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A B S T R A C T   

The current COVID-19 pandemic is evolving rapidly into one of the most devastating public health crises in 
recent history. By mid-July 2020, reported cases exceeded 13 million worldwide, with at least 575,000 deaths 
and 7.33 million people recovered. In Oman, over 61,200 confirmed cases have been reported with an infection 
rate of 1.3. Spatial modeling of disease transmission is important to guide the response to the epidemic at the 
subnational level. Sociodemographic and healthcare factors such as age structure, population density, long-term 
illness, hospital beds and nurse practitioners can be used to explain and predict the spatial transmission of 
COVID-19. Therefore, this research aimed to examine whether the relationships between the incidence rates and 
these covariates vary spatially across Oman. Global Ordinary Least Squares (OLS), spatial lag and spatial error 
regression models (SLM, SEM), as well as two distinct local regression models (Geographically Weighted 
Regression (GWR) and multiscale geographically weighted regression MGWR), were applied to explore the 
spatially non-stationary relationships. As the relationships between these covariates and COVID-19 incidence 
rates vary geographically, the local models were able to express the non-stationary relationships among vari-
ables. Furthermore, among the eleven selected regressors, elderly population aged 65 and above, population 
density, hospital beds, and diabetes rates were found to be statistically significant determinants of COVID-19 
incidence rates. In conclusion, spatial information derived from this modeling provides valuable insights 
regarding the spatially varying relationship of COVID-19 infection with these possible drivers to help establish 
preventative measures to reduce the community incidence rate.   

1. Introduction and background 

Modeling the incidence rate of communicable diseases is vital during 
epidemics and pandemics. The ongoing coronavirus pandemic (COVID- 
19) was first reported in Wuhan city in China and has since spread 
globally causing thousands of fatalities. On 30th January 2020, the 
World Health Organization declared COVID-19 as a Public Health 
Emergency of International Concern (PHEIC) (WHO, 2020a, 2020b). 
The severe acute and infectious COVID-19 not only has posed threats to 

local communities but has also brought disastrous consequences to the 
global economy (Buheji et al., 2020; Civelek & Xiarewana, 2020). 

It is recognized widely that COVID-19 is not bound by territorial 
geography or national borders and, hence, the contemporary intensifi-
cation of globalization, movement, communications, and socioeconomic 
activities has increased the potential speed, frequency, and geographical 
effects of the disease. Consequently, the transnational spread of COVID- 
19 has been considered as emanating from a range of globalizing forces 
beyond the control of individual states or governments, making the 

* Corresponding author at: Department of Geography, College of Arts and Social Sciences, Sultan Qaboos University, P.O. Box: 42, Al-Khod P.C. 123, Muscat, 
Oman. 

E-mail addresses: shmansour@squ.edu.om (S. Mansour), kindik@squ.edu.om (A. Al Kindi), h.alsaid@squ.edu.om (A. Al-Said), adham@squ.edu.om (A. Al-Said), 
pma@lancaster.ac.uk (P. Atkinson).  

Contents lists available at ScienceDirect 

Sustainable Cities and Society 

journal homepage: www.elsevier.com/locate/scs 

https://doi.org/10.1016/j.scs.2020.102627 
Received 5 August 2020; Received in revised form 6 November 2020; Accepted 26 November 2020   

mailto:shmansour@squ.edu.om
mailto:kindik@squ.edu.om
mailto:h.alsaid@squ.edu.om
mailto:adham@squ.edu.om
mailto:pma@lancaster.ac.uk
www.sciencedirect.com/science/journal/22106707
https://www.elsevier.com/locate/scs
https://doi.org/10.1016/j.scs.2020.102627
https://doi.org/10.1016/j.scs.2020.102627
https://doi.org/10.1016/j.scs.2020.102627
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scs.2020.102627&domain=pdf


Sustainable Cities and Society 65 (2021) 102627

2

outbreak a key challenge for collective action from a geographical 
perspective. In particular, the fundamental division between the na-
tional and international realms is no longer appropriate. Indeed, the 
outbreak of the disease in both developed and developing countries has 
demonstrated that the governance needs surrounding disease trans-
mission and incidence are multifaceted and complex. 

The existing literature is limited concerning the spatial variation of 
COVID-19 transmission and incidence at subnational boundaries. 
Moreover, there is growing evidence that the identification of the major 
driving forces of disease incidence rates and spatial diffusion is an 
intricate process. Recent literature has investigated the causes of disease 
transmission, mortality, and morbidity. Indeed, there have been many 
attempts to understand how, and to what extent, the transmission dy-
namics of COVID-19 is associated with prime environmental factors 
(Muhammad, Long, & Salman, 2020; Qu, Li, Hu, & Jiang, 2020; Saadat, 
Rawtani, & Hussain, 2020; Zhu & Xie, 2020). In India, Kumar et al. 
(2020) analysed the influences of anthropogenic emissions switch-off on 
ambient PM2.5 in five Indian cities during COVID-19 pandemic and 
found that improvements in air quality during the lockdown and re-
strictions procedures led to a reduction in air pollutants and gas emis-
sions. Other studies have examined the associations between 
sociodemographic factors, public health interventions and the 
COVID-19 outbreak (Choi, Denice, Haan, & Zajacova, 2020; Qiu, Chen, 
& Shi, 2020; Sirkeci & Yucesahin, 2020; Wang, Zhong, & Hurd, 2020). 
The epidemiology of COVID-19 has been also considered in relation to 
demographic characteristics of the population, particularly age as an 
important determinant (Tian et al., 2020; WHO, 2020a, 2020b). High 
prevalence rates of long-term illnesses such as diabetes are significantly 
associated with increased COVID-19 risks in geographic zones (Fadini, 
Morieri, Longato, & Avogaro, 2020; Li et al., 2020; Muniyappa & Gubbi, 
2020). Furthermore, individuals with diabetes are more at risk of a 
poorer outcome of COVID-19 infection (Guo et al., 2020; Shah & Hux, 
2003). To protect workers in healthcare system from COVID-19 infec-
tion, Ge et al. (2020) assessed the exposure risks of the disease in the 
hospitals environments. The findings showed that infected patients in 
hospitals increase the nucleic acid of SARS-CoV-2 in the air and surface. 
Accordingly, monitoring and disinfection are necessary measures to 
lessen incidence rates during the pandemic. In a recent seminal work, 
Sannigrahi, Pilla, Basu, and Basu (2020), Sannigrahi, Pilla, Basu, Basu, 
and Molter (2020) examined the influences of several 
socio-demographic parameters on COVID-19 incidence and mortality 
across the European regions. Using local and global spatial models such 
as OLS and GWR, an explicit spatial modelling was performed. The 
findings of this study showed that population size, poverty, and house-
hold income were the key predictors of disease incidence in the Euro-
pean region. 

