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Abstract

Purpose: Low-dose CT screening allows early lung cancer detection, but is affected by frequent 

false positive results, inter/intra observer variation and uncertain diagnoses of lung nodules. 

Radiomics-based models have recently been introduced to overcome these issues, but limitations 

in demonstrating their generalizability on independent datasets are slowing their introduction to 

clinic. The aim of this study is to evaluate two radiomics-based models to classify malignant 

pulmonary nodules in low-dose CT screening, and to externally validate them on an independent 

cohort. The effect of a radiomics-features harmonization technique is also investigated to evaluate 

its impact on the classification of lung nodules from a multicenter data.

Methods: Pulmonary nodules from two independent cohorts were considered in this study; the 

first cohort (110 subjects, 113 nodules) was used to train prediction models, and the second cohort 

(72 nodules) to externally validate them. Literature-based radiomics features were extracted and, 

after feature selection, used as predictive variables in models for malignancy identification. An in-

house prediction model based on artificial neural network (ANN) was implemented and evaluated, 

along with an alternative model from the literature, based on a support vector machine (SVM) 

classifier coupled with a least absolute shrinkage and selection operator (LASSO). External 

validation was performed on the second cohort to evaluate models’ generalization ability. 

Additionally, the impact of the Combat harmonization method was investigated to compensate for 

multicenter datasets variabilities. A new training of the models based on harmonized features was 

performed on the first cohort, then tested separately on the harmonized and no-harmonized 

features of the second cohort.
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Results: Preliminary results showed a good accuracy of the investigated models in distinguishing 

benign from malignant pulmonary nodules with both sets of radiomics features (i.e. no-

harmonized and harmonized). The performance of the models, quantified in terms of Area Under 

the Curve (AUC), was >0.89 in the training set and >0.82 in the external-validation set for all the 

investigated scenarios, outperforming the clinical standard (AUC of 0.76). Slightly higher 

performance was observed for the SVM-LASSO model than the ANN in the external dataset, 

although they did not result significantly different. For both harmonized and no-harmonized 

features, no statistical difference was found between Receiver Operating Characteristic (ROC) 

curves related to training and test set for both models.

Conclusions: Although no significant improvements were observed when applying the Combat 

harmonization method, both in-house and literature-based models were able to classify lung 

nodules with good generalization to an independent dataset, thus showing their potential as tools 

for clinical decision-making in lung cancer screening.
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1 Introduction

In the past decade, several clinical trials have demonstrated the benefits of low dose CT 

(LDCT) screening for early detection of lung cancer, with the National Lung Screening Trial 

(NLST) 1 and the Dutch-Belgian Randomized Lung Cancer Screening Trial (NELSON) 

studies 2 demonstrating mortality reductions of 20% and 26%, respectively. These outcomes 

have prompted a number of medical societies to recommend LDCT screening for heavy 

smokers over 55 years old 3–6. Nonetheless, questions remain about the costs of large-scale 

screening, the large number of images the radiologists have to deal with, and the potential 

over-diagnosis associated with false positive findings. Computer-aided decision support 

tools have been touted as a means to reduce the radiologist work-load, reduce inter-observer 

variation 7 and improve the ability of radiologists to detect pulmonary nodules 8.

In this context, the radiomics concept of extracting features describing tumor characteristics 

such as intensity, shape, and heterogeneity from medical imaging data to identify those that 

correlate with clinically useful outcomes, has gained prominence 9,10. In the domain of lung 

cancer, radiomics-based models have been demonstrated to predict overall survival 11, 

response to therapy 12–15, tumor characterization 16 and malignancy identification 17–21. Of 

the radiomics-based applications proposed in the literature to classify benign from malignant 

lesions in lung cancer 17–21 however, few have been externally validated to evaluate their 

generalizability to datasets independent from the ones used for training 22. External 

validation is important in demonstrating the feature robustness 23 and predictive 

performance of the model on independent datasets 24,25, as these are critical determinants to 

clinical adoption.

The multiple sources of variability in LDCT, including differences in acquisition and 

reconstruction parameters as well as the scanner detectors, can indeed affect model 

performance and robustness 26, and consequently the ability of prediction models to reach 
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the same performance on different populations. This variability could be limited, in part, by 

imposing homogeneous acquisition and reconstruction protocols, but this requires extensive 

consensus on the best practice and is challenging to apply across different patients and 

scanner hardware. In consequence, post-reconstruction harmonization techniques have been 

proposed. The most widely used harmonization techniques involve image resampling 27, 

however methods that act directly on features have been recently introduced. Among these is 

the Combat model 28, which was previously exploited in the field of genomics for batch 

effect reduction.

