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Abstract

Objective: Recurring issues in clinical trial design may bias results toward the null, yielding 

findings inconclusive for treatment effects. This study evaluated for powering bias among high-

impact critical care trials and the associated risk of masking clinically important treatment effects.

Design, Settings, and Patients: Secondary analysis of multicenter randomized trials of 

critically ill adults in which mortality was the main endpoint. Trials were eligible for inclusion if 

published between 2008–2018 in leading journals. Analyses evaluated for accuracy of estimated 

control group mortality, adaptive sample size strategy, plausibility of predicted treatment effect, 

and results relative to the minimal clinically important difference. The main outcome was the 

mortality risk difference at the study-specific follow-up interval.

Interventions: None.
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Measurements and Main Results: Of 101 included trials, 12 met statistical significance for 

their main endpoint, five for increased intervention-associated mortality. Most trials (77.3%) 

overestimated control group mortality in power calculations (observed minus predicted difference: 

−6.7% ± 9.8%; p<0.01). Due to this misestimation of control group mortality, in 14 trials the 

intervention would have had to prevent at least half of all deaths to achieve the hypothesized 

treatment effect. Seven trials prespecified adaptive sample size strategies that might have mitigated 

this issue. The observed risk difference for mortality fell within 5% of predicted in 20 trials, of 

which 16 did not reach statistical significance. Half (47.0%) of trials were powered for an absolute 

risk reduction ≥10%, but this effect size was observed in only three trials with a statistically 

significant treatment benefit. Most trials (67.3%) could not exclude clinically important treatment 

benefit or harm.

Conclusions: The design of most high-impact critical care trials biases results toward the null 

by overestimating control group mortality and powering for unrealistic treatment effects. 

Clinically important treatment effects often cannot be excluded.

Keywords

clinical trials as topic; bias; minimal clinically important difference; sample size; critical care

INTRODUCTION

Lack of statistical significance of clinical trial results may not exclude clinically important 

findings (1–3). “Negative” randomized controlled trials (RCTs)—those that do not 

demonstrate a statistically significant treatment benefit—may indeed reflect an ineffective 

treatment on average for the study population in some instances. Yet, “negative” RCTs also 

may be the product of design choices that mask important treatment effects within the 

population of study.

RCTs examining treatments for critically ill patients afford an ideal case study for design 

challenges. Phenotypic heterogeneity (4–7), practice variation (8, 9), and secular trends in 

mortality from critical illness (10) may contribute to inaccurate prediction of control group 

mortality and treatment effect size, which in turn threaten statistical power. The complexity 

of critical illnesses and ubiquity of competing risks often preclude adoption of endpoints 

other than all-cause mortality. Trials may power for overly optimistic treatment effects that 

do not reflect smaller but clinically important differences or expend substantial resources to 

include many participating centers and accrue large sample sizes within a reasonable time. 

Neither approach is ideal.

This study evaluated multicenter critical care RCTs published in leading medical journals to 

determine recurring power and sample size estimation issues that contribute to “negative” 

trial results, and to assess whether such trials reliably exclude clinically important 

differences in survival. The main hypothesis was that two recurring issues—control group 

mortality misestimation and overly optimistic predicted treatment effects—bias trial results 

toward the null. This study also evaluated how often trial results fail to exclude potentially 

clinically important treatment effects.
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METHODS

Eligibility Criteria for Trials

Studies eligible for inclusion were multicenter RCTs of critically ill adults in which 

mortality was the main endpoint. For inclusion, the publication must have appeared between 

January 2008 and December 2018 in one of seven high-impact general medical or specialty 

journals: New England Journal of Medicine, JAMA, Lancet, American Journal of 
Respiratory and Critical Care Medicine, Lancet Respiratory Medicine, Intensive Care 
Medicine, or Critical Care Medicine. Journals were selected by considering impact factor 

and content relevance in effort to identify trials most influential to future trial design and 

clinical practice. Trials were excluded if not designed as superiority trials or if patient-level 

randomization was not employed.

Data Extraction

Tables of contents for each journal issue were screened independently by two study 

physicians and a PubMed search conducted to identify articles for inclusion (Supplement). 

Results from all search strategies were combined with discordance resolved by an 

independent third reviewer to create the final study list.