Spatial analysis and modeling studies have attempted to simulate the 
effects of various explanatory variables on COVID-19 incidence rates (e. 
g. DiMaggio, Klein, Berry, & Frangos, 2020; Mollalo, Rivera, & Vahedi, 
2020; Mollalo, Vahedi, & Rivera, 2020; Qiu et al., 2020; Sannigrahi, 
Pilla, Basu, Basu, 2020; Sannigrahi, Pilla, Basu, Basu, Molter, 2020; 
Scala et al., 2020). The advent and continued development of geospatial 
technology have enabled the global and local modeling of socioeco-
nomic and environmental conditions that influence the prevalence of 
COVID-19. Indeed, GIS and geospatial techniques can play crucial roles 
in analyzing big data of the COVID-19 outbreak globally (Zhou et al., 
2020). Providing valuable spatial information support for 
decision-making, several methods can be utilized for the analysis of 
disease transmission such as data aggregation, spatial tracking, simu-
lation and prediction, spatial distribution, and clustering (Caprarelli & 
Fletcher, 2014). 

In India, climatic, geographical and topographical variables such as 
air temperature, precipitation, actual evapotranspiration, solar radia-
tion, humidity, wind speed, topographic altitude and population density 
were utilized to model the number of COVID-19 infections (Gupta, 
Kumar Patel, Sivaraman, & Mangal, 2020; Gupta, Banerjee, & Das, 

2020). In an early analysis of COVID-19 transmission, Velraj and 
Haghighat (2020) investigated the theory of respiratory droplet drying 
within different weathering and indoor environments in India. Areas 
with low humidity were found to lead to high rates of disease infection. 
In another study, quantile regression was used to predict the effects of 
globalization, population development, and demographic characteris-
tics on COVID-19 transmission globally (Sigler et al., 2020). A seminal 
work by Mollalo, Rivera et al. (2020), Mollalo, Vahedi et al. (2020) 
estimated the COVID-19 cumulative incidence rate in the USA using a 
multilayer perceptron (MLP) neural network. The findings revealed a 65 
% association with the reference data for the holdout samples, while the 
output of the logistic regression model explained the presence/absence 
of disease incidence hotspots across the USA. Chen, Jiao, Bai, and 
Lindquist (2020) used global Ordinary Least Squares (OLS) and local 
Geographically Weighted Regression (GWR) models to investigate and 
simulate the spatial factors of COVID-19 in New York city, indicating 
that specific factors of green space, mean travel distance, male per-
centage, and commuting (walking, carpooling, and public transit) were 
significantly associated with higher rates of COVID-19 incidence. 
Spatio-temporal patterns and the spatial dependency of COVID-19 in the 
early stages of the disease in China were investigated using Moran’s I 
statistics (Kang, Choi, Kim, & Choi, 2020), showing that from 22nd 
January, the outbreak spread rapidly from Wuhan to other neighboring 
areas through the transportation network. 

Although the cumulative severity patterns among developing coun-
tries are more muted, by the mid of June 2020, many low and lower- 
middle-income countries (LICs and LMICs) such as Brazil and India 
showed a high daily severity of COVID-19, with Iran in the Middle East 
particularly affected. Chronologically, up to mid-March 2020, Iran re-
ported 14,991 confirmed cases, ranked as the third most affected 
country after China and Italy, and a significant source of the outbreak 
spreading in the Middle East. Arab-Mazar, Sah, Rabaan, Dhama, and 
Rodriguez-Morales (2020) addressed the spatial distribution of cases 
across the Iranian provinces, finding that the transition was from the 
north-central provinces such as Tehran and Qom towards surrounding 
areas. The spatial distribution and spreading patterns of COVID-19 in 
Iran have been linked to environmental and spatial drivers, such as 
intra-provincial movement, temperature, precipitation, humidity, wind 
speed, and average solar radiation (Ahmadi, Sharifi, Dorosti, Ghoushchi, 
& Ghanbari, 2020). Asna-ashary, Farzanegan, Feizi, and Sadati (2020) 
adopted a panel vector autoregressive (PVAR) approach to investigate 
the relationship between the disease incidence rate and air pollution 
across the Iranian provinces, whereas Azarafza, Azarafza, and Tanha 
(2020) utilized long short-term memory-based deep learning for time 
series forecasting at the provincial geographical scale, indicating that 
machine learning was an effective method in modeling the disease 
incidence. 

A few nonspatial studies have been conducted to address various 
issues associated with COVID-19 effects in GCC countries. For instance, 
in response to the disease outbreak, the Umrah pilgrimage services were 
suspended in Saudi Arabia, which hugely impacted the economy and 
placed a burden on several public and private sectors, particularly 
tourism and hospitality, airlines and transportation, as well as other 
local businesses (Ebrahim & Memish, 2020). Rahman et al. (2020) 
modelled a framework of a data-driven dynamic clustering to alleviate 
the adverse economic effects of Covid-19 lockdown restrictions. The 
results indicated that the proposed algorithms improved the relevant 
metrics by approximately 50 % in the lockdown experiments and 60–80 
% in the conceivable lessening of economic loss. In another study (Sun & 
Zhai, 2020) predicted the infection probability of COVID-19 through 
investigating social distancing and ventilation strategies as effective 
measures to mitigate disease infection risks and transmission. Based on 
fostering the capabilities of communities to tackle disease spread, a key 
study by Megahed and Ghoneim (2020) found that designing healthy 
urban infrastructures and sustainable architectures may be effective 
planning strategies in response to the COVID-19 pandemic to diminish 
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the risk of infection. In Oman, a system dynamic epidemic spread model 
was developed to simulate disease prevalence temporally, indicating 
that during stringent social distancing and testing strategies, a small 
perturbation can lead to higher rates of infection (Zia & Farooq, 2020). 