The aim of this work is to evaluate prediction models based on radiomics features for early 

identification of pulmonary nodule malignancy. Specifically, an in-house prediction model 

based on artificial neural network (ANN) was implemented along with an alternative model 

from the literature based on a support vector machine (SVM) classifier coupled with a least 

absolute shrinkage and selection operator (LASSO)19. Both models were validated 

externally on an independent dataset and compared with the clinical standard defined on the 

American College of Radiology (ACR) Lung CT Screening Reporting and Data System 

(Lung-RADS) 29. We further examine the effectiveness of the Combat model 28, a state-of-

the-art harmonization method, in limiting the impact of inter-scanner and acquisition setting 

variability.

2 Materials and Methods

2.A Datasets

In this study, we use two independent patient cohorts.

The first cohort (Cohort-1), used as the training set, consisted of scans from a 110 patient 

subset of the COSMOS study dataset 30,31 of the Istituto Europeo di Oncologia (IEO, 

Milano, Italy). This study was approved by the local ethical committee who waived the 

requirement for additional patient consent for re-analysis of this data.

The second cohort (Cohort-2), used as a testing set for external validation, was the subset of 

72 cases from the publicly available LIDC dataset 32, previously reported in the work by 

Choi et al. 19.

In each CT scan, at least one pulmonary nodule was identified, and a binary tumor mask 

defined. Binary masks for Cohort-1 patients were manually contoured by a single 

radiologist. For Cohort-2, at least one annotation performed by an expert radiologist was 

available; when more than one contour per lesion was present, a consensus contour was 

defined by using simultaneous truth and performance level estimation19,33.

Images had an in-plane dimension of 512 × 512 voxels for both cohorts, and while CT 

acquisition and reconstruction settings were different between the cohorts, similar 

inconsistencies were also present within each cohort. CT scans of Cohort-1 were acquired 

using a tube peak potential equal to 100 kV, 120 kV or 140 kV for 2, 49 and 59 subjects, 

respectively, whereas the tube current was fixed at 30 mA. In this cohort, all CT scans were 

reconstructed with a standard convolution kernel and a fixed slice thickness of 2.5 mm, 
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while in-plane resolution ranged between 0.57 and 0.87 mm. For Cohort-2, tube current 

ranged between 80 and 570 mA while the tube peak potential was fixed at 120 kV, except 

one case that was 140 kV 19. The CT scans were reconstructed with “standard/non-

enhancing” (43 subjects), “slightly enhancing” (17 subjects) or “over enhancing” (12 

subjects) convolution kernels. Slice thickness ranged from 1.0 mm to 2.5 mm while in-plane 

pixel size ranged from 0.54 to 0.89 mm.

Distinctions between the two cohorts were also found in lesion size (maximum diameters) 

and attenuation characteristics (solid, part-solid and non-solid). Table I summarizes the 

clinical and imaging properties of pulmonary nodules in each cohort. A total of 113 lesions 

(58 malignant and 55 benign) were present in Cohort1 and 72 (41 malignant and 31 benign) 

in Cohort-2. Fig. 1 shows an example of lung nodules from Cohort-1.

As performed in Choi et al. 19 for Cohort-2, a Lung-RADS categorization was also 

performed for Cohort-1 relying on an expert radiologist’s annotation of lesion size, nodule 

type, presence/absence of calcification, internal tissue type and other imaging findings 

(contours irregularity).

2.B Feature extraction

Before feature extraction, images and correspondent binary tumor masks were resampled to 

an isotropic voxel dimension of 1×1×1 mm.

Feature extraction was performed with a publicly available tool (https://github.com/taznux/

radiomics-tools) for Cohort-1 and Cohort-2 considering the same set of 129 features used in 

Choi et al. 19. These features consisted of: 35 (3D) and 18 (2D) shape features, 14 (3D) and 

8 (2D) shape intensity features, 9 (3D) and 9 (2D) first order histogram features, and 35 

texture features. (Refer to Section 2.5 for details on feature harmonization).

For each feature, statistical power in distinguishing benign from malignant nodules was 

evaluated using the Wilcoxon rank sum test (alpha=5%).

