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SUMMARY Vaccines work primarily by eliciting antibodies, even when recovery
from natural infection depends on cellular immunity. Large efforts have therefore
been made to identify microbial antigens that elicit protective antibodies, but these
endeavors have encountered major difficulties, as witnessed by the lack of vaccines
against many pathogens. This review summarizes accumulating evidence that sub-
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dominant protein regions, i.e., surface-exposed regions that elicit relatively weak an-
tibody responses, are of particular interest for vaccine development. This concept
may seem counterintuitive, but subdominance may represent an immune evasion
mechanism, implying that the corresponding region potentially is a key target for
protective immunity. Following a presentation of the concepts of immunodomi-
nance and subdominance, the review will present work on subdominant regions in
several major human pathogens: the protozoan Plasmodium falciparum, two species
of pathogenic streptococci, and the dengue and influenza viruses. Later sections are
devoted to the molecular basis of subdominance, its potential role in immune eva-
sion, and general implications for vaccine development. Special emphasis will be
placed on the fact that a whole surface-exposed protein domain can be subdomi-
nant, as demonstrated for all of the pathogens described here. Overall, the available
data indicate that subdominant protein regions are of much interest for vaccine de-
velopment, not least in bacterial and protozoal systems, for which antibody sub-
dominance remains largely unexplored.

KEYWORDS immune escape, Plasmodium falciparum, Streptococcus agalactiae,
Streptococcus pyogenes, antibodies, dengue virus, immunodominance, influenza virus,
subdominance, vaccine

INTRODUCTION

Vaccination has been described as the most effective medical intervention ever
introduced (1, 2). While the eradication of smallpox may represent the greatest

achievement of vaccinology so far, approximately 2.5 million deaths per year are
currently prevented by vaccination against measles, polio, and other infectious dis-
eases. Moreover, vaccination has allowed the eradication of rinderpest, a major veter-
inary disease affecting cattle and other animals (3). The importance of vaccination for
human and animal health can therefore hardly be overestimated. On the other hand,
efficacious vaccines are not available for several of the most important infectious
agents, including emerging pathogens, emphasizing that novel approaches are needed
for the identification of vaccine components (4).

Most vaccines act by eliciting protective antibodies, even when immunity from
natural infection is mainly cell mediated (5–7). Accordingly, work in the field is focused
on the identification of pathogen components, typically, surface proteins, that elicit
protective antibodies. A number of different methods are currently employed for this
purpose, and it is relevant to separately consider bacteria and protozoa on the one
hand and viruses on the other.

For bacteria and protozoa, which have many surface proteins, two methods have
attracted particular attention. In one method, genomic information is used to identify
conserved surface proteins, which are screened for the ability to elicit protective
antibodies, a procedure known as reverse vaccinology (8). In another method, antisera
from infected patients are used to screen an array of proteins harbored by the
pathogen, a procedure based on the assumption that a protein which elicits a good
antibody response during natural infection is of interest for vaccine development
(9–11). Both of these methods are aimed at the identification of surface proteins that
elicit broadly protective antibody responses.

For viruses, the identification of a relevant protein is rarely a problem, since most
pathogenic viruses have only one or a few surface proteins, but sequence variability
and/or structural instability cause major difficulties. However, work in the virus field has
been transformed by procedures allowing the screening of large collections of mono-
clonal antibodies (MAbs), which are studied for the presence of antibodies that bind to
conserved epitopes and confer protective immunity, with the long-term aim to develop
epitope-based vaccines (12–15).

Because the identification of vaccine components remains challenging, it is essential
to evaluate novel methods. This review will summarize evidence that subdominant
protein regions, i.e., regions that elicit a relatively weak antibody response during
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natural infection or after vaccination, may be of particular interest for vaccine devel-
opment. It may seem counterintuitive that a region which elicits a weak antibody
response would be attractive for vaccine development, but a weak response may
represent an immune evasion mechanism (16–19), implying that the corresponding
region is a key target for protective immunity. Thus, subdominant protein regions are
potentially of much interest for vaccine development (20, 21).

The review will first consider the concepts of immunodominance and subdomi-
nance in antibody responses. The following sections will describe examples of sub-
dominance in several major human pathogens, viz., the protozoan Plasmodium falcip-
arum that causes malaria, two species of pathogenic streptococci, and the dengue and
influenza viruses. These systems are presented because they provide clear examples of
subdominance and together demonstrate the general interest of the subject. Influenza
virus will be described in particular detail, because the detailed information available
about that system offers unique insights into subdominance and its relevance for
vaccine development. Later sections are devoted to the molecular basis of subdomi-
nance, its potential role in immune evasion, and implications for the development of
novel vaccines.

IMMUNODOMINANCE AND SUBDOMINANCE IN ANTIBODY RESPONSES

More than 50 years ago, Michael Heidelberger proposed the term immunodominant
to describe findings on antibody responses to bacterial polysaccharides (22). Heidel-
berger did not himself publish work on the subject, but his insights are acknowledged
in the initial study (22) and mentioned in an obituary (23). As used in the early work,
the term signifies that one part of an antigen elicits a stronger antibody response than
another comparable part of the antigen (Fig. 1). Thus, the term implies that a purely
quantitative comparison is made between the antibody responses to two surface-
exposed parts of an antigen, without any inferences concerning the function of the
antibodies or their targets. The comparison usually involves the use of standard
laboratory techniques to determine the titer of antibodies to the two parts of the
antigen. The concept of immunodominance may also be used to compare the response
to two or more different molecules on a microbe (21), but such comparisons must be

FIG 1 Fundamentals of immunodominance and subdominance in antibody responses. Panels A to C refer to
antibody responses, and for comparison, panel D shows immunodominance in T cell responses. The antigen shown
here is a protein, and for simplicity, it is represented schematically as a rod. However, it should be noted that most
epitopes recognized by an antibody are conformational. Note that antibody immunodominance is a quantitative
concept, not a qualitative one. (A) In the simplest case, one region of a protein is immunodominant, implying that
it elicits the quantitatively dominating antibody response, while another region is subdominant. Antibodies are
represented by Y-forms, with those directed against subdominant and immunodominant regions shown in light
blue and dark blue, respectively. (B) In some cases, a hierarchy of immunodominance may be discerned among
different parts of a protein. (C) An immunodominant region may include a subdominant site, a situation that has
attracted particular interest in viruses. (D) Immunodominance in T cell responses. In the adaptive immune response
to a protein, major histocompatibility complex (MHC) molecules form complexes with peptides derived from the
protein, and these complexes are presented for recognition by T cell receptors (TCRs). However, peptides that are
efficiently presented for recognition represent only a small minority of all peptides that potentially can be derived
from the protein. These rare peptides correspond to T cell epitopes that are immunodominant in the responding
individual (28, 234). In the figure, the peptide is enlarged compared to the epitope.
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made with caution, since antigens may be expressed at different levels and at different
times during an infection.

Following the early observations, immunodominance in antibody responses at-
tracted limited attention, although some studies of synthetic polypeptides and proteins
reported interesting data (24, 25). A possible explanation for this development could be
that studies of model proteins had resulted in a consensus that antibodies elicited by
a native protein typically recognize antigenic sites all over the exposed surface (26). In
contrast, studies of T cell responses showed that only certain sites in a protein are
efficiently recognized, a phenomenon that similarly was referred to as immunodomi-
nance (26, 27). The intense interest in T cell responses (28, 29) has had the result that
the term immunodominance is often used as a synonym for T cell immunodominance,
but it should be noted that the molecular basis is very different in the two cases (Fig.
1). However, immunodominance implies that an immune response is limited to some
determinants on an antigen, whether analyzed at the B or T cell level.

