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Abstract

This study reports on airborne measurements of stratocumulus cloud properties under varying 

degrees of influence from biomass burning (BB) plumes off the California coast. Data are reported 

from five total airborne campaigns based in Marina, California, with two of them including 

influence from wildfires in different areas along the coast of the western United States. The results 

indicate that subcloud cloud condensation nuclei number concentration and mass concentrations of 

important aerosol species (organics, sulfate, nitrate) were better correlated with cloud droplet 

number concentration (Nd) as compared to respective above-cloud aerosol data. Given that the 

majority of BB particles resided above cloud tops, this is an important consideration for future 

work in the region as the data indicate that the subcloud BB particles likely were entrained from 

the free troposphere. Lower cloud condensation nuclei activation fractions were observed for BB-

impacted clouds as compared to non-BB clouds due, at least partly, to less hygroscopic aerosols. 

Relationships between Nd and either droplet effective radius or drizzle rate are preserved 

regardless of BB influence, indicative of how parameterizations can exhibit consistent skill for 

varying degrees of BB influence as long as Nd is known. Lastly, the composition of both droplet 

residual particles and cloud water changed significantly when clouds were impacted by BB 

plumes, with differences observed for different fire sources stemming largely from effects of 

plume aging time and dust influence.
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1. Introduction

An extensively studied cloud type influenced greatly by aerosols is stratocumulus (Sc). This 

is the dominant cloud type by area globally (Warren et al., 1986), covering approximately 

one fifth of the Earth surface on an annual basis (Wood, 2012). These clouds are climatically 

very important as their shortwave cloud albedo forcing is larger than their longwave cloud 

greenhouse forcing, resulting in net cooling over the regions they cover (Chen et al., 2000; 

Harrison et al., 1990; Hartmann & Short, 1980; Herman et al., 1980; Stephens & Greenwald, 

1991). The role of these clouds in Earth's radiation budget is significant as a small variation 

in their microphysical properties can lead to a large impact on Earth's energy balance. For 

instance, Slingo (1990) reported that the radiative impact exerted by doubling of carbon 

dioxide (CO2) can be offset under the following circumstances: (i) 15–20% increase in 

amount of low clouds, (ii) 20–35% increase in liquid water path (LWP), and (iii) 15–20% 

decrease in mean droplet effective radius (re). In another study, Jones et al. (2009) suggested 

that a modification of Sc microphysical properties via geoengineering activities can partially 

offset radiative forcing associated with greenhouse gas levels.

The northeast Pacific (NEP) Ocean region is home to one of the three major Sc decks in the 

world and is impacted by multiple wildfire incidents annually, with the prevalence and 

severity of events expected to increase in coming years (Barbero et al., 2015; Dennison et 

al., 2014; Flannigan et al., 2000; Hallar et al., 2017; Moritz et al., 2012). The general 

transport pattern of plumes from fires near the western United States coast results in biomass 

burning (BB) particles both above and within the marine boundary layer (MBL; Mardi et al., 

2018). This motivates BB-Sc interaction studies owing to the impact BB plumes can have on 

the MBL (Brioude et al., 2009; Johnson et al., 2004), with poorly characterized and 

potentially different effects if the plumes reside either above or below the cloud deck.

There is a growing number of field studies investigating the role of BB particles in both 

serving as cloud condensation nuclei (CCN) and altering cloud microphysical properties. 

Recent examples in the southeast Atlantic (SEA) region were reviewed by Zuidema et al. 

(2016) and include ObseRvations of Aerosols above CLouds and their intEractionS, Layered 

Atlantic Smoke Interactions with Clouds, Aerosol Radiation and Clouds in southern Africa, 

and Clouds and Aerosol Radiative Impacts and Forcing: Year 2016, in addition to older 

campaigns such as the Southern African Regional Science Initiative (SAFARI 2000; Swap et 

al., 2002). Past work has examined the vertical distribution of BB aerosols relative to the Sc 

deck and the extent to which BB layers in the SEA region remain well separated from the 

underlying Sc deck (Das et al., 2017; Lu et al., 2018; Rajapakshe et al., 2017). The vertical 

distance between BB aerosols and the Sc deck plays a vital role in BB layer impact on Sc 

radiative properties (Costantino & Bréon, 2010, 2013; Diamond et al., 2018; Koch & Del 

Genio, 2010; Wilcox, 2012).

While there has been extensive research focused on the SEA region for BB-Sc interactions, 

less is known about BB-Sc interactions over the NEP region, which traditionally has 

received attention due to extensive shipping that leads to strong aerosol perturbations that 

facilitate aerosol-cloud interaction research (e.g., Russell et al., 2013; Sorooshian et al., 

2019). Wildfires over the western United States, especially along the coast (Dadashazar et 
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al., 2019; Maudlin et al., 2015; Schlosser et al., 2017), allow for an opportunity to examine 

how strongly aerosol perturbations in a form other than shipping impacts the Sc deck. The 

current study serves as the second part to a previous study (Mardi et al., 2018), which 

investigated characteristics of the BB plumes (e.g., altitude, location relative to cloud top 

height, thickness, number of vertically adjacent layers, interlayer distances, and aerosol size 

distributions) and vertical profiles of shortwave heating rates in the presence of BB plumes. 