2.C ANN model definition and training

For the in-house ANN model, implemented in Matlab ® (version 2018a), we first performed 

feature selection and hyperparameter tuning through a 10-folds cross-validation (10-fold 

CV). After this, the most stable features and best hyperparameters were chosen to train the 

final model. An explanation of the methodology employed during 10-fold CV to train the 

model on Cohort-1 is given below and outlined in Fig. 2. Additional details are reported in 

Supplementary Material A.

The proposed feature selection approach entailed the combination of an unsupervised and a 

subsequent supervised feature selection technique. Correlation-based hierarchical clustering 

was first applied to the input set of 129 features, with a threshold at 0.85 19. Then, the 

ReliefF supervised ranking algorithm was employed to filter correlated features inside each 

cluster, then the highest-ranking feature was selected. The ReliefF algorithm was chosen for 

its ability to distinguish features that are predictive while simultaneously take into account 

inter-dependency among attributes 34.
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The three best-performing features in the training set were then used as input for tuning the 

hyperparameters of a shallow neural network whose architecture was established a-priori. 

The feed-forward ANN 35 was defined with a single hidden layer where the two inner 

neurons and the single output neuron were represented by a ReLU (Rectified Linear Unit) 

and a sigmoidal activation function, respectively. This architecture was defined 

experimentally by evaluating different combinations of input and hidden neurons for an 

ANN with a single and two hidden layers. As no relevant improvements were found 

increasing the net complexity with an additional hidden layer (see Supplementary Material 

B) the single hidden layer ANN was adopted.

To avoid overfitting of the network, large weights were penalized through L2 regularization. 

The regularization parameter lambda was therefore the only hyperparameter to be defined. 

For this purpose, a two-step grid search approach was adopted (see Supplementary Material 

A), consisting of a 5-fold CV repeated twice. The first 5-fold CV provided a temporary 

regularization lambda chosen as the value from a logarithmic scale corresponding to the best 

performance in terms of area under the curve (AUC) of the receiver-operator-curve (ROC). 

The definitive lambda value of the i-th 10-fold CV loop was established with the same 

metric after the second 5-fold CV, repeated for each possible lambda values chosen on a 

linear scale around the temporary regularization lambda.

After feature selection and hyperparameter definition, the ANN model was trained on the 

current set of training samples and then applied to the validation samples within the i-th 10-

fold CV.

The above pipeline was performed for each loop of the 10-fold CV, after which the definitive 

feature set and hyperparameters were established. Definitive features corresponded to those 

most frequently selected among the 10-fold CV loops, while, as the overall definitive 

lambda value, we selected the regularization parameter that resulted in the best performance 

in the 10-fold CV validation sets. With the definitive features and hyperparameters, a 

repeated 10×10-fold CV was performed to evaluate the model in Cohort-1. The final model 

was finally trained on the complete set of samples involved in the 10-fold CV and then 

externally validated on Cohort-2.

2.D SVM-LASSO literature model

A literature-based model was also evaluated. Specifically, the SVM-LASSO workflow 

proposed by Choi et al.19was adopted, as it makes use of the same set of radiomic features as 

for training the ANN model. The SVM-LASSO model consists in the following steps: after 

a preliminary feature selection with hierarchical clustering, the best feature set was 

established applying a repeated 10-fold CV where, inside each loop, a LASSO selector 

refined the search of best features, followed by the support vector machine training. The 

features more frequently selected in the 10-fold CV were then used to train the final model 

on the entire training set samples. For more details on the SVM-LASSO model, readers are 

referred to Choi et al.19.
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2.E Experiments

2.E.1 Feature harmonization—For harmonization between the training and external-

validation sets, assuming the absence of inhomogeneities between samples of the same 

cohort, the Combat method was applied to the features, thus producing a second set of 

features for each cohort 28 (Fig. 3, orange box). The entire procedure of feature selection, 

hyperparameter definition, and final model training was repeated on the harmonized features 

of Cohort-1 for both the ANN and SVM-LASSO model (Fig. 3, yellow box).

According to the Combat method, each feature y measured in a ROI j, and related to a 

scanner i, can be described as follows:

yij = α + Xijβ + γi + δiεij

where α is the mean value of feature y, Xij the design matrix of the covariates of interest, β 
the regression coefficients associated to each covariate, γi the additive effect of scanner i on 

features, δi the multiplicative scanner effect and εij the error term.