Immunodominance in antibody responses has recently attracted renewed attention
because striking examples have been disclosed in microbial surface proteins, making
the subject of interest for vaccine development (21). Given this development, it is
relevant to reiterate that antibody immunodominance refers to a quantitative differ-
ence, not a qualitative one. Thus, the demonstration that one region in a microbial
protein is immunodominant does not imply that it is a major target for protective
antibodies, although that may be the case. Similarly, a key target for protective
antibodies need not be immunodominant. There is considerable confusion in the
literature, however, since much work is based on the assumption that a structure which
elicits a relatively strong antibody response during an infection is of particular interest
for vaccine development (9–11). To avoid misunderstandings, the term immunodom-
inant should preferably be employed only in the quantitative sense, without reference
to protection.

A protein region that is not immunodominant is now commonly referred to as
subdominant, but the terms nonimmunodominant (17, 30–32), immunosubdominant
(33), cryptic (34), and immunorecessive (35, 36) have also been used. In the simplest
case, a protein can be divided into two regions, one of which is immunodominant and
the other subdominant, but the situation can also be more complex, as when an
immunodominant region includes a site that is subdominant (Fig. 1).

Before specific examples of subdominance are described, it is pertinent to consider
some terms used in the text.

Terms Used To Designate Antibody Targets

Terms used in this review include epitope, site, domain, part, and region. An epitope,
also called an antigenic determinant, is the structure recognized by one antibody (37).
Epitopes are usually classified as continuous or conformational (discontinuous), de-
scribing that the amino acid residues in the epitope are contiguous or not in the
peptide chain, but the classification is not unequivocal (37, 38). An antigenic site is
defined by a set of antibodies that bind sufficiently close to compete for binding (39),
but the term site is also used in a vaguer sense, to designate a limited part of an
antigen. A domain is a protein segment that folds independently and typically retains
its structure and function when studied in isolated form. The terms part and region are
vaguer and often refer to large portions of a protein, e.g., amino- and carboxy-terminal
parts. In addition to these terms, which have structural connotations, the description of
an epitope may state whether it was identified with a MAb that confers protection
against infection. Much work in the field is now based on the assumption that an
epitope which is targeted by a protective MAb may be employed to develop an
epitope-based vaccine (40).

PLASMODIUM FALCIPARUM: THE CS PROTEIN
Malaria and P. falciparum

With an estimated 228 million cases and 405,000 deaths in 2018, malaria remains a
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major cause of human disease (41). Most cases are caused by the protozoan P.
falciparum, but other Plasmodium species also contribute to the global disease burden.
Infection starts with the bite of an infected mosquito and deposition in the skin of
approximately 10 to 100 sporozoites, the infective form of the parasite (42) (Fig. 2A).
From the skin, the sporozoites slowly trickle into the bloodstream and reach the liver,
where they infect hepatocytes (43). The subsequent blood stages, with infection of
erythrocytes, cause the clinical signs of malaria. Species of Plasmodium pathogenic for
animals pass through similar stages and provide invaluable models for the parasites
that cause human infections. The only available malaria vaccine, designated RTS,S,
provides partial protection by eliciting antibodies against the major surface protein of
the sporozoite, the circumsporozoite protein (CSP) (44, 45). Blocking infection at the
sporozoite stage is attractive, because control at this stage prevents clinical disease.
Since CSP has distinct subdominant and immunodominant domains, it is of particular
relevance for this review.

Circumsporozoite Protein

CSP is required for the development of sporozoites in both mosquitos and humans

FIG 2 Circumsporozoite protein (CSP) of P. falciparum and its subdominant amino-terminal domain. (A) The
sporozoite of P. falciparum is covered by CSP, in which a central repeat region is surrounded by distinct
amino-terminal and carboxy-terminal domains. The repeat region is mainly composed of NANP tetrapeptide
sequences (yellow) but starts with a single NPDP sequence (red) and also contains a few NVDP repeats (green) (47).
While the repeat region is immunodominant, the amino-terminal region, which also is exposed on the sporozoite
surface, is subdominant. In contrast, the carboxy-terminal region may be largely hidden in the intact CSP molecule.
The immunodominant repeat region is the key component of the malaria vaccine RTS,S, as indicated. During an
infection, CSP is cleaved at the RI site in the amino-terminal domain. Antibodies that bind close to this site (61) or
to a junctional epitope located at the beginning of the repeat region (66–68) may protect against infection and
may share the ability to block proteolysis at the RI site. Little is known about the structure of the subdominant
amino-terminal domain, but it is noteworthy that the part located close to the repeats is charged (47), while the
first 50 amino acid (aa) residues include 7 tyrosine residues. (B) Model for immunodominance and subdominance
in CSP. The repeats of CSP may promote multipoint and high-avidity binding to cognate B cells, making the repeat
region immunodominant by diverting the protein from B cells recognizing the nonrepeated domains, in particular,
the surface-exposed amino-terminal domain (56, 57). The resulting subdominance of the amino-terminal domain
may favor microbial virulence by allowing the microbe to evade potently protective antibodies directed against
that domain. The limited protection conferred by antibodies to the repeats would be the price the microbe pays
to achieve this result.
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(46) and has three distinct domains: an amino-terminal region, a central repeat region,
and a carboxy-terminal region (47). The repeat region has attracted most interest,
although little is known about its role during pathogenesis, because early work
indicated that it can be a target for protective antibodies (48). In P. falciparum, the
repeat region is composed of tetrapeptides, which vary between 37 and 44 in number
(49). Almost all repeats have the sequence NANP, but a few repeats with related
sequences are also present (Fig. 2A).

While the function of the repeat region remains unclear, specific functions have
been ascribed to the amino- and carboxy-terminal domains. In particular, the available
data support a model in which the carboxy-terminal domain has cell-binding properties
but is masked by the amino-terminal domain, allowing the sporozoite to move through
the skin (46). When the sporozoite reaches the liver, it binds to hepatocytes (46) and a
sporozoite protease is activated (50), causing cleavage in the amino-terminal domain at
(or close to) a site designated RI. The cleavage apparently causes exposure of the
carboxy-terminal domain, which binds to a hepatocyte receptor (51) and thereby
promotes cellular invasion (46, 50).

The central repeat region of CSP is immunodominant. Classical work showed that
immunization with irradiated sporozoites elicits protective immunity, which is mainly
directed against CSP (48). Both antibodies and T cells contribute to the protection (52,
53), but the antibody response has attracted particular interest (48, 54, 55). Importantly,
almost all antibodies elicited by CSP are directed against the repeat region, which
therefore is immunodominant (48). The reason for the immunodominance of this
region is not known, but the repeats may promote multipoint and high-avidity binding
to cognate B cells, resulting in a strong response, while the responses to other parts of
the protein become strongly limited (56, 57) (Fig. 2B). The very size of the repeat region
and preferential exposure of this region on the sporozoite surface (58) may also
contribute to its immunodominance. Because the repeat region of CSP is strikingly
immunodominant (59, 60), it follows that the amino- and carboxy-terminal domains are
subdominant. It is particularly noteworthy that the entire amino-terminal domain is
subdominant, although it is exposed on the sporozoite surface (46, 50, 61). In contrast,
the carboxy-terminal domain may be largely hidden (46, 62).

Attempts to develop a human malaria vaccine were focused on the immunodom-
inant repeat region of CSP, and promising results were eventually obtained with the
RTS,S vaccine, in which the potent adjuvant AS01 is combined with virus-like particles
(formed by hepatitis B virus surface antigen) containing one part of CSP (44). The part
of CSP included in RTS,S comprises 19 NANP repeat motifs and most of the carboxy-
terminal region, which was added to provide T cell epitopes, but the amino-terminal
domain was not included (Fig. 2A). Importantly, the development of the RTS,S vaccine
provided evidence that a vaccine can protect against malaria and demonstrated that
infections may be blocked at the sporozoite stage, but in a phase III trial, the protection
was modest and short-lived (63), implying that an efficient malaria vaccine is not yet
available.