Data were extracted in duplicate, blinded fashion. Discordant entries were resolved by an 

independent third reviewer. Data sources included the main trial publication, accompanying 

online data and protocol supplements, published trial protocols, and online trial registration 

sites.

Main Outcome

The main outcome for this study was the unadjusted risk difference in mortality (treatment 

group minus control group) at each study-specific interval for primary follow-up.

Determination of Minimal Clinically Important Difference

The minimal clinically important difference (MCID) was defined from the clinician’s 

perspective as the smallest treatment effect required to change routine clinical practice for a 

comparable patient (11). A 5% absolute risk difference and 20% relative risk difference in 

mortality were selected a priori as the MCID based on existing literature (12–17) and 

concern that smaller differences might be viewed as unlikely to change clinical practice. 

Other MCID thresholds were considered in secondary analyses (Supplement).

Statistical Analysis

Predicted control group mortality and predicted risk difference were obtained directly from 

each trial’s reported sample size calculation. Observed risk difference was calculated using 

observed enrollment and mortality extracted from each trial; corresponding 95% confidence 

intervals (CI) were computed from extracted data.

A paired t-test was used to determine whether the average difference in observed versus 

predicted control group mortality among trials was significantly different from zero, with 

observed and expected mortality handled as paired observations for each trial.
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To evaluate impact of control group mortality misestimation on statistical power, the 

predicted absolute risk reduction was assessed as a fraction of the true observed control 

group risk of death. The association between control group mortality and statistical power 

was evaluated graphically for representative sample sizes and relative risk.

Conclusiveness of trial results for important treatment effects was evaluated according to the 

approach of Kaul and Diamond (18). Trials were evaluated for whether the risk difference 

95% CI included the MCID. Trials also were evaluated for whether the risk difference 95% 

CI included the trial’s own predicted treatment effect. Bayesian models were developed via 

the Markov Chain Monte Carlo method with noninformative priors, 1000 burn-in iterations, 

50,000 iterations and thinning rate of five. Model results were used to calculate the posterior 

probability of observing the proposed MCID on the absolute and relative risk scales. 

Posterior probabilities for treatment effect of each individual trial were reported. Other 

treatment effect thresholds for clinical importance were considered in secondary analyses 

(Supplement).

Frequentist hypothesis testing applied a two-sided alpha threshold of 0.05 without 

adjustment for multiple comparisons. Analyses were conducted using SAS 9.4 and PASS 14.

RESULTS

Characteristics of Included Trials

Of 657 unique publications identified on initial screen, 101 multicenter superiority trials 

with patient-level randomization and mortality as the main endpoint were included (Table 1, 

Figure S1). A complete list of included trials is provided in the online supplement. Twelve 

trials (11.9%) met the statistical significance threshold for the primary endpoint, five of 

which demonstrated increased mortality with the intervention.

Sample Size

The median (IQR) sample size for analysis of the main endpoint was 843 (411–1588) 

patients. The smallest sample size was 62 patients, and the largest was 20,127 patients. 

Seven trial protocols (6.9%) incorporated an adaptive sample size design that permitted 

increasing enrollment targets if prespecified criteria were met (19–24).

Control Group Mortality

Reported power calculations contained sufficient data to ascertain predicted control group 

mortality in 97 of 101 trials. Median (IQR) predicted control group mortality was 40% (30–

45%).

Power calculations significantly overestimated control group mortality (observed: 33.9 ± 

18.0%; predicted: 40.6 ± 17.5%; mean difference −6.7 ± 9.8%; p < 0.01). Seventy-five trials 

(77.3%) overestimated control group mortality, whereas only 22 trials (22.7%) 

underestimated control group mortality.

The distribution of control group mortality misestimation is displayed graphically in Figure 

1.

Abrams et al. Page 4

Crit Care Med. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Predicted Risk Difference

On the absolute risk scale, trials were powered to detect a median (IQR) mortality risk 

difference of 9.0% (6.0–12.0%), corresponding to an NNT of 11 (8–17) patients. Only 

nineteen trials (19.0%) were powered to detect a risk difference of 5% or less (NNT = 20) 

(Figure 2). Large predicted effect sizes were common across all included journals and 

disease areas (Figures S2–S3).