The harmonization process consists in estimating, using empiric Bayes estimates, the 

parameters γi* and δi* and applying the following transformation, based on the batch effect 

observed for feature y:

yijCombat =
yij − α − Xijβ − γi*

δi*
+ α + Xijβ

where α and β  are estimates of parameters α and β. In our case, the only batch effect 

considered was the difference in cohort and the term Xijβ was neglected, leaving out any 

covariate (e.g. malignancy).

To apply the Combat harmonization, we adopted the public available Matlab implementation 

(https://github.com/Jfortin1/ComBatHarmonization/) proposed by Fortin et al. 36.

To statistically evaluate the effect of feature harmonization on models’ predictive power, 

Wilcoxon rank sum test (alpha=5%) was used (Section 2.2). Additionally, for features 

involved in final model training, Wilcoxon was applied also to compare distributions of the 

whole set of harmonized features with no-harmonized ones.

2.E.2 External validation—External validation of the models was performed 

considering the same subset of 72 nodules from the LIDC dataset32 used in Choi et al. 19. 

For this purpose, each model was applied considering the subset of the no-harmonized 

selected features, along with the harmonized features derived by the Combat feature 

harmonization technique 28, to evaluate if an improvement in model generalizability can be 

appreciated using harmonized features.

Three external validation scenarios were therefore considered (Fig. 3) for both ANN and 

SVM-LASSO models. In the first case, the model trained on no-harmonized features of 
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Cohort-1 was applied to the no-harmonized features of Cohort-2 (Scenario A). In the second 

scenario, the same model was applied to the harmonized-features of Cohort-2 (Scenario B). 

In the third, the model based on harmonized features for Cohort-1 was applied to the 

harmonized features of Cohort-2 (Scenario C).

For each validation, we evaluated AUC (95% confidence intervals, CI), accuracy (Acc), false 

positive rate (FPR) and true positive rate (TPR). Additionally, the difference between cross-

validation and external validation was evaluated through DeLong test37 (alpha=5%) and 

McNemar 38 test (alpha=5%) for ROC curves (AUC) and frequencies comparison, 

respectively. The same test analyses were also used to compare the performance of the ANN 

model versus the SVM-LASSO model. Comparison with a clinical model

The two radiomics-based models were finally compared to a clinical model, to demonstrate 

the higher predictive power of radiomics features in malignancy identification with respect 

to the actual clinical standard. A logistic regression was applied adopting as predictors 

Lung-RADS categorizations. Performance was evaluated in terms of AUC, Acc, FPR and 

TPR. Additionally, ROC curves were statistically compared with that found for ANN and 

SVM-LASSO relying on De Long37 test (alpha=5%), while frequencies relying on Mc 

Nemar38 test (alpha=5%).

3 Results

3.A ANN model performance

In the case of the ANN workflow, the features selected by the feature selection process were 

the same for training on both the no-harmonized and harmonized features. The three best-

performing features (i.e. those with the highest predictive power in the feature selection 

phase) were statistically different for both training and external-validation cohorts when 

comparing their distributions without or with feature harmonization (Wilcoxon rank sum 

test, p<0.05). Specifically, during the 10-fold CV, “BoundingBoxSize3” (bounding box size 

in anterior/posterior direction), “MeanOfClusterShade” and “WeightedPrincipalAxes4” were 

the best-performing features and they were selected 10/10, 6/7 and 5/5 times in training 

without/with harmonization, respectively (Fig. 4).

As reported in the boxplots of Fig. 5, distributions of the three no-harmonized features used 

to derive the final model were compared for malignant and benign nodules in both cohorts of 

patients. For the cross-validation set (Fig. 5, top panels), a statistical difference was found 

between benign and malignant nodule distributions for each of the three radiomic features. 

According to the Wilcoxon rank sum test (alpha=5%), p-values were <0.05 for 

“BoundingBoxSize3”, “MeanOfClusterShade” and “WeightedPrincipalAxes4”. However, in 

the external validation set, only BoundingBoxSize3 showed a statistically significant 

difference (p = 3.4×10−06) between benign vs. malignant lesions. The same statistical test 

(Wilcoxon rank sum test, alpha=5%) was applied to all the 129 radiomics features 

considered (Supplementary Materials C).