Subdominant amino-terminal domain in CSP. Early studies of the amino- and
carboxy-terminal domains of CSP suggested that they are not suitable for vaccine
development (64, 65), and vaccine work was focused on the immunodominant repeat
region. While recent studies with MAbs support the notion that the carboxy-terminal
domain is not a target for protective antibodies (62), interesting data have been
reported for the amino-terminal domain. In particular, a mouse MAb that confers
protection against experimental infection binds close to the RI site and prevents
proteolytic cleavage of CSP (61), suggesting that proteolysis at this site plays a key role
in pathogenesis. Moreover, some human MAbs that protect against infection bind to a
“junctional epitope,” located at the beginning of the repeat region (45, 54, 66–68) (Fig.
2A). At least one of these human MAbs prevents proteolytic cleavage of CSP, possibly
through a steric effect on the adjacent RI site (67), again focusing interest on the RI site
as a target for protective antibodies. Similarly, simultaneous binding of multiple
antirepeat antibodies to CSP results in the formation of a complex which may sterically
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hinder access of the protease to CSP (69). Thus, evidence is accumulating that the
subdominant amino-terminal domain may be of interest for vaccine development.
However, the properties of the mouse MAb described above are controversial (70),
emphasizing that other MAbs to the amino-terminal domain should be characterized
and studied with regard to protective ability. It would also be of much interest to know
the three-dimensional (3D) structure of the amino-terminal domain and to know
whether immunization with this domain in its native form elicits protective immunity.
In this context, it is noteworthy that the repeat region of CSP was not effective as a
vaccine component until it was presented on virus-like particles and was combined
with a potent adjuvant (44), suggesting that it may be of value to employ a similar
methodology in studies of the amino-terminal domain. Of note, the subdominance of
the amino-terminal domain, when present in CSP, should not represent a problem for
vaccine work, since this domain elicits a good antibody response when used in an
isolated form (50, 71).

Vaccine development. Because the protection conferred by RTS,S is modest, studies
are in progress to modify this CSP-derived vaccine to make it more immunogenic (72).
Given the data available for the amino-terminal domain of CSP, it will also be of
considerable interest to evaluate whether this subdominant domain is suitable for
vaccine development when used in an isolated form, i.e., in the absence of the
immunodominant repeat region (61). Moreover, many P. falciparum proteins other than
CSP are being evaluated as vaccine components (45, 73). Interestingly, studies of one
polymorphic protein, the blood-stage antigen MSP2, suggest that a vaccine containing
two variants of this protein may elicit functionally active antibodies directed against a
conserved region which is subdominant in natural infections (74). Thus, subdominant
protein regions could be of broad interest for the development of a malaria vaccine.

STREPTOCOCCAL SURFACE PROTEINS

Surface proteins of pathogenic streptococci provide clear examples of bacterial
proteins in which a subdominant region is a target for protective antibodies. Like many
surface proteins of Gram-positive bacteria (75–77), these proteins have elongated
structure and repeat regions, providing a parallel to the CSP of P. falciparum.

Streptococcus agalactiae: the Rib and � Proteins

S. agalactiae, also known as group B streptococcus (GBS), is the major cause of
life-threatening bacterial infections in the neonatal period (78). No vaccine is available.
All strains of GBS express a surface protein belonging to the Alp family, in which the
members have a unique amino-terminal domain and an extended region with long
repeats (79–82). The most common members in this family are the Rib and � proteins
(76) (Fig. 3A).

The amino-terminal domains of Rib and � are subdominant. Analysis of the
immune response to Rib and � demonstrated that the repeat regions are immuno-
dominant and targeted by �90% of the antibodies, while the entire amino-terminal
domains are subdominant (17). It is not known why the repeat regions of the intact
proteins are immunodominant, but multipoint binding of the repeats to cognate B cells
may contribute, as proposed for the CSP protein of P. falciparum (see above), and the
very size of the repeat region may also play a role.

Although the amino-terminal domains of Rib and � were strikingly subdominant
when present in the intact proteins, a fusion protein derived from these domains
elicited a better antibody response than a control protein derived from the repeats, was
immunogenic even without adjuvants, and elicited good protective immunity (17).
Thus, the subdominant amino-terminal regions of Rib and � are targeted by protective
antibodies and are of interest for vaccine development. While antibodies to the repeats
also have some protective ability (17, 83), providing a parallel to CSP, the protection
afforded by these antibodies may, in certain situations, be reduced through the
appearance of bacterial mutants with a decreased number of repeats (84).
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Streptococcus pyogenes: the M Protein

The human pathogen S. pyogenes (group A streptococcus [GAS]) is best known as
the cause of superficial infections of the skin and pharynx (“strep throat”) but also
causes invasive infections and the autoimmune disease rheumatic fever, which to-
gether cause �500,000 deaths per year (85). A vaccine is not available. Among the
virulence factors of S. pyogenes, particular interest has been focused on the surface-
localized M protein (Fig. 3B), which blocks phagocytosis and was the first bacterial
surface protein implicated in virulence (86).

FIG 3 Subdominant domains in streptococcal surface proteins. (A) Schematic of the surface-exposed
forms of the Rib and � proteins of Streptococcus agalactiae (GBS) (79, 80). These two proteins are the
most common members of a family of elongated and highly repetitive streptococcal proteins. Each
protein has a surface-distal amino-terminal domain, a region with long repeats, and a short carboxy-
terminal region that promotes covalent linkage to the bacterial peptidoglycan (PG) layer, located outside
the cell membrane (CM). The number of amino acid residues in a region (or repeat) is indicated. While
all repeats are completely identical within Rib or �, they vary in number among clinical isolates and are
different in Rib and � but show 47% residue identity. The amino-terminal domains are strikingly
subdominant but are targets for protective antibodies (17). (B) Schematic of the surface-exposed form of
Streptococcus pyogenes M protein. All strains of S. pyogenes express an M protein, encoded by the emm
gene (95). This fibrillar coiled-coil protein has an amino-terminal hypervariable region (HVR) of �50 to
100 amino acid residues, a conserved carboxy-terminal region that includes C repeats (each with 35 or
42 residues), and a wall-spanning region (W). The HVR exhibits extreme sequence divergence among
strains but is stable within a strain and represents a distinct domain that in many (but not all) M proteins
specifically binds a human complement regulator. The central part of M protein is also variable among
strains and typically includes domains that bind human plasma proteins, e.g., fibrinogen or IgA (95).
While the HVR is the major target for protective antibodies, it is strikingly subdominant (18).
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M protein is a fibrillar coiled-coil protein (87, 88) with an amino-terminal hypervari-
able region (HVR) that varies extensively in sequence among circulating bacterial strains
but not within a strain. Clinical isolates of S. pyogenes can therefore be classified into
�240 M (emm) types, each of which has a unique HVR sequence, as determined at the
protein or DNA level (89, 90). In contrast, the carboxy-terminal half of M protein
contains relatively conserved C repeats (91) (Fig. 3B). The HVR plays an active role in
virulence (92, 93) and is the target for type-specific antibodies that protect against
infection (94, 95). In spite of the extreme sequence divergence among different HVRs,
most of them bind a human complement regulator, a property retained by HVRs
studied in isolated form (96–98). In particular, most HVRs share the ability to bind the
plasma protein C4b-binding protein (C4BP) (96, 97), a finding explained by the dem-
onstration that these C4BP-binding HVRs have similar 3D structures (99). Thus, all
available evidence indicates that the HVR of M protein is a well-defined ligand-binding
domain. Given this situation, it is attractive to hypothesize that the currently known
HVRs have been selected during evolution as the most fit ones, a circumstance that
would favor sequence conservation and may explain why the number of known types
is relatively limited (18).

While type-specific anti-HVR antibodies can be prepared by the immunization of
animals, it has remained unclear whether infection in humans results in type-specific
immunity (100). This situation, and unexpected laboratory findings, led to the hypoth-
esis that the HVR may be subdominant (18), although highly variable regions in
microbial proteins are typically predicted to be immunodominant. While this hypoth-
esis may seem paradoxical, it makes sense from an evolutionary point of view, since it
should be advantageous for the bacterium if the HVR elicits a weak antibody response,
allowing escape from protective antibodies.