Despite the growing body of research regarding COVID-19 epidemics 
in several countries within North America, Europe, Asia and Latin 
America (e.g. Mollalo, Rivera et al., 2020; Mollalo, Vahedi et al., 2020; 
Sannigrahi, Pilla, Basu, Basu, 2020; Sannigrahi, Pilla, Basu, Basu, 
Molter, 2020; Sigler et al., 2020; Wang et al., 2020), spatial assessment 
and modeling of disease transmission in the GCC is rare. Accordingly, 
and drawing from spatial modeling of COVID-19 incidence that has been 
conducted elsewhere, this research attempts to bridge this gap by 
developing a local spatial model of disease incidence rates in Oman. 
Various sociodemographic determinants, three regressive global models 
(OLS, SLM, and SEM) and two local models (GWR, and MGWR) were 
employed to predict spatial variation in the COVID-19 distribution 
across the Omani subnational boundaries. 

The main aims of this research were:  

▪ To determine which sociodemographic risk factors relate to 
COVID-19 incidence rates. 

▪ To investigate whether the relationship between these socio-
demographic characteristics and disease incidence rates vary 
geographically.  

▪ To examine the impact that sociodemographic parameters have 
on the pandemic incidence, particularly how these affect the 
relationships between the sociodemographic risk factors on 
infection rates geographically. 

To our knowledge, this is the first study in the GCC countries and 
Oman which adopts advanced spatial techniques to analyze spatial 
patterns of disease prevalence. Such analysis could be valuable for 
health governance and provide key insights into alleviating the risks of 
disease transmission. 

Fig. 1. Location of the study area.  
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2. Study area and dataset 

2.1. Study area 

The Sultanate of Oman is situated in the far south-eastern corner of 
the Arabian Peninsula, extending from latitudes 16.40–26.20 degrees 
north and longitudes 51.50–59.40 degrees east. Oman shares borders 
with the United Arab Emirates (UAE) in the north and west, the 
Kingdom of Saudi Arabia in the west and the Republic of Yemen in the 
south (Fig. 1). The country covers a total land area of approximately 
309,500 km2 including several islands in the Gulf of Oman and the 
Arabian Sea. The country covers a diverse range of topographies, 
including mountain ranges, arid deserts, valleys (82 %), fertile plains, 
oasis, and islands (MRMWR, 2008). Most of central Oman is covered 
with a vast gravel desert plain, while the Al Hajar mountain ranges 
extending from the north-west of the country toward the south-east 
constitutes a barrier between the northern coasts and the interior 
desert (Garzanti, Andò, Vezzoli, & Dell’era, 2003). The climate is hot 
and dry in the interior areas, and humid in coastal areas. During the 
summer months, when most of the surrounding regions experience 
increasing temperatures, the monsoon occurs in the south of the coun-
try, particularly the Dhofar governorate, resulting in cooling rains and 
pleasant temperatures (Edgell, 2006). 

Administratively, Oman is divided into 11 governorates and 61 
Wilayats (states), with the Muscat governorate being the largest in terms 
of population size. It consists of six Wilayats including Muscat City as the 
capital of Oman. Approximately, 50 % of the total population (4.7 
million) is concentrated in Muscat and the Batinah coastal plain gov-
ernorates northwest of the capital (National Center for Statistics and 
Information (NCSI, 2020). In 2017, the annual population growth rate 
had decreased to 3.3 %, while the population density was 14.7 persons 
per km2 (Year book, 2018). The life expectancy at birth is 77.9 years, 
with a crude death rate of 2.4 per 1000 population in 2019 (UN, 2019). 
The highest population density was recorded in Muscat governorate 
with 364.8 persons per km2. 

2.2. Dataset 

The data used in this study were derived from the Ministry of Health 
(MOH) in Oman, which is responsible for monitoring COVID-19 daily at 
the Wilayat level across the country. Disease prevalence from 24th 
February to June was collected and the crude incidence rate was 
computed at the subnational level (Fig. 1). A geodatabase was developed 
within the GIS environment and ArcGIS Desktop 10.6 was utilized to 
link the health and demographic explanatory and response variables to 
the administrative boundary shapefile of the Omani administrative 
geographic units (Table 1). On 4th July 2020, the overall number of 
deaths was 203 47 % of which were aged 60 years and above (MOH, 
2020). 

Five global (OLS, SLM, and SEM) and local (GWR and MGWR) 
models were implemented to understand which sociodemographic fac-
tors are related to the incidence of COVID-19 in Oman. The local 
modeling process is an effective approach that builds upon traditional 
global regression by allowing non-stationary (local) rather than sta-
tionary parameter estimates to be computed (Fig 2). 

3. Methods and model specification 

3.1. Global regression modeling 

3.1.1. Ordinary least squares (OLS) 
The OLS linear regression is an inferential technique utilized pri-

marily to regress a dependent variable on other explanatory variables. 
The technique assumes a stationary and constant relationship over 
space. Accordingly, the implicit independence assumptions associated 
with the geographical data of interest may not hold (Hutcheson, 2011; 

Pohlmann & Leitner, 2003). In this research, the relationship between a 
response variable (y) and a collection of regressors or predictors (x1, x2, 
x3, xn..) is presented as a line of best fit. The OLS is characterized by: 

yi = β0 + b1x1 + b2x2 + bnxn + e (1) 

Table 1 
Description of explanatory variables and data sources.  

Parameters Description Source Rationale to disease 
incidence rates 

Population 
density 

The number of people per 
Wilayat calculated by 
dividing the total number 
of people by total land 
area. 

NCSI, 
Oman 

There is a significant 
association between 
population density, 
overcrowding and COVID- 
19 transmission (Gupta, 
Kumar Patel et al., 2020;  
Gupta, Banerjee et al., 
2020). 

Number of 
hospital 
beds 

The total number of beds 
in all hospital and health 
centers that are regularly 
maintained and available 
for patient care in each 
Wilayat. 

NCSI, 
Oman 

The capacity of healthcare 
system and hospital beds 
provide protection for 
non-infected population 
through isolating and 
treating infected people ( 
Khanijahani, 2020; Liang, 
Tseng, Ho, & Wu, 2020). 

Population 
aged 65+

Population aged 65 and 
above as a percentage of 
the total population in 
each Wilayat. 

NCSI, 
Oman 

There is a significant 
association between 
population density, 
overcrowding and COVID- 
19 transmission. 

Diabetes rate The prevalence of 
diabetes among adults 
calculated as the number 
of people with diabetes 
divided by the total 
population aged 18 and 
above. 

MOH, 
Oman 

Diabetes is considered as a 
risk factor for COVID-19 
infection. High diabetes 
rate is likely to be 
associated with high 
COVID-19 infection (Guo 
et al., 2020; Shah & Hux, 
2003). 