The ANN architecture with three input neurons and a single two-neurons hidden layer 

provided the best performance in malignancy identification (AUC equal to 0.89, 
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Supplementary Materials B). The final values of regularization lambda were 0.031 (mean

±std: 0.038 ±0.01) and 0.018 (mean±std: 0.03±0.01) corresponding to the highest AUC 

among 10-fold CV iterations for model trained on no-harmonized and harmonized features, 

respectively.

Table II reports model performance on the training and external-validation dataset in 

distinguishing malignant from benign nodules. ANN model performance was summarized 

by ROC curves for the cross-validation set (Fig. 6a), via repeated 10×10 folds CV, and for 

external validation set (Fig. 6b) where features and regularization lambda previously 

established in the 10-fold CV were kept fixed. The AUC values in 10×10 folds CV were 

found equal to 0.89 (CI: 0.83–0.95) with no-harmonized features, and 0.90 (CI: 0.84–0.96) 

with harmonized features and no significant difference was found between the two 

conditions37,38.

The ROC curves were also not significantly different in the three external-validation 

scenarios considered. Specifically, for Scenario A (training and testing on no-harmonized 

features) an AUC of 0.82 (CI: 0.73–0.92) was obtained in the external dataset. Similar 

results were found for Scenario B (training with no-harmonized features and testing on 

harmonized features) and Scenario C (training and testing on harmonized features), where 

AUC resulted equal to 0.82 (CI: 0.73–0.92) and 0.83 (CI: 0.74–0.92), respectively. 

Differences in frequencies (McNemar test) were found in the external validation between 

Scenario A vs. Scenario B and C, as the TPR was lower (<80%) when harmonization was 

applied. Differences between the training set and the external-validation set for Scenario A 

were not significant, confirming the generalizability of the ANN model.

Compared with the Lung-RADS clinical model (Supplementary material D, Table S2), the 

performance of the ANN model was significantly different in cross-validation, with higher 

AUC and Acc (0.89 and 83.2% vs. 0.76 and 71.4%). In the external-validation set, no 

significant difference was found between Lung-RADS and ANN with the De Long test, 

although AUC improved of 8% (Acc of 14%) in the ANN model. Nevertheless, significant 

difference was found in terms of frequencies (McNemar test), with Lung-RADS presenting 

random performance for TPR (51.2% vs. 80.5% for Lung-RADS and ANN, respectively). 

Additional details are reported in supplementary materials D.

3.B SVM-LASSO model performance

As regards the SVM-LASSO model, 5 features were selected when no feature 

harmonization was applied and 4 features in the case of harmonization, for the 10-folds CV. 

The 5 no-harmonized features selected in Scenario A were: ‘MeanOfClusterShade’, 

‘WeightedPrincipalAxes4’, ‘StandardDeviationOfInertia’, 

‘StandardDeviationOfShortRunEmphasis’ and ‘StandardDeviationOfEnergy’. 

‘MeanOfClusterShade’ and ‘WeightedPrincipalAxes4’ were the most frequently selected 

features both with and without harmonization, in a fashion similar to ANN model. 

Excluding ‘StandardDeviationOfEnergy’, the same harmonized features were selected for 

Scenario C.
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With respect to the ANN model, three additional features were found to have predictive 

power (Fig. 7). Specifically, ‘StandardDeviationOfInertia’ and 

‘StandardDeviationOfShortRunEmphasis’ were statistically different for benign and 

malignant nodules on both Cohort-1 and Cohort-2 (Wilcoxon rank sum test, alpha=5%). 

‘StandardDeviationOfEnergy’ was instead found significantly discriminative for the two 

groups of nodules only for Cohort-1, and it was selected for the final model training only 

among no-harmonized features.

SVM-LASSO model performance in terms of AUC, accuracy, FPR and TPR (Table III) was 

comparable with that of the proposed ANN model in the cross-validation dataset: without 

harmonization, AUCs were 0.90 (0.85–0.96) vs. 0.89 (0.83–0.95), whereas, with harmonized 

features, an AUC of 0.89 (0.84–0.95) resulted for the literature model vs. 0.90 (0.84–0.96) 

of the ANN.