The hypervariable region of M protein is a subdominant domain. Support for the
hypothesis that the HVR is subdominant came from extensive studies of two M proteins
(18). As shown in these studies, the HVR is strikingly subdominant compared to other
parts of the M protein, not only in immunized animals but also in S. pyogenes-infected
humans. Further dissection of the antibody response demonstrated that it is mainly
directed against the conserved C repeats (101).

The conclusion that the HVR of an M protein is subdominant is supported by several
early reports, which indicated that type-specific antibodies, i.e., antibodies to the HVR,
appear only slowly, if at all, in infected patients (102–104). Moreover, treatment of
patients with penicillin prevents the appearance of type-specific antibodies, suggesting
that an anti-HVR response requires extended antigen exposure (103, 104). In agreement
with these early reports, a recent study of infected humans indicated that past infection
may not prevent future infection, implying that many infections do not result in a
protective anti-HVR response (100). While these different studies did not exclude that
the entire M protein is weakly immunogenic in humans, the results can now be
explained by the subdominance of the HVR. Further support for the subdominance of
the HVR comes from a study of mouse MAbs, which indicated that only one of 19 MAbs
elicited by an M protein was directed against the HVR (94). The molecular basis for the
subdominance of the HVR is not known, but selective elimination by proteases might
contribute (101).

The subdominance of the M protein HVR suggests that this domain is so important
for virulence that evolution has favored the appearance of two mechanisms that allow
escape from antibody attack on the HVR: sequence divergence and subdominance (18).
This conclusion follows from the observation that antibodies to the HVR eventually
accumulate during a prolonged infection (103, 104), probably making the host immune
to infection with strains of the same M type (i.e., with the same HVR) as the infecting
strain but not to strains of other M types. Thus, the sequence divergence among strains
implies that S. pyogenes can escape preexisting antibodies elicited by a strain of a
different M type (91). In contrast, the antibodies elicited during the course of a single
infection cannot be evaded through sequence variation, since the HVR typically is
genetically stable. However, the subdominance of the HVR should delay the appear-
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ance of protective antibodies, thereby prolonging the infection and favoring transmis-
sion to new hosts. An important corollary to these arguments is that sequence
divergence and subdominance promote antibody escape at different stages of an
infection (18).

While the HVR is subdominant when present in an intact M protein, peptides
derived from HVRs elicit good antibody responses (105), a finding that forms the basis
for attempts to develop a vaccine based on multivalent fusion proteins derived from
HVRs (106). However, even such a vaccine may cover too few of the many circulating
M types (107), and it is of some concern that an immune response to HVRs may
contribute to the development of the autoimmune disease rheumatic fever (108). Thus,
the subdominance of M protein HVRs is conceptually intriguing, but it remains uncer-
tain whether these domains can be employed for vaccine development.

DENGUE VIRUS: THE E PROTEIN

Dengue virus, which is transmitted by mosquitos, causes infections that typically are
asymptomatic or mild, but a life-threatening condition with hemorrhagic fever and/or
shock develops in some patients (109, 110). The incidence of infections has increased
during the last few decades, with worldwide effects on health and economy (109).
Major efforts have therefore been made to develop a vaccine, work that has been
complicated by the possibility that some antibodies may enhance disease, a phenom-
enon known as antibody-dependent enhancement (ADE). This situation emphasizes
that detailed understanding of the antibody response to dengue virus is essential. Here,
the presentation will be focused on the subdominance of an entire domain in the
surface E protein.

Dengue Virus and Other Flaviviruses

Dengue virus is a member of the flavivirus family, a group of enveloped RNA viruses
that also includes West Nile virus (WNV), yellow fever virus (YFV), tickborne encephalitis
virus (TBEV), and Zika virus (111, 112). The surface of the virus is covered by dimers of
the E protein, which has three distinct domains (111, 113) (Fig. 4A). Domain III has been

FIG 4 E protein of dengue virus and its subdominant domain III. (A) Schematic of dengue virus and its
surface E protein. The mature dengue virion (left) is covered by 30 rafts, each of which contains three
antiparallel E protein dimers. One raft is framed in black, and a single dimer is shown as ribbons (right).
The positions of the three domains (DI to DIII) are indicated for one E protein monomer. While domain
III is subdominant, the fusion loop in domain II is part of an immunodominant site. Adapted from
reference 113. (B) Protein maturation during dengue virus replication (114). In the endoplasmic reticulum
(ER), the surface of the immature virus particle is covered by trimeric prM-E spikes, in which prM prevents
premature membrane fusion promoted by the fusion loop (red spot) in the E protein. During transport
through the acidic trans-Golgi network (TGN), the complex is rearranged and prM is then cleaved into pr
and M. The small M fragment is retained in the viral membrane, with negligible surface exposure, while
the pr fragment remains bound to the FL. When the virus particle is released from the cell, pr dissociates
from the complex and the FL becomes largely hidden within the E dimer (113–115). Adapted from
reference 114 with permission of AAAS.
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implicated in the binding to host cell receptors, domain II promotes dimer formation
and includes a fusion loop (FL) that triggers membrane fusion, while the centrally
located domain I may have a structural role (111). During the formation of progeny
virus, premature membrane fusion is prevented by binding of the FL in domain II to the
viral protein prM (Fig. 4B). As described below, this interaction is of relevance for studies
of the antibody response. Proteolytic degradation of prM into pr and M results in the
release of pr and retention of the small M fragment, while FL becomes largely hidden
within the E dimer (113–115). Incomplete processing may result in the formation of
immature virions, on which uncleaved prM-FL complexes are exposed (113, 115), but it
is unclear to what extent such virions are formed in vivo (116).

Antibody Response to the E Protein: Immunodominant and Subdominant Sites

Dengue virus occurs in four serotypes, reflecting antigenic differences in the E
protein. Infection with virus of one type usually elicits antibodies that confer lifelong
and type-specific protective immunity. However, most of the antibodies elicited during
an infection are not type-specific but cross-reacting and are poorly neutralizing and
directed against the conserved FL in domain II and also against the prM protein (113,
117). Thus, the FL represents an immunodominant site on the E protein while other
sites, which are subdominant, elicit protective responses (113, 117). The immunodom-
inant response to FL and prM may be elicited by FL-prM complexes exposed on
immature virions and by FL epitopes transiently exposed through “breathing” of E
dimers on mature virions (113, 115). The restricted accessibility of the FL on mature
virions, and the absence of prM, can explain the limited ability of antibodies to FL and
prM to neutralize infectious virions.

While a primary infection mainly elicits poorly neutralizing antibodies directed
against immunodominant sites, studies of MAbs have identified several targets for
antibodies that have good neutralizing ability. These potent antibodies recognize a
variety of subdominant sites on the E protein, all of which are of interest for vaccine
development. One group of potent antibodies is those conferring type-specific protec-
tive immunity after natural infection. These antibodies are mainly directed against
quaternary epitopes, which are formed by E proteins on the virion surface and include
amino acid residues located in two or all three of the domains (118–120). Potent
antibodies in a second group are broadly neutralizing and directed against highly
conserved quaternary epitopes, designated E dimer epitopes (EDEs), which are located
at the E dimer interface and span a valley that contains the FL (121–123). While EDE
epitopes apparently elicit a limited response during a primary dengue infection, which
confers type-specific immunity, they may elicit stronger responses during secondary
infections, which result in protective responses with greater breadth (124, 125). Because
the EDE epitopes are conserved, they are of considerable interest as targets for
vaccine-induced antibodies. Potent antibodies in a third group are directed against
sites in domain III, the whole of which is subdominant, as outlined below.