On the relative risk scale, trials were powered to detect a median (IQR) relative risk 

reduction of 23% (20–30%). The hypothesized relative risk reduction was at least one-third 

of all deaths in nineteen trials and at least half of all deaths in five trials.

Influence of Control Mortality Misestimation on Predicted Treatment Effect

The hypothesized absolute risk reduction in mortality, as a percent of the true observed 

baseline (control group) risk in the trial, was median (IQR) 28.7% (20.1–42.5%). To achieve 

the hypothesized absolute risk reduction, in 14 trials the intervention would have had to 

prevent at least half of all deaths given the observed control group mortality, an exceedingly 

unlikely treatment effect. In two trials, the hypothesized absolute risk reduction could not 

have been achieved even if the intervention prevented all deaths.

The relationship between control group mortality, risk ratio, sample size, and statistical 

power is shown in Figure 3.

Observed Risk Difference

The median (IQR) observed risk difference (treatment minus control) in mortality was 

−0.2% (−1.7% to 2.0%), and ranged from −16.7% to 11.7% (Figure 2).

Among trials observing a statistically significant treatment benefit, the median (IQR) 

observed risk difference was −9.1% (−13.1% to −1.5%), corresponding to an NNT of 11 (8 

to 68) patients to prevent one death.

In only five trials (5.0% of included trials) was an absolute risk reduction of 10% or greater 

observed (NNT ≤ 10) (25–29), and two of these trials did not reach statistical significance 

(26, 27). The sample size for four of the five trials with this large observed treatment benefit 

fell within the smallest third of included trials, with corresponding wide confidence 

intervals, raising doubts about the large magnitude of treatment effect (Figure 4).

Clinically Important Difference in Treatment Effect

The observed risk difference for mortality fell within ± 5% of the predicted treatment effect 

in 20 of 100 trials with requisite data. Yet, 16 of these 20 trials did not achieve statistical 

significance for the primary endpoint (Figure 2). Larger sample size was strongly correlated 

with a smaller difference in observed versus hypothesized treatment effect (Pearson r = 

−0.42, 95% CI −0.57 to −0.24; p < 0.01).

“No benefit” trials: In 21 of the 94 trials (22.3%) without a statistically significant 

benefit, the 95% CI for risk difference included the effect size the trial was designed to 
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detect. In 44 of these trials (46.8%), the 95% CI included a 5% absolute risk reduction in 

death (Figure 4), the a priori MCID selected for this analysis.

“No harm” trials: In 49 of the 96 trials (51.0%) without a statistically significant 

worsening of mortality with the intervention, the 95% CI included a 5% absolute risk 

increase in death, the MCID (Figure 4). Overlap with other risk difference thresholds for 

benefit and harm are presented in the Supplement (Tables S6–S8).

Inconclusive frequentist results for important treatment effects: Most trials (68 

of 101 included trials; 67.3%) failed to exclude a clinically important treatment benefit or 

harm, assessed via the treatment effect estimate 95% CI crossing the 5% absolute risk 

difference threshold for either benefit or harm without achieving statistical significance.

Inconclusive Bayesian results for important treatment effects: The intervention 

of study was more probable than not (posterior probability > 0.5) to decrease risk of death 

by at least the 5% MCID (treatment benefit) in eleven trials, six of which did not reach 

statistical significance (Figure 4). The intervention of study was more probable than not to 

increase risk of death by at least the 5% MCID (treatment harm) in eleven trials, seven of 

which did not reach statistical significance. Results grouped by journal and disease area are 

presented in Figures S4–S5. Results for other treatment effect thresholds and the posterior 

probability calculated for each trial, as both absolute risk difference and risk ratio, are 

presented in Figure 4 and Figures S6–S9.

DISCUSSION

The main findings of this study are that multicenter RCTs of critical illness routinely 

overestimate control group mortality, power for overly optimistic treatment effects, and fail 

to provide conclusive results for clinically important differences in survival. These issues 

collectively may be referred to as powering bias.