In the external validation, performance of the literature model (Table II) was slightly higher 

than that of the proposed ANN (Table III); both having AUCs above 0.8 and demonstrating 

their good generalizability. Specifically, for scenarios A, B and C, AUCs for the SVM-

LASSO model improved of about 5% with respect to the ANN model. Nevertheless, for 

Scenario A, no significant differences (De Long and McNemar tests) were found between 

the two compared models (SVM-LASSO vs. ANN) in cross-validation and in external 

validation (Fig. 8).

In comparison with the Lung-RADS clinical model (Supplementary material D), AUC was 

higher for SVM-LASSO by 18% and 13% in cross-validation and external-validation, 

respectively. In the external validation, no significant difference was observed with the De 

Long test between SVM-LASSO and Lung-RADS, whereas a significant difference was 

found in terms of frequency (McNemar test).

4 Discussion

Differences in CT acquisition and reconstruction protocols, as well as some technical 

aspects that differ between scanners, can cause difficulties for the generalization of 

radiomics-based prediction models and their subsequent introduction in the clinical practice. 

This has led to increasing recognition of the importance of external validation of radiomics-

based models 24, and measures to transform, normalize and harmonize independent datasets, 

have been proposed to limit biases between scans and scanners 28.

In light of these considerations, we evaluated the performance of a prediction model based 

on ANN, which was implemented in-house, and that of an alternative model from the 

literature based on a SVM-LASSO approach 19. Both models were evaluated without and 

with harmonization with the Combat technique of the features across the COSMOS dataset 

used for training the models and the LIDC dataset for their external validation. We further 

compared the radiomics-based ANN and SVM-LASSO models to a logistic regression based 

on clinical parameters using the Lung-RADS categorization criteria 29.

According to the frequency with which each radiomics feature was selected, 

‘BoundingBoxSize3’, i.e. the pulmonary nodule size in anterior-posterior direction, 
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‘MeanOfClusterShade’ and ‘WeightedPrincipalAxes4’ were chosen as features to train the 

ANN model. Similarly, when training the SVM-LASSO model19, ‘MeanOfClusterShade’ 

and ‘WeightedPrincipalAxes4’ were the features selected with the highest frequency during 

cross-validation, along with three additional features. Two features were therefore common 

to the ANN and SVM-LASSO models when trained on the same dataset. Notably, none of 

the features selected based on the COSMOS training data were amongst those found by 

Choi and colleagues 19, where the SVM-LASSO model was trained on LIDC dataset. 

Nevertheless, high correlation is expected between features of same type found predictive in 

the literature work and in the presented study (i.e. ‘BoundingBoxSize2’ with 

‘BoundingBoxSize3’, ‘StardardDeviationOfInverceDifferenceMoment’ with 

‘MeanOfClusterShade’ and ‘WeightedPrincipalAxes4’).

When analyzing the significance of the selected features in terms of malignant vs. benign 

discrimination, all the features selected in both ANN and SVM-LASSO models were able to 

discriminate for malignancy in the cross-validation set. However, the two most commonly 

selected features (i.e. ‘MeanOfClusterShade’ and ‘WeightedPrincipalAxes4’) were not 

significant in predicting malignancy on Cohort-2, thus resulting in (i) “BoundingBoxSize3” 

for ANN model and (ii) two out of five features (i.e. ‘StandardDeviationOfInertia’ and 

‘StandardDeviationOfShortRunEmphasis’) for SVM-LASSO, being the most predictive 

features in both cohorts. This confirms the results on models’ performance, where a slightly 

better AUC in cross-validation was observed than in external validation, and may suggests 

that SVM-LASSO model can provide a more flexible feature selection than ANN model, 

where just one feature resulted significant in the external dataset.

Both the ANN and the SVM-LASSO model demonstrated good accuracy in predicting lung 

nodules malignancy for both the no-harmonized and harmonized features, achieving AUCs > 

0.89 (accuracy >83% in case of no-harmonization, and >78% in case of harmonization) in 

the training cohort. We also examined the performance of the models on the external 

validation cohort, where performance was slightly reduced than the cross-validation set, with 

AUCs in the range of 0.82 – 0.86 (accuracy of 72–81%). The SVM-LASSO model presented 

slightly higher generalization ability than the ANN model, although no statistical difference 

was observed comparing the two models in terms of ROC curves and frequencies.

In general, this level of performance is comparable to works present in literature. Liu et al. 