Subdominant domain III: a target for protective antibodies. Early work in the
mouse showed that many strongly neutralizing and type-specific MAbs were directed
against domain III of the E protein (126). It therefore seemed possible that the
type-specific neutralizing antibodies elicited during human infections are directed
against domain III. However, studies of polyclonal human antibodies, elicited during
natural infection, indicated that antibodies specific for domain III are not essential for
neutralization or protection (127, 128) and constitute only a small fraction of the total
response to the E protein (127, 129). Thus, the entire domain III is subdominant and is
not important as a target for protective immunity during natural infection. Similarly,
domain III is subdominant in the E protein homologs of the flaviviruses WNV, TBEV, and
YFV, as demonstrated by studies of polyclonal human antisera (130–132). Of note, some
collections of MAbs have compositions that provide little support for the conclusion
that domain III is subdominant (133, 134), but the available data are not contradictory,
since collections of MAbs may not be representative of the antibodies present in
polyclonal antisera (135). The molecular basis for the subdominance of domain III is not
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known, but the strong responses to FL and prM may contribute by limiting responses
to other sites.

Antibody-Dependent Enhancement

It is unclear why only a minority of all infections with dengue virus result in serious
disease (110), but a prevailing model posits that preexisting cross-reactive antibodies
play a major role by causing ADE. According to this model, certain preexisting anti-
bodies do not neutralize the virus but bind to a virus particle and promote internal-
ization into Fc receptor-bearing cells, in which the virus replicates (113, 136–138).
Particular interest has been focused on the strong antibody responses elicited by the
FL in the E protein and by the prM protein (113, 117), implying that a vaccine must not
elicit such antibodies. While the triggering of ADE may be prevented if a balanced and
long-lasting neutralizing response is elicited against all four serotypes, the problems
involved in eliciting such a balanced response have been described as formidable (117).
Given this situation, it is of interest that ADE may not be triggered by a vaccine based
on the subdominant domain III (see below).

Dengue Vaccines

Work on dengue vaccines has mainly been focused on tetravalent formulations of
live attenuated viruses, but problems encountered with such vaccines have stimulated
interest in subunit vaccines based on the E protein (113, 117). One interesting approach
involves the use of modified E protein dimers, which retain ability to display the
subdominant and conserved EDE epitopes but have been stabilized to limit breathing,
thereby reducing the formation of anti-FL antibodies that may promote ADE (123).
Another approach is focused on the subdominant domain III, which does not include
the FL and is a target for potent MAbs (31, 126, 133). It has remained unclear whether
derivatives of domain III are suitable as vaccine components (139), but encouraging
results were recently obtained with a vaccine based on virus-like particles (VLPs) formed
by hepatitis B virus (HBV) S protein (140, 141), the classical system also used to develop
the RTS,S malaria vaccine. This dengue vaccine contained a fusion protein derived from
the HBV S protein and domain III of all four dengue serotypes. The antibodies elicited
by this vaccine were broadly neutralizing and protected against infection in a model of
passive vaccination. Moreover, studies in an in vivo model suggested that the vaccine
may not trigger ADE (140). Thus, it may be possible to develop a safe dengue vaccine
based on the subdominant domain III of the E protein.

INFLUENZA VIRUS: HEMAGGLUTININ
Influenza and Influenza Virus

Influenza remains one of the globally most important infectious diseases, with
seasonal disease causing �500,000 deaths annually and the emergence of a pandemic
representing a constant threat (142). This situation has led to intense efforts to develop
good vaccines, resulting in extraordinary insights into protein structure, mechanisms of
pathogenesis, and immune responses. The holy grail in the field is the development of
a universal vaccine that protects against most if not all strains.

Influenza virus is an enveloped RNA virus that comes in four serological types, of
which types A and B cause epidemics in humans. The type A virus, IAV, is clinically most
important and is the only type causing pandemics. The surface of the virus is covered
with spikes of two kinds, representing the glycoproteins hemagglutinin (HA) and
neuraminidase (NA). The major surface protein is HA, which has two key roles: binding
to sialic acid receptors and triggering of membrane fusion (143–145). An intact HA
molecule is a trimer of identical subunits, each of which comprises a globular head, a
largely �-helical stem, and a membrane anchor, with the receptor binding site (RBS)
located in a shallow hydrophobic pocket at the top of the head (Fig. 5A). While the head
varies extensively in sequence among strains, the stem is largely conserved. On the
basis of antigenic properties and sequences, HA and NA are classified into subtypes (18
for HA and 11 for NA), with virus strains given designations such as H1N1 and H3N2, the
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FIG 5 Hemagglutinin (HA) of influenza virus: subdominant sites as targets for protective antibodies. (A) Models of
influenza virus and hemagglutinin (HA). (Left) In a viral particle, the glycoproteins HA and neuraminidase (NA) are
anchored in a lipid envelope surrounding the core, which contains the eight RNA segments of the genome. (Right)
Top and side views of an HA trimer of subtype H1, showing the immunodominant head and the subdominant stem
(149). The location of the five highly variable and immunodominant sites in the head are indicated (Sa, blue; Sb,
gold; Ca1, purple; Ca2, orange; Cb, red). Right panel adapted from reference 149 with permission from Springer
Nature. (B) Cartoon showing the location of conserved sites (red) that are targets for protective antibodies in HA.
These sites are of at least five types and include the RBS, a partially occluded site located at the monomer interface
in the head, other conserved sites in the head, and two sites in the stem, one of which is occluded on native HA,
i.e., not accessible to antibodies. Except for this occluded site in the stem, which has unique properties, the various
sites may be described as subdominant. Of note, the whole head is variable and immunodominant compared to
the stem, but it includes subdominant sites that are conserved and protective. In contrast, the entire stem is
subdominant but contains protective sites. Panels C to F, and the corresponding legends, describe procedures that
may allow an antibody response to be targeted to a subdominant site. (C) A stem-only construct (“mini-HA”),
derived from the subdominant stem of H1 HA, elicits broadly protective antibodies (191). Figure based on PDB
5CJQ and produced with VMD (235). Of note, the structure of mini-HA differs slightly from that for the stem of intact
HA, as it adopts a more open splayed conformation (191). (D) Use of chimeric HA proteins to focus responses on
the subdominant stem (33, 196). (Left) Adults have preexisting antibodies to the head (top) and the stem (bottom)
of H1 HA, although the response to the stem is very limited. (Middle) Immunization with a chimeric H8/1 protein
may elicit a memory response to the H1 stem but only a primary response to the “exotic” H8 head. (Right) Boosting
with an H5/1 chimera may further boost the response to the H1 stem while again eliciting a primary response to
the “exotic” head. As in Fig. 1, antibodies directed against subdominant and immunodominant regions are shown
in light blue and dark blue, respectively. (E) Schematic representation of “breathing” in an HA molecule, resulting
in the exposure of a site in the head that is located at the monomer interface and is a target for protective
antibodies (157, 159, 160). Formation of antibodies to this site may be favored by immunization with hypergly-
cosylated HA (197). (F) Use of mosaic nanoparticles to focus antibody responses on sites in the HA head that are
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two subtypes that have dominated during the last century. Moreover, HAs can be
divided into two distinct groups, with H1 and H3 belonging to groups 1 and 2,
respectively. Subtypes are further classified into strains, with new strains appearing
every year, requiring the development of seasonal vaccines that often have suboptimal
properties. In contrast, a pandemic may be associated with the rare emergence of a
new subtype, which has acquired its HA from an animal strain of IAV.

Antibody Response to HA: Immunodominant Head, Subdominant Stem

The resolution of an IAV infection depends on the appearance of protective anti-
bodies, most of which are directed against the HA head and prevent binding of the
virus to the sialic acid receptor (144, 146). The immunity is typically strain specific,
reflecting the sequence variability in the head. The large majority of all antibodies
elicited by HA, whether protective or not, are also directed against the head, which
therefore is immunodominant in the classical sense of the term, while the stem is
subdominant (147–149). Antibodies to NA also contribute to protection (150) but will
not be considered here.