South Asian 
immigrants 

The number of South 
Asian immigrants 
(Indian, Bangladeshi, 
Pakistani, Philippian, 
and Seri Lankan) divided 
by the total number of 
immigrants in each 
Wilayat. 

NCSI, 
Oman 

South Asian immigrants 
are the largest groups in 
Oman and quite often they 
live in isolated and 
overcrowding households 
(Mansour, 2017). 

Western 
immigrants 

Number of immigrants 
from western countries 
divided by the total 
number of immigrants in 
each Wilayat. 

NCSI, 
Oman 

Examining whether the 
impacts of COVID-19 vary 
among immigrants from 
different groups (Choi 
et al., 2020). 

Arab 
immigrants 

Number of immigrants 
from Arab countries 
divided by the total 
number of immigrants in 
each Wilayat. 

NCSI, 
Oman 

Examining whether there 
is an association between 
disease incidence rate and 
this group of immigrants. 

Crude death 
rate 

The total number of 
deaths divided by the 
total population in each 
Wilayat and multiplied 
by 1000. 

MOH, 
Oman 

Examining whether there 
is a significant correlation 
between crude death rate 
and COVID-19 incidence. 

Number of 
physicians 

The total number of 
registered medical 
physicians in each 
Wilayat calculated as the 
doctor to population 
ratio of 1:1000. 

MOH, 
Oman 

The number of physicians 
is critical parameter in 
isolating suspected 
patients, and supporting 
infection prevention 
policy (Buerhaus, 
Auerbach, & Staiger, 
2020). 

Number of 
nurses 

The total number of 
registered medical nurses 
and midwives in each 
Wilayat calculated as 
nurses and midwives to 
population ratio of 
1:1000. 

MOH, 
Oman 

Examining whether there 
is a relationship between 
the number of nurses per 
1000 population and 
COVI-19 infection.  
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where yi signifies the dependent variable observation (COVID-19 inci-
dence rate) at the ith locations (Omani Wilayats), β 0 is the estimated 
intercept and indicates the value of y when x equals to zero, b1 is the 
parameter estimate for x1. xn denotes the set of explanatory variables, bn 
indicates the regression coefficients that describe changes in the 
dependent variable y when x changes by one unit. 

To assess the magnitude of any multicollinearity in the regression 
model, the variance inflation factor (VIF) was adopted. For every 
explanatory variable, a VIF value greater than 10 indicates a state of 
high intercorrelation with other predictors and that the variable should 
be removed (Montgomery, Peck, & Vining, 2012). The VIF factor is 
calculated as follows: 

VIFI =
1

1 − R2
i

(2)  

where R2 represents the coefficient of determination in the regression 

equation. 

3.1.2. Spatial autoregressive models 
Although the OLS model assumes that COVID-19 incidence rates at 

the subnational level are independent of each other, it does not consider 
spatial dependence, and many explanatory variables may be spatially 
correlated and omitted from the model. Therefore, the OLS was 
considered as a misspecified model (Ward & Gleditsch, 2018), and two 
spatial autoregressive models SLM and SEM were employed since both 
are variants of OLS and account for spatial weights and dependence 
(Anselin, 1988, 2003). 

3.1.2.1. Spatial lag model (SLM). The model estimates the spillover ef-
fects of a specific variable over space, assuming the dependency between 
the response variables and a set of explanatory variables. The SLM is 
calculated as follows: 

Fig. 2. Distribution of the dependent variable (COVID-19 incidence rate) across subnational boundaries.  
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yi = β0 + xiβ + ρwi + εi (3)  

where ρ is the spatial lag coefficient (spatial autoregressive parameter), 
while w is a spatial weights matrix demonstrating the distance rela-
tionship between observations i and j. The weights matrix and the 
spatially lagged dependent variable both depict the spillover effects 
from adjacent locations. 

3.1.2.2. Spatial error model (SEM). The SEM utilises a form of spatial 
dependence which works through the error terms instead of the 
dependent variable, in this case, the distribution of errors over spatial 
units (Anselin, 2003; Oud & Folmer, 2008). The SEM model includes a 
spatial autoregressive error term and is computed as follows: 

y = α + ρWy + (β)x + ε with ε = λ(W)ε + μ (4)  

Where y represents an element vector of observations of the dependent 
variable COVID-19 incidence rate and a is the intercept, Wy specifies the 
spatially lagged dependent variable for weighting contiguity matrix W, 
while ρ illustrates the spatial autoregressive parameter of Wy, which is 
estimated for the whole model, ε denotes the vector of error term, λ 
designates the coefficient of spatially lagged autoregressive errors, (W)ε, 
while u indicates the vector of independent identically distributed 
errors. 

3.2. Local regression modeling 

3.2.1. Geographically weighted regression (GWR) 
The above global regression models assume that the relationship 

between the response and explanatory variables is stationary (i.e., 
constant) across a study area which means these relationships do not 
vary over space (Brunsdon, Fotheringham, & Charlton, 1996; Fother-
ingham, Charlton, & Brunsdon, 1998). To relax this assumption and 
allow the parameters to vary spatially, GWR assumes that 
non-stationary relationships exist between the response variable and the 
explanatory variable(s). Therefore, the model estimates a local param-
eter for each location separately (Brunsdon et al., 1996; Charlton, 
Fotheringham, & Brunsdon, 2009; Fotheringham et al., 1998). The GWR 
model is calculated as follows (Fotheringham, Brunsdon, & Charlton, 
2003): 

yi = β0i(ui, vi) +
∑k

n=1
βni(ui, vi)xni + εi (5)  

where yi is the COVID-19 rate at Wilayat i, (ui, vi) represents the co-
ordinates of the centroid of Wilayat i, β0i, βni indicates the local esti-
mated intercept and effect of variable n for Wilayat i, respectively, xni 
refers to the values of the ith explanatory variables while εi denotes a 
random error term. Parameter estimates for each independent variable 
and at each Wilayat in matrix form is given by (Fotheringham & Oshan, 
2016): 

β̂(i) = ( X’W(i)X)− 1 X’W(i) (6)  

where ^β indicates the vector of parameter estimates (p × 1), X displays 
the matrix of the selected independent variable (n × p), W(i) is the 
matrix of spatial weights (n × n) while y implies the vector observation 
of COVID-19 rates (p × 1). The matrix W(i) is constructed from the 
weights of each spatial unit according to its distance from location i. 
Implementing the model calibration, the Gaussian and bisquare 
weighting kernel functions are the most common techniques where the 
Wilayats nearby to i have larger effects on the estimation of βni(ui,vi) than 
those located farther from i. The kernel function and bandwidth should 
be specified where the bandwidth is determined based on the Euclidean 
distance and number of nearest neighbors. Selecting different band-
widths affects the type of neighborhoods in which local weighting oc-
curs (Mollalo, Rivera et al., 2020; Mollalo, Vahedi et al., 2020). 