(2017) 22 is one of the few works where validation was done considering a cohort coming 

from a different center; an AUC of 0.80 (accuracy = 74%) was obtained in the external 

validation of a model consisting of four features identified through a logistic regression 

model. In the NLST dataset 39, divided in two cohorts for validation, different radiomics-

based machine learning algorithms were compared and an AUC of 0.83 was reached 

combining 23 features through a Random forest model. Tu and colleagues (2018)20 achieved 

an AUC of 0.80 but they did not perform an external validation. In the study by Choi et al.19 

in which the SVM-LASSO model was trained on the LIDC dataset reported an AUC of 0.89, 

which was matched in our study when the model was trained on the COSMOS dataset.

Data harmonization did not yield significant improvements in the models’ performance 

during training, even though harmonized features were statistically different from the no-
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harmonized ones (Wilcoxon test, alpha=5%). Similarly resulted in the external-validation 

set, where no increased performance was observed in terms of AUC, Acc and TPR when 

harmonization was applied (Scenario A vs. Scenarios B and C). Independently from 

harmonization, cross-validation and external-validation (Scenario A) weren’t statistically 

different, attesting the models’ capability to predict lesion malignancy on both the COSMOS 

dataset and the independent LIDC dataset.

The comparison with the clinical model demonstrated the higher predictive power of 

radiomics features with respect to clinical ones. In the cross validation set, ANN and SVM-

LASSO resulted significantly different from Lung-RADS, with improved AUC/Acc with 

respect to 0.76/71.4% for the clinical model. In the external validation, no statistical 

difference was found between the clinical model ROC curve and those of the three scenarios 

considered for both radiomics-based models (De Long test), although an improvement in 

AUC of 7% and 13% was quantified for ANN and SVM-LASSO. The significant difference 

between the radiomic-based models and the clinical one in the external validation was 

instead confirmed in terms of frequencies (Mc Nemar test), with the clinical model 

presenting a random performance in malignancies identification (TPR of 51.2% vs. > 80% 

for ANN and SVM-LASSO).

There are some limitations to the present work that need to be taken into consideration. The 

feature selection strategy of the ANN was less effective in generalizing to new data than the 

SVM-LASSO, suggesting that further improvements of the model are thus needed. About 

the number of samples considered in this work, with just 110 cases in the training set, there 

is scope for training the model on a greater number of cases. Nonetheless, the present 

training set is comparable or larger in size with respect to many in the literature for 

radiomics-based lung cancer prediction 19,20,22. The use of additional external validation 

datasets to provide a more robust validation of the implemented models is also desirable. 

Further examination is also needed of the ability of the Combat and other approaches 

mitigating the effects of inter-scan and inter-scanner variability to increase generalizability 

of predictive model accuracy for multicentric studies. We further note that the compliance 

with emerging standards for feature definition of the publicly available tool we used for 

feature extraction is not certified 40, we plan therefore to perform the analysis with a feature 

extraction tool that adheres to standardized feature definitions.

5 Conclusions

Two radiomics-based models were evaluated for lung cancer malignancy prediction in low-

dose CT screening. An in-house ANN model was considered along with a literature model 

based on SVM-LASSO. The models were trained on a first cohort of patients and then 

successfully validated on an independent external dataset, achieving AUCs of >0.89/0.89 

and >0.82/0.86 for ANN/SVM-LASSO models in training and external validation set, 

respectively. No improvements were observed when applying the Combat method to 

harmonize features coming from the two different datasets of patients, suggesting models’ 

robustness on data from different centers.
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Fig 1. 
Representative pulmonary nodules considered from Cohort-1 illustrating the cases of solid 

nodules on figures a), b) and c), while examples of non-solid nodules can be observed in 

figures d)-e) and f). The maximum diameter of the six cases were equal to 12mm, 9mm, 

12mm, 9mm, 19mm and 18mm, respectively.
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Fig 2. 
ANN model training. Schematic representation of the methodology adopted in the 10-fold 

CV to determine the most stable features and the best hyperparameters used to train the final 

ANN on the complete set of Cohort-1 samples.
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Fig 3. 
Workflow for external validation. Features extracted from the Cohort-2 are used to 

externally validate the model trained with no-harmonized features of Cohort-1 (Scenario A). 