The selective pressure exerted by protective antibodies directed against HA favors
antigenic drift and shift, the two classical mechanisms causing sequence variability
(142, 151). Over the years, antigenic drift in a subtype results in extensive sequence
variability in several regions of the head (152, 153), but the RBS remains highly
conserved, reflecting its limited ability to change without losing its ability to bind sialic
acid (154). Nevertheless, many of the antibodies elicited during an infection bind to the
RBS, prompting the question of why these antibodies do not confer broad protection.
The explanation for this apparent paradox is that an antibody to the conserved RBS
typically has a footprint that is much larger than the RBS, resulting in binding not only
to the RBS but also to variable loops located outside the RBS, making the antibodies
specific for one strain (154, 155). Other strain-specific antibodies only bind to variable
sites and act by sterically blocking binding to the receptor (154). Moreover, some rare
MAbs have a minimal footprint and bind almost exclusively to the RBS, allowing them
to neutralize many, if not most, strains of IAV (153).

Here, it is of relevance to consider how antibodies to HA are evaluated for their
ability to inhibit infection. The most important method involves the use of an animal
model, in which passively administered antibodies are tested for their ability to confer
protective immunity. However, two in vitro surrogate methods are in widespread use,
neutralization and hemagglutination inhibition (HAI). While neutralization determines
the ability of antibodies to block virus infection of cells, HAI measures the ability to
interfere with binding to the sialic acid receptor. All three methods are valuable, but it
is essential to note that they may give different results (13, 156–161). In particular,
certain antibodies require interaction with Fc receptors for the ability to confer in vivo
protection (156) and may lack activity in neutralization tests (157–161).

Immunodominant and subdominant sites within the HA head. Pioneering studies
of H1 and H3 strains indicated that five highly variable sites in the HA head are major
targets for neutralizing antibodies (162, 163) as shown for H1 HA in Fig. 5A. Similarly,
the majority of all antibodies (whether neutralizing or not) elicited during an infection
are directed against these five sites, as shown for the H1 protein (148), confirming that
these sites indeed are immunodominant in the quantitative sense of the term, com-
pared to other sites in HA. The five sites are largely composed of protruding loops, a

FIG 5 Legend (Continued)
subdominant and conserved (198). In this procedure, nanoparticles were covered with monomeric HA heads. (Left)
A nanoparticle covered with heads from a single virus strain will elicit antibodies directed almost exclusively against
strain-specific immunodominant sites, which promote very strong binding to cognate B cells, thereby diverting the
antigen from B cells recognizing any other site(s). (Right) Use of a mosaic nanoparticle covered with several
different heads will reduce the local concentration of strain-specific immunodominant sites, potentially favoring a
response to a conserved and shared subdominant site, which may promote binding of relatively high avidity to
cognate B cells.
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characteristic that probably contributes to their immunodominance and may allow
extensive sequence variability without effects on the overall structure of the head (144).

While the five immunodominant sites were identified in strains for which glycosy-
lation of the HA head is limited, additional glycan groups are typically present in
seasonal strains, potentially modulating the antibody response (164–166). Moreover,
differential glycosylation may explain some of the differences between the H1 and H3
systems in the location of the five classical sites (167). However, factors other than
glycosylation are probably also important in determining the strength of the antibody
response to the five sites. Extensive attempts have recently been made to identify a
hierarchy of immunodominance among these sites (21, 149, 168), but the situation is
highly complex, and the factors that determine the strength of the response to a given
site remain unclear.

In contrast to the strain-specific immunity elicited by the variable and immunodom-
inant sites, evidence has accumulated that certain conserved sites in the head can elicit
broadly protective MAbs (Fig. 5B). Because immunity typically is strain specific, these
conserved sites apparently elicit antibodies only rarely during an infection, implying
that they may be described as subdominant. These conserved sites in the head include
broadly conserved sites that are partially occluded and located at the interface between
two HA monomers (157, 159, 160, 169) (see below). Other protective sites are exposed
on the HA head and are conserved within one serotype (170–174). Moreover, certain
rare antibodies with a small footprint specifically bind to the conserved RBS, as noted
above (153).

The HA stem: a subdominant domain targeted by protective antibodies. Work on
influenza immunity was for many years focused on the HA head, reflecting the
importance of the immunodominant sites as targets for strain-specific protective
antibodies. Although an early study of a mouse MAb suggested that the stem may also
be a target for protective antibodies (175), this part of HA attracted only limited
attention until human protective MAbs were described 15 years later (176–180). How-
ever, intense efforts are now made to develop vaccines based on the stem (see below).

An occluded site in the stem. Further evidence that the stem is of interest as a
target for protective immunity was reported in a recent study describing a novel class
of protective MAbs that show broad reactivity and bind to a site in the stem (161). While
previously identified anti-stem MAbs bind to epitopes exposed on intact HA (178,
181–183), MAbs in the new class apparently do not bind to native HA, implying that the
binding site is occluded on free virus particles (Fig. 5B). Although the properties of this
occluded site do not conform to the classical definition of a subdominant site, it is of
relevance to consider it here, since it elicits a poor antibody response after influenza
vaccination (184) but nevertheless is a target for protective antibodies. This relatively
conserved site is probably exposed at some stage of the infectious process, allowing
access of antibodies that protect against infection (161). These antibodies do not
neutralize the virus in vitro but confer protection by interacting with Fc receptors on
effector cells. Interestingly, the occluded epitope may be exposed on the postfusion
form of HA that appears when the virus is exposed to low pH during cellular invasion,
suggesting that this form of HA may elicit broadly protective antibodies (161, 185).
Since the interface site in the head is also partially occluded (see above), it now seems
possible that occluded sites in HA are of general interest as targets for antibodies that
protect against influenza (185). Of note, studies of the E protein in flaviviruses have
similarly indicated that sites, which are at least partially occluded, may be targets for
protective antibodies (115, 186–188).

Vaccine Development: Focus on Subdominant Targets in HA

Conserved sites in the stem or head of HA are currently attracting much interest as
potential targets for broadly protective antibodies induced by a vaccine (146, 185, 189,
190) (Fig. 5B). Except for the occluded site in the stem, all of these sites may be
described as subdominant, although the term should be used with caution, because
different sites may vary with regard to size and surface exposure. Particular interest has
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so far been focused on the possibility that the stem may be employed to develop a
universal vaccine.

For the stem, protein engineering has allowed the expression in mammalian cells of
vaccine candidates with promising properties (191, 192). One of these antigens, des-
ignated “mini-HA” (191, 193), can be viewed as a soluble form of the trimeric stem (Fig.
5C), while another antigen was prepared by immobilizing stems on ferritin nanopar-
ticles (192, 194). Both of these antigens elicited good protective antibody responses in
animal models, indicating that the HA stem is not inherently weakly immunogenic.
While the initial studies reported protection against viruses in group 1, work is in
progress to develop stem-only vaccines that protect against viruses in both groups
(194). A stem-only immunogen that elicits protective immunity has also been expressed
in bacteria (195), but the absence of glycan groups in this protein may affect its stability
and antigenic properties (164, 194).

To focus responses on the stem is also the aim of a method employing sequential
immunizations with chimeric HAs (33, 196) (Fig. 5D). In these chimeras, the stem
domain of a common HA is combined with an “exotic” head domain, to which the
recipient has not been exposed. The method requires that some antibodies have
previously been elicited against the stem. After immunization with a chimera, the stem
will elicit a memory response, while the head will only elicit a primary response. An
advantage with this strategy is that vaccines can be prepared by standard procedures,
but the immunization schedules may become complex (33).

For the HA head, the recently described sites at the trimer interface are of consid-
erable interest for vaccine development (157, 159, 160) (Fig. 5E). While these highly
conserved sites are partially occluded on the virus particle, they are apparently exposed
transiently through breathing of HA trimers, especially on the surface of infected cells
(159, 160, 169). Intriguingly, different MAbs against these sites may be directed against
either of the complementary HA surfaces exposed through breathing (160). For vaccine
development, it is of interest that antibody responses to these interface sites may be
favored by immunization with a hyperglycosylated HA, in which the added glycan
groups limit the response to immunodominant sites (197).