3.2.2. Multiscale geographically weighted regression (MGWR) 
GWR provides advantages to the regression modeling process and 

accounts for spatial variations, considering the spatial scale to be con-
stant over space, however, in many cases, a fixed spatial scale is not valid 
where phenomena involve numerous spatial processes with various 
spatial scales. MGWR allows the relationship between the response 
variable and explanatory variables to vary spatially and at different 
scales (Fotheringham, Yang, & Kang, 2017; Mollalo, Rivera et al., 2020; 
Mollalo, Vahedi et al., 2020; Yu et al., 2020), incorporating various 
bandwidths over the study area surface and is calculated as follows: 

yi =
∑m

j=0
βbwjxij + εi (7)  

where bwj represents the bandwidths, which are utilized to calibrate the 
jth conditional relationship (Fotheringham et al., 2017). For each pro-
cess, every single bandwidth exhibits a unique scale where the model 
relies on a backfitting algorithm that derives a set of bandwidths for the j 
processes. Compared to GWR, the model has several advantages, 
particularly it can accurately depict spatial heterogeneity, diminish 
collinearity, and lessen the bias in the parameter estimates (Oshan, Li, 
Kang, Wolf, & Fotheringham, 2019; Wolf, Oshan, & Fotheringham, 
2018). 

3.3. Model fitting 

A range of sociodemographic and health variables are included 
within the modeling process to determine which factors are associated 
with COVID-19 incidence rate. Giving the relatively large number of 
explanatory variables, a stepwise forward procedure was implemented 
to eliminate the non-significant predictors and identify a single model 
with the best fit. Furthermore, the VIF was used to check the multi-
collinearity among the independent variables and consequently, the 
uncorrelated regressors were selected as the input of the regression 
model. 

To express the potential for interaction between observations at each 
pair of spatial units, a spatial weight matrix was generated based on 
first-order Queens’ contiguity which specifies whether spatial units 
share a boundary or not. The key function of the spatial weight matrix is 
to represent the structure of spatial features (polygons) and quantify the 
existing relationships among them (Wang et al., 2020). As the spatial 
autocorrelation is embedded in the local model (GWR), the spatial 
weight matrix is an indispensable component in the model (Brunsdon, 
Fotheringham, & Charlton, 2002). According to Tobler’s first law of 
geography (Tobler, 1970) and when the model parameters are esti-
mated, the neighboring zones (Wilayats) of the model’s variables should 
obtain more weights than distant ones. In this study, the selected 
first-order Queens’ contiguity reflects how administrative spatial zones 
(Wilayats) interact with each other. 

Developing the local models, the kernel function type of adaptive 
bisquare with its bandwidth size was specified. The bandwidth is 
adaptive defined as the proportion of data points involved in the cali-
bration process of a local estimate, which eliminates the influence of 
spatial units outside the neighborhood. Evaluating and comparing the 
model fit and performance, a corrected Akaike Information Criterion 
(AICc) was used to select the optimal bandwidth (Guo, Ma, & Zhang, 
2008; Oshan et al., 2019). All estimates of the coefficients included 
within the final fitted model were statistically highly significant with 
p-values less than 0. 005. The best model fit is indicating by a larger 
adjusted R2 and a smaller AIC value. 

4. Findings 

The outcome of the OLS global model is shown in Table 2. The co-
efficient estimates are highly significant with p-values less than 0.005. 
The VIF values of all independent variables revealed low multi-
collinearity (all values were less than the threshold of 5). The coefficient 
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estimates are a mix of positive and negative values. For example, the 
coefficient estimates of elderly population (aged 65 and above) are 
positive indicating that an increase in elderly population size is associ-
ated with an increased rate of disease incidence. The coefficient esti-
mates also indicate that the rate of the elderly population was the most 
influential variable, followed by population density and diabetes rate. 

The global OLS model demonstrated a low adjusted R2 (0.58) indi-
cating that 41 % of the variance in COVID-19 incidence rates across the 
Omani Wilayats remain unexplained and caused by unknown variables 
(Table 4) spatial non-stationarity exists in the relationship between the 
response and explanatory variables. Hence, the OLS global model which 
assumes a constant functional structure across space is not sufficient to 
describe the underlying relationship. The performance of global 
modeling was improved by using the SAR models (SLM and SEM) to 
characterise the relationship between the sociodemographic drivers and 
the disease incidence rate. The lag coefficients were strongly positive (p 
< 0.000) and the adjusted R2 of both SLM and SEM increased to 0.62 and 
0.65, respectively (Table 3), while the AICc slightly decreased. None-
theless, although the SLM and SEM models provided a closer fit than OLS 
according to the R2 and AICc diagnostic criteria, the models were unable 
to reveal any spatial variation that might occur in the inter-variable 
relationships across the study area. This can be attributed to the 
neglected scale of spatial processes involved in modeling the disease 
incidence rates. Accordingly, a spatially non-stationary local modeling 
approach was adopted next. 

To explore the local spatial variation in the relationships with the 
COVID-19 incidence rates, GWR and MGWR were applied to the same 
set of predictors used in the global models. The diagnostics of GWR 
indicated a relatively improved adjusted R2 and AICc. Fitting GWR using 
optimal bandwidth of 54.0, the model R2 increased to 0.69 while the 
AICc decreased to 122.55 which is substantially smaller than that of the 
global model (304.16) indicating a better fit. However, among all fitted 
models, MGWR represented the largest adjusted R2 (0.71) and lowest 
AICc (120.141). Figs. 3 and 4 map the coefficients of the GWR and 
MGWR for the statistically significant variables. The coefficient esti-
mates of the elderly population (65+) vary across the study area (Fig. 3). 
In both GWR and MGWR, the variable represents similar patterns in 
describing the spatial distribution of COVID-19 incidence rates at the 
Wilayat level. The largest positive values in some areas are associated 
with higher COVID-19 incidence rates, specifically within Muscat gov-
ernorates. However, there were also positive coefficient estimates in 
some Wilayats where the percentage of the population aged 65 and 

above was low, such as ASeeb, Bowsher (Muscat governorate), and 
Barka (South Al-Batnah). The number of hospital beds in each Wilayat 
was an influential factor in explaining the variation in the COVID-19 
incidence rates across the northwest study area (e.g. Saham, Liwa) 
and within the Muscat governorate (Aseeb, Qurayat). 

