+ 
EVs

- Monitoring

Andre-Gregoire, 2018 Plasma Tunable resistive pulse sensing 
analysis (TRPS)

- - -

Ricklefs, 2018* Plasma Droplet PCR PD-L1 DNA 67% Monitoring

Manda, 2018* Serum Semi-nested RT-PCR EGFRvIII mRNA 82% Diagnosis

Lan, 2018* Serum RT-PCR miR-301A _ Prognosis/
Monitoring

Ebrahimkhani, 2018* Serum Deep sequencing miR-182–5p, 
miR-328–3p, 
miR-339–5p, 
miR-340–5p, 
miR-485–3p, 

miR-486–5p and 
miR-543

92% λ Diagnosis

Santangelo, 2018* Serum RT-PCR miR-21, miR-222, 
miR-124–3p

miR-21, 84%, 
miR-222, 80% 

miR-124–3p 78%

Diagnosis/
Monitoring

Osti, 2019* Plasma Nanoparticle tracking analysis, 
Mass spectrometry

Proteins: vWF, APCS, 
C4B, AMBP, APOD, 

AZGP1, C4BPB, 
Serpin3, FTL, C3, and 

APOE

- Monitoring

Jones & Yekula, 2019 Plasma Imaging flow cytometry based 
monitoring of PpIX positive 

EVs pre and post 5-ALA based 
fluorescent guided surgery

PpIX positive EVs 4 out of 4 Diagnosis/
Monitoring

Chandran, 2019 Plasma Mass spectrometry, 
Nanoparticle tracking analysis, 

Electron microscopy

Levels of Syndecan 1 71% Diagnosis/
Classification
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Author, Year Biofluid Methodology of EVanalysis Genetic cargo 
evaluated

Diagnostic 
sensitivity

Potential role

Ricklefs, 2019* Plasma Imaging flow cytometry- 
fluorescent labelled antibodies

CD63+/CD81+ EVs - -

Abbreviations.AMBP, Alpha-1-Microglobulin/ Bikunin Precursor; APCS, Serum amyloid P component; APOD, Apolipoprotein D; APOE, 
Apolipoprotein E; AZGP1, Alpha-2-Glycoprotein 1; C3, complement C3; C4B, Complement C4B; C4BPB, Complement Component 4 Binding 
Protein Beta; CSF, cerebrospinal fluid; ddPCT, droplet digital PCR; EGFR, epidermal growth factor receptor; FTL, Ferritin Light Chain; IDH, 
isocitrate dehydrogenase; PDPN, podoplanin; PpIX, Protoporphyrin; RT-PCR, reverse transcriptase polymerase chain reaction; vWF, von 
Willebrand factor; 5-ALA, 5 Aminolaevulinic acid.

*
These described cases in this series are not limited to GBM.
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