An ingenious procedure to focus antibody responses on subdominant sites in the
HA head involves the use of nanoparticles covered with a mosaic of immobilized
monomeric HA heads (198) (Fig. 5F). This method is based on the prediction that a
nanoparticle covered with identical HA heads will elicit antibodies that are directed
almost exclusively to strain-specific immunodominant sites, while exposure of different
heads on a mosaic nanoparticle may enhance the formation of antibodies to a shared
subdominant site. The effects were relatively limited in the initial studies, but this
method may have much potential.

Overall, the various methods that focus antibody responses on subdominant HA
sites (Fig. 5) now offer much hope for the development of a universal influenza vaccine.
Moreover, the occluded site in the stem is also of considerable interest for vaccine
development.

MOLECULAR BASIS OF ANTIBODY SUBDOMINANCE
General Aspects

Little is yet known about the molecular mechanisms that make one surface-exposed
region of a microbial protein subdominant, but a variety of processes can probably
contribute. Factors such as B cell precursor frequency (199), mode of immunization
(149, 200), antigen dose (201, 202), and local antigen concentration (203) may contrib-
ute, but most interest has been focused on the properties of the antigen (180), the
aspect considered here.

If the subdominance of a protein region allows a pathogen to evade protective
antibodies, as discussed in this review, the question may be raised as to why the whole
protein has not evolved to become weakly immunogenic. The answer could be that it
is most important for the pathogen to evade antibodies to a region targeted by
protective antibodies, while the other regions may even contribute to the selective
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subdominance of one region, in particular, by acting as decoys. Moreover, it is not
simple to envisage mechanisms which would limit the antibody response to a whole
protein without interfering with its function, although such a situation has been
described for the Env protein of HIV-1, which has unique properties (204). Accordingly,
the examples considered below all refer to situations where only one region of a
protein elicits a weak antibody response, i.e., is subdominant.

Tandem repeat structures in proteins and bacterial pili. Many surface proteins in
bacteria and protozoa have a region with tandem repeats, which is located next to a
unique domain (75–77, 205). Studies of several such proteins have shown that the
unique domain is subdominant (Fig. 2 and 3), a result that may at least partly be
explained by multipoint and high-avidity binding of the repeats to cognate B cells (56,
57) (Fig. 2B). Of note, this model implies that the unique region may elicit a good
response if separated from the repeats (17). A formally similar mechanism could affect
the antibody response to bacterial pili, which typically are composed of a unique tip
adhesin and a rod built from repeating protein units (206). Studies of type 1 pili in
Escherichia coli have indeed indicated that the tip adhesin is subdominant in intact pili
but elicits a good response when administered in an isolated form (207).

Physicochemical properties. The presence of a strongly immunogenic region in an
antigen may cause selective binding to specific B cells, making an adjacent region
subdominant. Thus, the outcome would be similar to that caused by tandem repeats.
It follows that the isolated subdominant region may be employed as a vaccine
component, as described for domain III in the E protein of dengue virus and the stem
of influenza virus HA (Fig. 4 and 5). In another scenario, the breathing of a protein may
result in limited responses to epitopes that are exposed only transiently (Fig. 5E). In that
case, it may be possible to enhance the antibody response through modifications of the
protein that focus the response on the breathing sites (197).

Sensitivity to proteolytic attack. A protein region may be eliminated through
proteolytic attack at an early stage of an infection, potentially resulting in subdomi-
nance. Possible examples include the amino-terminal regions of P. falciparum CSP (61)
and streptococcal M protein (101) (Fig. 2A and 3B). In this case, a mutant protein that
is not cleaved might elicit a stronger antibody response to the subdominant region.

Binding of a host protein. Many surface proteins of pathogenic bacteria specifically
bind a human plasma protein (75–77, 95, 208). Little is known about the effects of these
interactions on antibody responses, but studies of a Neisseria meningitidis protein
indicate that binding of the human plasma protein factor H limits antibody responses
to the binding site (209, 210). Thus, the binding of a host ligand may contribute to
subdominance. In this case, immunization with a mutant protein, which does not bind
the host ligand, may enhance the formation of protective antibodies (209, 210).

Glycosylation. Glycosylation of a protein site may limit the formation of antibodies
and reduce the binding of preexisting antibodies (164, 211, 212). Thus, glycosylation
may confer subdominance to a protein site or even a large region (213). On the other
hand, extensive glycosylation of one region may redirect the antibody response to
subdominant and broadly protective epitopes in other parts, a finding of relevance to
vaccine development (197, 214).

Other possible mechanisms. If a protein region is poorly accessible for B cells, it
may elicit a weak response, even if it is accessible to free antibodies, a situation that
could contribute to the subdominance of the HA stem (215). Subdominance may also
result from tolerance, reflecting a similarity between the subdominant part of an
antigen and a host structure (216). This aspect is potentially problematic for vaccine
development, because the induction of antibodies to a subdominant site might induce
autoimmunity if the site is subdominant because of tolerance (216, 217).

IS SUBDOMINANCE A MECHANISM OF IMMUNE ESCAPE?
Evolutionary Arguments

For a pathogen, it should be advantageous if a protein region, which is a target for
protective antibodies, elicits a subdominant antibody response during an infection. This
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argument suggests that subdominance has evolved as a mechanism of immune
evasion, although its molecular basis may vary among different systems. Support for
this notion comes from classical Darwinian arguments (19) and from the well-
documented ability of pathogens to evade immune attack through a variety of mech-
anisms (218). Thus, subdominance may be interpreted in the light of Dobzhansky’s
classical dictum that “Nothing in biology makes sense except in the light of evolution”
(219). However, it is possible that subdominance is unrelated to immune evasion in at
least some cases.

Comparison with antigenic variation. Assuming that subdominance plays a sub-
stantial role in antibody escape, it is of interest to make a comparison with antigenic
variation, which arguably is the most important mechanism by which pathogens
escape antibodies (220, 221) (Fig. 6). This comparison is particularly relevant, because
both antigenic variation and subdominance are found in a variety of systems, suggest-
ing that not only antigenic variation but also subdominance may be of general
importance.

Antigenic variation implies that a pathogen evades host immunity through struc-
tural variation in a surface component, and it typically results from extensive sequence
variability in a protein (151, 220, 221). For many pathogens, the sequence variability is
generated during a single infection, allowing the microbe to escape newly formed
antibodies in the infected host, resulting in a prolonged infection (Fig. 6A). For other
pathogens, such as influenza virus, new mutants appear too rarely to allow immune
escape within a single host, allowing a protective antibody response to be elicited
against the antigenic variant expressed by the infecting strain. However, the host may
subsequently be infected with a strain expressing a different variant (Fig. 6B). In either
case, antigenic variation is characterized by changes in the quality, but not necessarily
in the quantity, of protective antibodies. In contrast, subdominance would promote
immune escape by reducing the quantity of antibodies, a situation that could favor the
establishment of a prolonged infection, such as the antigenic variation that occurs
during a single infection (Fig. 6C). Of note, a combination of antigenic variation and
subdominance may result in particularly efficient antibody escape (18).

SUBDOMINANCE AND VACCINE DEVELOPMENT: GENERAL COMMENTS

The subdominant regions described in this review were recognized during the
characterization of antibody responses to microbial proteins and were not specifically
searched for. On the other hand, evidence is now accumulating that subdominant
regions may be of general interest for vaccine development. It may then be argued that
some vaccine studies could benefit from being primarily focused on the identification
of subdominant regions (or sites), with subsequent evaluation of those targets as
possible vaccine components. This argument raises two questions: how to identify a
subdominant region or site in a given protein, and how to focus the analysis on relevant
proteins.

Methods To Identify Subdominant Regions or Sites in Microbial Proteins

In discussing this problem, it is instructive to separately focus on elongated and
globular proteins.