Relevance for Clinicians

These findings have important implications for clinicians seeking to practice evidence-based 

medicine. Particularly in critical care, widespread adoption of a given treatment often hinges 

on results of one or two trials (30–33). When one large-scale trial does not find a statistically 

significant difference for main endpoints, the common interpretation is often conclusive, that 

the therapy is ineffective, thereby dissuading use in clinical practice. If trial results 

confidently exclude the MCID and other sources of bias are not identified, this interpretation 

may be reasonable. However, the present study indicates most multicenter critical care trials 

power for improbably large effect sizes, an issue compounded by misestimation of control 

group mortality, biasing results toward the null regardless of true treatment effect. In such 

trials, the correct interpretation may be that data are inconclusive due to powering bias.

Learning to assess for powering bias therefore is an essential skill for the astute clinician 

weighing evidence to guide management decisions. Classic teaching on how to assess trials 

for bias (34, 35) does not routinely include these potential sources, related to power and 

sample size calculations, which occur often and may bias results toward the null.
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The present study brings to light two simple questions to ask when reading a primary trial 

report to ascertain the threat of powering bias. One, did the control group mortality predicted 

in the sample size calculation overestimate the actual control group mortality observed in the 

trial? Two, did the treatment effect size for which the trial was powered fail to include what 

the reader deems a minimal clinically important difference that would change his/her 

practice? If the answer to either of these questions is yes, then powering bias may be present. 

Particularly when the treatment effect 95% confidence interval includes the MCID, a 

“negative” trial might better be described as inconclusive. Regardless, interpretation and 

implications for clinical practice always should be weighed in context of the totality of trial 

results (beneficial and harmful effects), existing literature, and current understanding of 

pathophysiology.

Relevance for Trialists

The present study also highlights several issues to consider in trial planning. Phenotypic (4, 

6, 36) and practice heterogeneity (37) inherent in critical care are not easily mitigated even 

with rigorous trial eligibility criteria and protocol standardization of care. Coupled with 

secular trends in mortality (10), such heterogeneity likely accounts for the systematic 

overestimation of control group mortality found here.

Powering for overly optimistic treatment effects is common in critical care trials. Nearly half 

(47%) of trials in this study powered for an absolute mortality reduction of 10% or greater; 

yet, this treatment effect was seen in only five trials, four of which had modest sample sizes 

(114–466 patients) with wide 95% CIs, suggesting the true effect might be smaller. Thus, 

trials designed to detect a mortality risk difference exceeding 10% may bias toward a 

“negative” result and should require compelling justification to go forward.

Several factors may contribute to improbably large predicted treatment effects, including: (i) 

need to balance sample size against budget constraints and trial feasibility; (ii) publication 

bias in existing literature; and (iii) large effect sizes in early-phase trials, when observed, 

may tend to overestimate treatment effects but also are likeliest to garner support for 

advancing to large-scale trials (38–43). Because not all factors reflect overly optimistic 

views of treatment effect per se (“optimism bias” (38)), the term “delta inflation” has been 

proposed to refer more broadly to improbably large predicted effect estimates regardless of 

rationale (13).

Targeting large sample sizes to detect risk differences approaching the MCID often requires 

adding trial sites or extending the enrollment period, which may introduce additional 

phenotypic and practice heterogeneity to the trial. With large sample size, costs may become 

prohibitive or reduce the number of studies that can be supported by a given funding body.

All-cause mortality remains the most widely accepted critical care endpoint for phase III 

trials in part because validated disease-specific or intermediate surrogate endpoints are 

lacking for most critical illnesses (44). Yet, mortality may not always be the appropriate 

main endpoint (45), particularly when lower baseline risk of death is anticipated, an issue 

best evidenced by considering relative risk reduction. For example, a trial powered to detect 

a 5% absolute risk reduction with control group mortality of 15% would require that the 
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treatment prevent one-third of all deaths to achieve statistical significance, an improbable 

treatment effect observed in only three trials in this study. Powering for an absolute risk 

reduction less than 5% to maintain the predicted relative risk reduction within a plausible 

range may be appropriate in select instances. Simply enrolling patients with higher risk of 

death may not improve trial performance if doing so dilutes disease- and target-specific 

attributable risk, i.e. the proportion of deaths due to the particular disease of interest and 

mechanism being targeted (46–48).

Addressing Powering Bias in Trial Design and Reporting

Two underutilized strategies for mitigating powering bias are adaptive trial design and 

MCID-based reporting.