The coefficient estimates of hospital beds show a negative associa-
tion with COVID-19 incidence rates in Wilayats of the Al-Wusta and 
Dhofar governorates. Other Wilayats, such as Adam and Iski (Al- 
Dakhaliya) and Dank (Al-Dhahra) where the GWR and MGWR models 
were less predictive, have a low number of hospital beds but a statisti-
cally negative association with disease incidence rate. 

Fig. 4 illustrates that in both GWR and MGWR, the population den-
sity was a significant regressor in describing the spatial distribution of 
COVID- 19 incidence rates in the study area, particularly in the Wilayats 
located in the north and northeast. The GWR coefficient map of popu-
lation density demonstrates that positive estimates in the spatial pattern 
stretched from the northwest to the southeast, in particular, Al-Batnah 
South as well as some of Al-Sharqiyah Wilayats, suggesting a large 
correlation between population concentration and disease incidence in 
these areas. A similar spatial structure appears in the MGWR coefficient 
map, where a variation of coefficient estimates across the regions can be 
depicted. Overall, the smaller negative coefficient estimates were found 
in the northern and southern parts of the country, indicating a weaker 
relationship between population density and COVID-19 incidence rates. 
In contrast, the larger estimates in the north of the country are associ-
ated with a larger population. 

Fig. 4 also shows the GWR and MGWR coefficient results for diabetes 
rate, with a range of positive GWR coefficient values located in the north 
of the study area, specifically in the South Al-Batnah and Muscat gov-
ernorates. The coefficient estimates are smaller in the southeast some of 
the areas, particularly along the coastal Wilayats. This shows that the 
diabetes covariate explains the COVID-19 incidence rate where people 
with diabetes are more likely to be at increased risk of infection. The 
spatial patterns of estimation coefficient for diabetes follow the 
observed pattern of COVID-19 incidence rates, where some Wilayats 
within Al-Dakhliah, South Al-Batnah, and Muscat governorates show 
notably elevated observed incidence rates. However, the impact of 
diabetes on COVID-19 incidence rates was inconsistent between the 
GWR and MGWR models. 

Fig. 5 reveals the spatial heterogeneity in terms of subnational fitting 
which was reflected in the spatially varying local R2 of both the GWR 
and MGWR models. The GWR model fits better in the northwest, spe-
cifically Ibri, Liwa, Shinas, and Musandam, whereas the local R2 was 
consistently low in the central and south of the country. Similarly, the 
local R2 of MGWR indicates that the model also predicts accurately and 
explains local relationships better (R2 > 0.7) in the northern parts and 

Table 2 
Summary statistics of global OLS model.  

Variable Coefficient St. 
Error 

t- 
Statistic 

Probability VIF 

Intercept 6.4842 1.5567 4.1651 0.0001 – 
Population 65+ 0.1853 0.0381 4.8602 0.0000 1.4064 
N. of hospital beds − 0.0642 0.0032 − 2.0103 0.0042 1.9766 
Population density 0.0771 0.0010 7.0855 0.0000 1.8069 
Diabetes rate (per 

1000) 
0.0660 0.0301 2.1909 0.0026 1.2695  

Table 3 
Summary statistics of SLM and SEM models.  

Variable 
Coefficient St. Error Z-score P-value 

SLM SEM SLM SEM SLM SEM SLM SEM 

Intercept 5.9343 6.4712 0.1804 1.4864 1.3930 4.3536 0.1636 0.2310 
Population 65+ 0.7215 0.0076 1.5271 0.0010 3.8859 7.2550 0.0001 0.0000 
N. of hospital beds − 0.1743 − 0.1853 0.0010 0.0367 6.8964 − 5.0473 0.0000 0.0000 
Population density − 0.0621 − 0.0064 0.0370 0.0030 − 4.6994 − 2.1012 0.0000 0.0006 
Diabetes rate (per 1000) 0.0530 0.0663 0.0030 0.0294 − 2.0420 2.2544 0.0004 0.0001 
Rho 0.2513 – 0.0316 – 11.7538 – 0.0019 – 
Lambda – 0.0935  0.2541  0.3679  0.0079  

Table 4 
Comparison of the goodness of fit measures for the global and local models.  

Criterion OLS SLM SEM GWR MGWR 

Adj.R2 0.581 0.621 0.651 0.697 0.711 
AICc 307.261 304.162 303.612 122.556 120.142  
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some Wilayats in the east, such as Sur and Jaalan Bani Bu Hassan. 
Noteworthy, the larger local R2 distribution pattern is associated with 
Wilayats characterized by large population size and a higher number of 
health facilities, whereas the smaller local R2 coefficients (R2 < 0.5) of 
Al-Wusta and Dhofar governorates reveals a poor model fit, probably 
due to the significant local variability of their spatial and demographic 
characteristics. 

The local model performance was demonstrated by plotting the 
observed against predicted values of the COVID-19 rate (Fig. 6). 
Although the goodness-of-fit of both local models was higher than the 
global model, the MGWR provided slightly richer estimates for the 
COVID-19 incidence rates compared to OLS and GWR. The summary 
statistics for the local coefficients of MGWR are provided in Table 5, 
including the mean, standard deviation, median, maximum, and band-
width. Overall, the global models produced more generalized spatial 

patterns that hindered local variation, while the GWR and MGWR pro-
duced more accurate estimates of disease rate by taking into account 
local characteristics and spatial heterogeneity. 

In this research, a cross-validation process was adopted to spatially 
determine how many zones (Wilayats) were needed to solve the local 
regression model structure . Consequently, AICs was employed to form 
the adaptive number and identify the best appropriate number of 
neighbouring polygons using the adaptive kernel method (Brunsdon 
et al., 1996). Moreover, the calibration of the local models (GWR & 
MGWR) rendered a matrix of optimal bandwidths (Table 6) which is 
considered as a spatial scale of the model processing. For example, the 
explanatory variables of population aged 65+ (BW:49 neighbours) and 
Hospital beds (BW:49 neighbours) operated on a local scale in the 
MGWR compared to their process in the GWR (BW: 54 &57 
respectively). 