Elongated surface proteins are common in Gram-positive bacterial pathogens, such
as staphylococci and streptococci, and are typically composed of a series of distinct
domains (75–77, 82, 95), a feature that may simplify the identification of a subdominant
region. This argument is based on the fact that a whole protein domain may be
subdominant, as described in this review. Accordingly, the different domains in a
protein may be directly compared for their ability to elicit antibodies. Specifically, a
polyclonal antiserum elicited by the intact protein may be tested for reactivity with
each of the isolated domains, potentially allowing the identification of one domain that
reacts weakly and therefore may be subdominant. To verify this preliminary conclusion,
an inhibition analysis must be performed, demonstrating that the other domains inhibit
most or all of the antibody reactivity with the intact protein (17, 18, 101). Interestingly,
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surface proteins with multiple distinct domains are common not only in Gram-positive
bacterial pathogens but also in the protozoan Plasmodium falciparum (222), implying
that similar analysis may be performed for those proteins, as described in an early study
of CSP (60). Moreover, some viral proteins are composed of at least two distinct
domains, allowing antibody responses to those domains to be compared, as described
above for the E protein of dengue virus and for the HA of influenza virus.

FIG 6 Antibody escape through antigenic variation or subdominance: a comparison. Schematic com-
paring the well-known role of antigenic variation and the potential role of subdominance in immune
escape. Of note, antigenic variation comes in two forms, as indicated below. (A) Antigenic variation
during the course of a single infection. Protein variants are indicated in different colors. Microbes
expressing new variants escape antibody attack and can grow (thick arrows) because they are not
recognized by antibodies elicited by an earlier variant. This situation may result in the establishment of
a prolonged infection, during which new antigenic variants are repeatedly selected for. (B) Antigenic
variation among strains. In this case, an antibody response to strain-specific determinants typically results
in recovery and immunity, but the host may subsequently be infected by a variant strain circulating in
the population. The hemagglutinin (HA) of influenza virus offers a classical example. (C) Subdominance
may promote immune escape by strongly limiting the formation of antibodies to a protective site. As a
result, an infection may be prolonged.
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For globular proteins (or domains), such as the surface proteins of many viruses and
Gram-negative bacteria, the location of antibody binding sites usually cannot be
analyzed with protein fragments or peptides, since epitopes typically are conforma-
tional (223). However, pioneering work on the HA of influenza virus demonstrated that
immunodominant sites could be identified through the characterization of the binding
sites of many MAbs (162, 163). These sites in influenza virus were initially identified as
targets for neutralizing antibodies, but as noted above, it is now known that they are
immunodominant also in the quantitative sense of the term (148). With the caveat that
collections of MAbs may not have properties representative of polyclonal sera (39, 135),
this demanding method provides information on immunodominant sites and, by
inference, also on subdominant sites. Much of the present work on viruses indeed
employs large collections of MAbs, aiming at the identification of rare MAbs that bind
to previously unknown epitopes of interest for vaccine development (13, 14, 169, 224).

Interestingly, recent studies indicate that electron microscopy may also be used for
epitope mapping (225, 226). This semiquantitative method has relatively low resolution
but can give important information on the location of immunodominant sites and
therefore also about subdominant sites. While the method has so far been used only for
viruses, it should be of interest to apply it in a variety of systems.

In discussing methodology, it should be noted that the identification of a surface-
exposed protein region as subdominant is, by necessity, based on laboratory findings,
which indicate that the antibody response to one region is relatively weak or even
negligible. It is conceivable, however, that antibodies are present but not detected in
laboratory tests, an aspect that should be kept in mind during studies of subdomi-
nance. Antibodies may, for example, go undetected in tests with a purified protein,
because they are directed at quaternary epitopes present only on the surface of the
pathogen (117, 120, 224). Problems associated with the use of pure antigens may in
some cases be avoided by performing the analysis with whole microbes, but it is
noteworthy that the antigenic properties of a microbial surface protein may not be the
same in the laboratory as in the infected host (116).

Focusing the Analysis on Relevant Proteins

To limit the amount of work needed to identify subdominant regions or sites, it is
obviously essential to focus the analysis on relevant proteins. The selection of a protein
to study will not be a problem for viruses, which typically have one or very few surface
proteins, but as noted above, the subsequent identification of subdominant sites or
epitopes in a viral protein may be very demanding and may require the characteriza-
tion of large numbers of MAbs. Moreover, the problem of how to selectively elicit a
polyclonal antibody response against a subdominant site is challenging and is currently
attracting intense interest (15, 117, 227–229).

For bacteria and protozoa, the identification of a protein in which a subdominant
region is of interest for vaccine work will require methodologies different from those
used for viruses. These cellular microbes typically have numerous surface proteins,
limiting the possibility to screen collections of MAbs elicited by the pathogen, because
most MAbs may be directed against surface structures that are of limited interest as
vaccine components. Accordingly, screenings with MAbs have so far found little
application in work with bacteria and protozoa, although collections of MAbs were
recently employed in pioneering studies allowing the identification of a novel protec-
tive epitope on the circumsporozoite of P. falciparum (66, 67). In contrast, much work
on the identification of vaccine components in bacteria and protozoa has employed
reverse vaccinology (8, 230) or the screening of protein arrays with patient sera (9–11).
Notwithstanding the interest of these methods, it should be noted that they are
focused on the identification of intact proteins, not subdominant regions.

How can a subdominant region of interest for vaccine work be identified among the
many surface proteins expressed by a bacterial or protozoal pathogen? It is probably
unrealistic to analyze all surface proteins for the presence of subdominant regions, but
a possible way forward could involve studies of a few well-characterized virulence
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factors. The data summarized in this review provide support for this proposal, since the
proteins described here had been extensively studied long before it was demonstrated
that they have subdominant regions. Thus, it is possible that even well-characterized
surface proteins may have subdominant regions that are of interest for vaccine
development. Indeed, many surface proteins in bacteria and protozoa have been
studied in detail with regard to structure and function, while knowledge about their
antigenic properties is limited (75–77, 222).

It is beyond the scope of this review to consider problems associated with vaccine
development, but it should be noted that potential difficulties include the induction of
autoimmunity (216, 217), limited duration of the protective response, effects of preex-
isting immunity (231, 232), and antibody-dependent enhancement of disease (138).

CONCLUDING REMARKS

As summarized in this review, accumulating data now indicate that subdominant
regions are of interest for vaccine development. Here, it is of interest to consider three
aspects that are of general interest. First, subdominance may characterize a whole
surface-exposed protein domain, as demonstrated for all of the systems described in
this review. This feature may facilitate vaccine development, since it should be much
simpler to focus antibody responses on an intact domain than on a subdominant site
that cannot be studied in an isolated form. Second, studies of subdominant regions are
of interest, even for proteins known to have an immunodominant region that elicits
protective antibodies. This conclusion follows from the observation that the antibodies
elicited by the immunodominant region may not have optimal properties. For example,
the immunodominant head of influenza virus HA elicits strain-specific protective anti-
bodies, while the subdominant stem elicits broadly protective antibodies. Third, sub-
dominance is not correlated with sequence conservation. An example is provided by
dengue virus, for which the three domains in the E protein show similar variability
among different strains (233), while domain III stands out as being subdominant. This
situation may seem paradoxical but is not surprising, since the extent of sequence
variation in a region probably depends on many factors, including the potency and
concentration of antibodies to that region.

In summary, a subdominant region in a microbial protein may represent an Achilles’
heel that can be targeted by vaccine-induced antibodies. While subdominant regions
have recently attracted much interest in studies of viruses, in particular, influenza virus,
little information is available about bacterial and protozoal pathogens. Thus, it will be
especially important to analyze how common subdominant regions are in surface
proteins of those infectious agents. It will also be essential to gain insights into the
molecular basis of subdominance, since such knowledge may favor the development of
optimal vaccines and may provide insights of general interest about the role of
subdominance in microbial immune evasion.
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