Adaptive sample size strategies can overcome misestimation of control group mortality (49) 

but were employed by only 6.9% of multicenter trials in this analysis. Adaptive trial designs 

of any kind require flexibility from funding and regulatory agencies to account for and 

respond to increases in sample size, and due care must be taken to avoid introducing bias 

(50, 51).

Trial analysis plans should include assessment of clinical importance relative to a 

prespecified MCID to facilitate interpretation for clinical practice. We favor a two-pronged 

strategy (Figure 4) (18). First, report where the effect estimate 95% CI falls relative to the 

MCID (52, 53). If the 95% CI includes the MCID, clinical importance cannot be excluded, 

and the trial may be considered inconclusive (54). Second, calculate the Bayesian posterior 

probability of treatment effect greater than or equal to the MCID (55). By assuming a 

noninformative prior, the computed posterior probability is effectively determined by trial 

data alone, an approach more familiar to readers than specifying various informative 

Bayesian priors. The resultant statistic is intuitive for clinical practice: the probability of a 

clinically important treatment effect based on trial results. The MCID should be prespecified 

in the trial protocol, and both benefit and harm should be evaluated (56). Incorporating 

MCID into trial design may help establish benchmarks to persuade funding agencies to 

promote smarter and more clinically meaningful trials (57).

Limitations

This study is not the first to identify issues around powering bias (12, 13, 58). However, it 

does confirm its persistence in recent critical care clinical trials. This study builds on 

existing literature in part by evaluating the problem according to an MCID and by using 

Bayesian statistics to quantify the posterior probability of achieving the MCID. Importantly, 

it also reframes the issue of powering bias as an essential consideration not just for trialists 

but also for clinicians to weigh in interpreting the evidence.

This study included only multicenter RCTs published in seven high-impact journals, criteria 

intended to select trials most influential to scientific direction, future trial design, and 

clinical practice. Whether powering bias is similarly widespread in smaller trials published 

in lower-impact journals could be important because such trials often have outsized 

influence in meta-analyses. To facilitate comparison between trials, only trials with mortality 

as the main endpoint were included. This study did not restrict eligible trials to intensive 

Abrams et al. Page 8

Crit Care Med. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



care unit-based interventions only but instead included the more broadly defined population 

of critically ill adults, potentially increasing heterogeneity among included trials.

Other strategies for improving trial design, including prognostic and predictive enrichment, 

were not explored in this analysis.

This analysis prespecified a 5% absolute risk difference and 20% relative risk difference as 

the MCID for all studies, but MCID may depend on the risk profile of the associated 

intervention and extent of long-term morbidity among survivors. MCID is a difficult concept 

to apply to mortality when characterized from the individual patient’s perspective. Instead, it 

was defined for this analysis using a clinical perspective, as an effect size sufficient to 

change clinical practice, an approach similar to that proposed by professional societies for 

use in oncology trials (57). To our knowledge, no validated mortality MCID exists for the 

critical illnesses studied.

The Bayesian posterior probability of achieving the MCID was modeled using a 

noninformative prior distribution so that the posterior probability would be determined 

entirely by study data as in a frequentist analysis; however, in practice a trial reporting 

Bayesian results might incorporate informative prior distributions based on preliminary data.

CONCLUSION

Most multicenter RCTs of critical illness bias toward the null by overestimating control 

group mortality and powering for overly optimistic treatment effects. As a result of this 

powering bias, trials rarely provide conclusive results on smaller but clinically important 

treatment effects. Including assessment of trial results relative to the MCID would greatly 

improve clinical interpretation. Incorporating adaptive designs in future trials may mitigate 

the impact of misestimation in power and sample size calculations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Waterfall plot of control group mortality misestimation.
Absolute difference in control group mortality, observed minus expected. Each bar 

represents an individual trial.
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Figure 2. Butterfly plot of predicted and observed mortality risk difference.
Data are sorted by sample size within each study type. One trial (sample size 1,439 patients) 

contained insufficient information in its reported power and sample size determination to 

identify predicted risk difference.
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Figure 3. Impact of control group mortality misestimation, hypothesized risk ratio, and sample 
size on statistical power.
For a given sample size and risk ratio (also known as relative risk), power decreases with 

lower control group mortality. Overestimation of control group mortality in sample size 

calculations decreases power (1 – ß) and therefore increases probability of a “false negative” 

trial result (ß). The impact of lower control group mortality on diminishing power is 

exacerbated by smaller sample size.
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Figure 4. Trial results according to clinically important difference in mortality on absolute and 
relative scales.
Several trials that did not achieve statistical significance in conventional frequentist analysis 

nevertheless failed to exclude clinically important benefit or harm for the intervention 

studied. The prespecified threshold used for MCID was a 5% absolute risk difference 