Fig. 3. The effects of populations aged 65+ (above) and hospital beds (below) in describing COVID-19 incidence rates utilizing GWR (left) and MGWR (right) models 
across the Omani Wilayats. 

S. Mansour et al.                                                                                                                                                                                                                                



Sustainable Cities and Society 65 (2021) 102627

9

The residuals are the differences between the observed and predicted 
values of COVID-19 rates. Considering the spatial distribution of re-
siduals is an important key indicator of model structure and perfor-
mance. Fig. 7a & b illustrates a comparison between the residuals of 
GWR and MGWR models. The light colors show low residuals while the 
darker colors reveal either overestimation or underestimation. Overall, 
both maps show random distribution with strong consistency across the 
study area. Similarly, Fig. 7c & d exhibit fitted residuals against the 
predicted values of the dependent variables in both models and it seems 
that the distribution demonstrates a random pattern of over-under 
estimation which indicates properly specified local models. 

5. Discussion 

The current COVID-19 pandemic has evolved rapidly into one of the 
most threatening and devastating public health crises in recent history. 
While most COVID-19 studies have been undertaken from a medical 
perspective or focused on epidemiological evolution, there is a growing 
literature applying spatial analysis and disease mapping, particularly in 
the developed world (e.g. Chen et al., 2020; Mollalo, Rivera et al., 2020; 
Mollalo, Vahedi et al., 2020). Nevertheless, spatial modeling of disease 
spread at subnational boundaries, especially in developing countries is 
still rare. Spatial modeling of disease outbreaks is important not only to 
assess where and why hotspots and clusters are located but also to 
provide explicit perceptions of the spatial variation in disease incidence 
and transmission. Likewise, little work has been conducted regarding 

Fig. 4. The effects of population density (above) and diabetes (below) in describing COVID-19 incidence rates utilizing GWR (left) and MGWR (right) models across 
the Omani Wilayats. 
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how sociodemographic determinants of the COVID-19 incidence rates 
vary geographically across the GCC states. Therefore, the overall goal of 
this research was to provide clear insights into the relationships between 
sociodemographic characteristics and disease incidence rates in Oman at 
the subnational level. 

Methodologically, several advanced geospatial techniques offer an 
opportunity to drastically increase the accuracy of spatial estimates of 

disease incidence rates at the local geographical scale. In this research, 
while global models (OLS, SLM, SEM) performed well, local (GWR, 
MGWR) based on an ensemble of local regressions, provided a parsi-
monious quantitative representation of the sociodemographic de-
terminants that may influence COVID-19 incidence rates. The outputs of 
MGWR overcame the disadvantages and drawbacks of global modeling 
where the relationship between variables is constant across the study 
area. 

The key findings from this research were that a set of sociodemo-
graphic and health variables were found to impact on COVID-19 inci-
dence rate and that these factors vary geographically. More specifically, 
our results indicated a considerable spatial heterogeneity in COVID-19 
incidence rates along the urban-rural gradient. The higher rates of dis-
ease incidence within the Muscat governorate were specifically across 
urban Wilayats and associated with higher population densities, 
consistent with previous studies that reported the positive influence of 
overcrowding and population densities on transmission rates (Sigler 
et al., 2020; Sirkeci & Yucesahin, 2020). In contrast, low incidence rates 
of COVID-19 in North Al-Batnah Wilayats were associated with low 
influences of explanatory factors such as population age, density, and 
diabetes, which may be explained by their more rural, semi-urban and 
less crowded residential environment. 

Accounting for the impact of demographic characteristics on disease 
incidence risk, population aging is fundamental and contributes signif-
icantly to the spread of COVID-19 (Sun, Lu, Xu, Sun, & Pan, 2020; Tian 
et al., 2020). The findings demonstrated that the elderly population 
(aged 65+) was an influential factor in explaining spatial variation in 

Fig. 5. Spatial distribution of local R2 of GWR and MGWR models for COVID-19 incidence rate associated with the significant covariates across the Omani Wilayats.  

Fig. 6. Observed values of COVID-19 versus estimated values of OLS, GWR, and MGWR models.  

Table 5 
Summary statistics for MGWR parameter estimates.  

Variable Mean STD Min Median Max 

Intercept − 0.037 0.008 − 0.054 − 0.037 − 0.021 
Population 65+ 0.475 0.131 0.887 0.414 0.355 
N. of hospital beds − 0.209 0.117 − 0.456 − 0.154 − 0.124 
Population density 0.752 0.003 0.745 0.752 0.760 
Diabetes rate (per 1000) 0.245 0.021 0.190 0.255 0.259  

Table 6 
Multiscale bandwidth for the local models: GWR and MGWR.  

Variable GWR Bandwidth MGWR Bandwidth 

Intercept 60 60 
Population 65+ 54 49 
N. of hospital beds 57 49 
Population density 60 60 
Diabetes rate (per 1000) 60 60  
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disease incidence, particularly in the Wilayats located in the northwest 
and northeast of the country. These areas are characterized by a small 
proportion of immigrants and, thus a lower percentage of young people, 
consequently, as the disease may progress faster in the elderly than in 
the young, the incidence rates were higher among the Omani elderly. 

There is a debate about the relationship between underlying diabetes 
and COVID-19 incidence rates, with some studies reporting that diabetes 
is a risk factor for COVID-19 infection (e.g. Guo et al., 2020; Shah & Hux, 
2003), while other studies indicating that the evidence remains 
controversial regarding whether diabetes increases vulnerability and 
influences the consequences from infections (Fadini et al., 2020; Li et al., 
2020). In this research, COVID-19 incidence was associated with dia-
betes, specifically in the central northern part of the Muscat gover-
norate, with a low local association between infection rates and diabetes 
in southern areas. The geographical difference in diabetes rates was 
considered as an important indicator for explaining variation in disease 
incidence across the subnational zones of the study area. Ultimately, 
areas with large elderly populations and high diabetes rates were more 
at risk of disease prevalence. 

The findings of the local models (GWR and MGWR) pointed to the 
substantial impact of the health system and medical care on disease 
incidence. Although two variables (physicians and nurse practitioners) 
were not significant predictors, hospital beds had a strong negative 
relationship with the disease rate. Wilayats of Muscat and Al-Batnah 
governorates located in the northern part of the country showed large 
coefficient estimates compared to other Wilayats in the central and 
southern parts. This distribution pattern seems to be reasonable as in the 
north, most settlements are urban neighborhoods with an increased 
number of public and private hospitals. 