External-validation harmonized features, obtained after Combat application, are used to both 

models: scenario B refers to the external validation performed with the model trained with 

no-harmonized features, whereas scenario C represents the external validation of the model 

trained with harmonized features coming from Cohort-1. Feature extraction (blue box) made 

use of publicly available tools and was common to both training and external-validation data 

across cohorts. Model definition and training (yellow box) are described in Fig.2. The green 

boxes represent the external validation with the three different scenarios. The solid lines 

follow the training set path, while dashed lines track the external validation process.
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Fig 4. 
Selection counts of features that were selected in at least one 10-fold CV-loop for ANN 

model. The red box indicates the three features found to be most stable for the no-

harmonized features (Fig. 4a) and harmonized features (Fig. 4b).
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Fig 5. 
Comparison of malignant nodules and benign nodules distributions for the three selected 

features for ANN model: BoundingBoxSize3 (left panels), MeanOfclusterShade (central 

panels) and WeightedPrincipalComponent (right panels). Panels on the top are related to the 

cross-validation set while panels on the bottom represent distributions of external validation-

set features. For each pair of distributions p-values resulted from the Wilcoxon rank sum test 

are reported (alpha=5%).
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Fig 6. 
ANN Model performance. ROC for training set (Cohort-1) on the left (a) and for external-

validation set (Cohort-2) on the right (b).
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Fig 7. 
Comparison of malignant nodules and benign nodules distributions for the three additional 

features selected in the SVM-LASSO model with respect to the ANN model: 

StandardDeviationOfInertia (left panels), StandardDeviationOfShortRunEmphasis (central 

panels) and StandardDeviationOfEnergy (right panels). Panels on the top are related to the 

cross-validation set while panels on the bottom represent distributions of external validation-

set features. For each pair of distributions p-values resulted from the Wilcoxon rank sum test 

are reported (alpha=5%).
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Fig 8. 
SVM-LASSO model performance. Comparison of ROCs with and without the use of feature 

harmonization for a) the training set (Cohort-1) and b) external-validation set (Cohort-2). 

The same ROC analysis applied to the ANN model, yielded no significant difference in ROC 

curves when considering harmonized features with respect to no-harmonized ones also for 

the SVM-LASSO model. Furthermore, no o difference was found between training set ROC 

curves and those related to external validation set.
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Table I.

Clinical and imaging characteristics of pulmonary nodules in the training (Cohort-1) and testing (Cohort-2) 

cohorts, subdivided by size and type.

Cohort-1
Training

set

Cohort-2
External

validation set

Benign Malignant Benign Malignant

Nodule size

<= 6 [mm] 9 0 8 4

>6 to <=8 [mm] 5 9 10 4

>8 to <=15 [mm] 34 31 8 7

>15 [mm] 7 18 5 26

Nodule type

non-solid 1 6 0 0

part-solid 6 11 4 11

solid 48 41 27 30
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Table II.

ANN Model prediction results in training cross-validation and the three external validation scenarios (A, B 

and C) in terms of area under the curve (AUC), accuracy (Acc), true and false positive rate (TPR and FPR). 

Performance on the training set summarizes predictions of the 10×10-fold CV loops for the model based on 

no-harmonized features and the one based on harmonized features.

Cross-validation External validation

no-harmonized features harmonized features scenario A scenario B scenario C

AUC
(95% CI)

0.89
(0.83–0.95)

0.90
(0.84–0.96)

0.82
(0.73–0.92)

0.82
(0.73–0.92)

0.83
(0.74–0.92)

Acc [%] 83.2 83.4 76.4 72.2 76.4

FPR [%] 14.9 15.8 29.0 22.6 22.6

TPR [%] 81.4 82.8 80.5 68.3 75.6
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Table III.

LASSO-SVM model prediction results in terms of area under the curve (AUC), accuracy (Acc), false positive 

rate (FPR) and true positive rate (TPR). Performance on the training set summarizes predictions of the 10×10-

fold CV loops for the model based on no-harmonized features (“without harmonization”) and the one based on 

harmonized features (“with harmonization”). External-validation results are instead subdivided according to 

the three scenarios performed (A, B and C).

Cross-validation External validation

 no-harmonized features harmonized features scenario A scenario B scenario C

AUC
(95% CI)

0.90
(0.85–0.96)

0.89
0.84–0.95)

0.86
(0.78–0.95)

0.86
(0.77–0.95)

0.86
(0.77–0.95)

Acc [%] 78.7 80.5 79.1 81.9 79.1

FPR [%] 21.9 20.0 35.5 25.9 32.3

TPR [%] 79.3 81.0 90.0 87.8 87.8
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