(number needed to treat = 20) or 20% relative risk difference (risk ratio ≤ 0.8 or ≥ 1.2) for 

either benefit or harm with treatment. Thresholds are indicated by the shaded areas: blue for 

benefit and red for harm. Forest plots indicate the effect estimate and 95% confidence 

interval for absolute risk difference (left) and risk ratio (right) for each trial. The size of each 

square corresponds to the trial sample size relative to other included trials. The probability 

of a clinically important treatment effect (benefit or harm), given the trial results, was 

calculated for both the absolute risk difference and risk ratio using Bayesian statistics. 

MCID = minimal clinically important difference. * denotes statistical significance according 

to the trial’s main analysis.
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Table 1.

Characteristics of included trials

Characteristic Value (n = 101)

Journal, no. (%)

 New England Journal of Medicine 48 (47.5%)

 JAMA 18 (17.8%)

 Critical Care Medicine 13 (12.9%)

 American Journal of Respiratory and Critical Care Medicine 6 (5.9%)

 Intensive Care Medicine 6 (5.9%)

 Lancet 6 (5.9%)

 Lancet Respiratory Medicine 4 (4.0%)

Main source of funding, no. (%)
1

 Government outside US 54 (53.5%)

 Industry 23 (22.8%)

 Non-profit organization 11 (10.9%)

 US government 8 (7.9%)

 Local institution 5 (5.0%)

Geographic region(s) in which trial conducted, no. (%)

 Europe 75 (74.3%)

 US 27 (26.7%)

 Canada 23 (22.8%)

 Australia and/or New Zealand 19 (18.8%)

 Asia 22 (21.8%)

 Central or South America 10 (9.9%)

 Africa 6 (5.9%)

Topic of trial, no. (%)

 Sepsis or infection 34 (33.7%)

 Respiratory 21 (20.8%)

 Cardiovascular 19 (18.8%)

 General critical care 14 (13.9%)

 Renal 5 (5.0%)

 Trauma 4 (4.0%)

 Other
2 4 (4.0%)

Trial design, no. (%)

 Two-arm parallel group 84 (83.2%)

 Three-arm parallel group
3 8 (7.9%)

 Factorial 2×2
4 9 (8.9%)

Trial stopped early, no. (%)
5 35 (34.7%)
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Characteristic Value (n = 101)

Sample size in final analysis, median (IQR) 843 (411–1588)

Main endpoint, no. (%)

 ≤ 7-day mortality 3 (3.0%)

 28-day or 30-day mortality 63 (62.4%)

 60-day or 90-day mortality 23 (22.8%)

 ≥ 180-day mortality 3 (3.0%)

 In-hospital mortality without specified interval 9 (8.9%)

P-value ≤ 0·05 for primary endpoint, no. (%) 12 (11.9%)

 Significant benefit with intervention 7 (6.9%)

 Significant harm with intervention 5 (5.0%)

1.
For studies with multiple funding sources, the primary funding source was considered governmental whenever the government was a trial sponsor 

regardless of other funding sources reported.

2.
Other trial topics included hepatic (3) and toxic ingestion (1).

3.
For all analyses, the five three-arm parallel group trials were handled as two-arm trials. One trial merged two groups in the main analysis. Two 

trials stopped enrollment in one arm early and reported as the main result a two-group comparison. Two trials explicitly stated the a priori main 
analysis consisted of two-group comparison without consideration for the third study arm.

4.
Eight trials of factorial 2×2 design, reported in four publications, specified pairwise comparison of both factors in the main analysis. One trial of 

factorial 2×2 design specified comparing only one factor in the main analysis.

5.
Reasons for trials stopping early included futility (n = 17), harm (n = 10), poor enrollment (n = 6), sponsor termination (n = 1), and drug/device 

withdrawal from market (n = 1).
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