In Oman, the government has attempted to control the spread of 
disease, with preventative measures constituting the first line of defense 
policy. Additionally, to prevent the geographical spread of COVID-19, 
several spatial procedures have been implemented, such as applying 
quarantine procedures to Mutrah Wilayat from 1st April 20220 due to 
the higher rates of infection among residents, followed by the complete 
isolation of Muscat governorate from 10th to 22nd April. However, in 
reality, overcoming this epidemic requires many integrated strategies 
that extend to all social, economic, logistical, and humanitarian aspects 
as well as geographical measures. Furthermore, COVID-19 infection 
rates cannot be studied geographically through global models, but 
rather disease prevalence should be assessed in the context of possible 
spatial dependence, autocorrelation, and non-stationary relationships. 

This analysis is an attempt to provide a greater understanding of the 
sociodemographic determinants of COVID-19, delving deeper into 
where these factors are likely to influence disease incidence. Subse-
quently, this research has various policy implications. First, the outcome 
of this analysis can serve as a spatial guideline for decision-makers to 
formulate COVID-19 mitigation strategies across Oman and other sur-
rounding countries. Second, quantifying the sociodemographic de-
terminants of COVID-19 incidence rates on the subnational scale not 
only can provide spatially explicit information about disease infection 
drivers but also can help scale up intervention pathways to identify lo-
calities at high risk of infection. Third, although the output of our 
analysis showed that specific demographic characteristics, such as 
immigrant classes and nationalities, were not significantly influential 
parameters on COVID-19, further research should include additional 
explanatory variables to model spatially the disease incidence rates. 
Finally, similar local modeling utilizing GWR and MGWR can be applied 

Fig. 7. Spatial distribution of the MGWR and GWR residuals.  
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elsewhere within the GCC region or in other developing countries within 
a different spatial framework, including various determinants, particu-
larly ecological and environmental parameters, to identify spatial as-
pects of susceptibility, vulnerability, exposure and risk factors of COVID- 
19 infections in local communities. 

Furthermore, the findings may provide effective and clear guidelines 
regarding developing subnational plan to mitigate disease incidence. For 
instance, according to the results of this study, policy makers can 
establish spatial monitoring frameworks based on the major socio-
demographic indicators and risk factors influencing disease trans-
mission across local communities. Likewise, a risk assessment plan can 
be developed which targets lessening inequalities in healthcare systems 
particularly reducing the gaps in health facilities coverages and acces-
sibility to hospitals between communities in urban areas, major cities 
and small villages and rural settlements. In addition, any spatial action 
plan at subnational scale should be developed to enhance community 
preparedness and resilience in mitigating COVID-19 incidence rates. 

The outcomes of the local models substantially can help effectively to 
map and identify vulnerable populations and social groups that are at 
high risks of disease infection such as elderly people, people with long 
term illness, and patients in hospitals. Besides, several spatial actions 
can also be taken by the Omani decision makers to reduce the disease 
transmission through intervention, preventive and mitigation measures 
that reduce introducing or reintroducing the virus from high-infected 
places to low-infected or non-infected communities. Also, disease inci-
dence risks and spatial clusters of high rates and their associations to 
sociodemographic covariates and other social customs are essential and 
should be taken into account. For instance, in most of the Omani rural 
and Bedouin communities, traditional events, gathering and social cel-
ebrations continue which may accelerate infection risks and disease 
transmission. 

Due mainly to data availability, most COVID-19 studies to-date have 
been conducted at the area level, most commonly at the national level. 
Similarly, the sub-national level of the analysis was selected based on 
data availability. However, in comparison to such national studies, our 
research has the advantage of ‘zooming in’ to reveal spatial variation at 
the subnational scale. Nevertheless, this is an ecological study utilizing 
aggregated data of disease incidence rate. As such, it is acknowledged 
that our findings are necessarily influenced by scaling and zoning 
configuration choices implicit in the data. For this reason, it was not 
possible to integrate data on the personal characteristics of infected 
individuals or data at a finer spatial scale than the sub-national level. 
Another potential limitation is that the infection rate was calculated 
based on confirmed cases only, while suspected cases were not consid-
ered due to lack of availability and uncertainty. 

6. Conclusion 

Currently, at the time of writing, despite a range of prevention 
strategies, particularly social distancing, lockdowns and stay-at-home 
restrictions, COVID-19 is still widespread globally and is yet to be 
brought fully under control. Therefore, there is a need for more research 
on spatial modeling of disease transmission and dynamics at the 
community-level to identify possible drivers that may affect infection 
rates, and investigate the intricate connections between those factors. 
The importance of capturing the spatial variability of local COVID-19 
rates in the developed world is increasingly recognized. However, in 
most developing countries, datasets regarding disease prevalence are 
limited. Consequently, modeling the spatial variation in the incidence 
rates and determinants of disease is challenging. 

This research utilized a spatial modeling framework to explore the 
relationship between incidence rates and a set of sociodemographic and 
health covariates in the Omani subnational administrative zones. Global 
(OLS, SLM, SEM) and local (GWR, MGWR) regression models were 
applied and compared to explain the spatial variation in infection rate. 
Overall, while the global models did not adequately represent the 

observed spatial variation, the goodness-of-fit of local models was 
greater and the models were able to capture local patterns, especially 
MGWR which provided the best overall fit. Moreover, and compared to 
using GWR alone, the MGWR was useful for modelling spatial variation 
in COVID-19 incidence rates at local geographic scales. In addition, 
incorporating the MGWR model lessens the effects of the common 
problem of aggregated data, particularly Modifiable Areal Unit Problem 
(MAUP) (Fotheringham & Wong, 1991; Openshaw, 1979). Accordingly, 
the spatial variability of this model across the Omani Wilayats depicted 
various spatial patterns of COVID-19 rates in response to significant 
sociodemographic parameters. 

To the best of our knowledge, this is the first study to model COVID- 
19 incidence rates at subnational boundaries in the GCC states. Hence, 
the outcomes of this analysis could allow a closer focus on COVID-19 
prevalence and its sociodemographic covariates to further mitigate 
incidence rates and support controlling the disease not only in Oman or 
the GCC states but also across other developing nations. 
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