This study uses the same data set to address the impact of BB particles on Sc microphysical 

and chemical properties for the NEP region, with a focus on the following: (i) relationships 

between aerosol perturbations and cloud microphysical characteristics such as droplet size 

distributions and drizzle rate; (ii) variations in vertical structure of cloud Nd due to BB 

plumes interacting with clouds; and (iii) the influence of BB aerosols on cloud droplet 

residual particle and cloud water composition. The results of this work have implications for 

general understanding of aerosol-cloud interactions, especially for regions facing growing 

amounts of exposure to BB emissions.

2. Experimental Methods

2.1. Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter Missions

Airborne data reported in this work were collected by the Center for Interdisciplinary 

Remotely-Piloted Aircraft Studies Twin Otter aircraft during five separate field campaigns: 

(i) the first Marine Stratus/Stratocumulus Experiment (MASE I, July 2005); (ii) the second 

Marine Stratus/Stratocumulus Experiment (MASE II, July 2007); (iii) the Nucleation in 

California Experiment (NiCE, July-August 2013); (iv) the Biological and Oceanic 

Atmospheric Study (BOAS, July 2015); and (v) the Fog And Stratocumulus Evolution 

(FASE, July-August 2016) experiment. Detailed information for each campaign, including 

flight tracks, instruments onboard the aircraft, and measurement details such as quality 

control and assurance protocols are explained in Sorooshian et al. (2018). Of relevance to 

this work is that each flight contained aircraft soundings during which vertical profiles were 

obtained between the subcloud and above-cloud regions via either a spiral or slant maneuver. 

More detailed descriptions of soundings can be found in Sorooshian et al. (2018).

Extensive wildfire activity was present in the study region during two of the campaigns, 

specifically the NiCE and FASE campaigns. During NiCE, BB plumes were transported 

parallel to the California coastline from the California-Oregon border where there was a 

cluster of fires (Sorooshian et al., 2015): Big Windy, Whiskey Complex, Douglas Complex. 

During FASE, the source of the BB aerosols was much closer to the study domain as the 

Soberanes Fire (Garrapta State Park) and was only ~30 km southwest of the aircraft base in 

Marina, California (Schlosser et al., 2017). The criteria used to determine if an aircraft 

sounding during a particular flight was impacted by BB particles was if the aerosol number 

concentration (Na) measured with a Passive Cavity Aerosol Spectrometer Probe (PCASP; 

diameter >120 nm) exceeded 1000 cm3 at any altitude extending from near the surface to the 

free troposphere (FT). This criterion was defined based on measurements from 352 vertical 

soundings from more than 73 research flights without any BB influence, with the 1000 cm3 

threshold value exceeding the mean plus three times the standard deviation of Na during 

soundings without any BB impact (Mardi et al., 2018). This criterion was shown to be 
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reliable based on confirmation from carbon monoxide (CO) data and olfactory and visual 

evidence by flight scientists during the research flights. Plumes of BB particles impacted 

soundings in eight out of 23 and 12 out of 15 research flights during the NiCE and FASE 

campaigns, respectively.

Figure 1 demonstrates the spatial distribution of 30 BB-impacted soundings analyzed in this 

study. Traces of BB particles were observed either above or below the Sc layer. Cloud and 

aerosol data obtained from soundings of the other three field campaigns, in addition to non-

BB-impacted soundings in NiCE and FASE, are used here to represent background 

conditions to contrast with BB data.

2.2. Cloud Measurements

Cloud droplet size distribution characteristics such as droplet number concentration (Nd) and 

droplet effective radius (re) were measured with a Forward Scattering Spectrometer Probe 

(Particle Measuring Systems, Inc., modified by Droplet Measurement Technologies, Inc.) in 

20-diameter bins between 2 and 45 μm. Rain rate (R, mm day−1) was calculated using the 

size distribution of drops with diameters between 0.025 and 1.56 mm obtained from a Cloud 

Imaging Probe, in conjunction with documented relationships between drop size and fall 

velocity (e.g., Chen et al., 2012; Feingold et al., 2013). Cloud liquid water content (LWC) 

was measured using a PVM-100A probe (Gerber et al., 1994).

Compositional measurements were conducted two ways in clouds, specifically to 

characterize droplet residual particles and cloud water. The composition of cloud droplet 

residual particles was measured using a Compact Time-of-Flight Aerosol Mass 

Spectrometer (AMS; Aerodyne Research Inc.; Coggon et al., 2012) coupled to a Counter-

flow Virtual Impactor (CVI; Brechtel Mfg. Inc.) inlet. The AMS instrument measures 

nonrefractory constituents of particles. For the data sets used here, the cutpoint diameter of 

droplets sampled by the CVI was ~11 μm with a transmission efficiency that decreased with 

increasing droplet size mainly owing to inertial deposition (Shingler et al., 2012). Both the 

AMS and CVI were used in the NiCE campaign but not during FASE. Owing to 

uncertainties in quantifying accurate mass concentrations with the AMS downstream of the 

CVI (AMS-CVI), relative mass concentrations between species are the focus of the AMS-

CVI data.

For the NiCE campaign, cloud water samples were collected by a modified Mohnen slotted-

rod collector (Hegg & Hobbs, 1986), which was deployed manually out of aircraft during 

the in-cloud portion of research flights. Samples were stored in high-density polyethylene 

bottles in a cooler with a nominal temperature of 5°C. A detailed description of sampling 

process can be found in MacDonald et al. (2018). For the FASE mission, cloud water 

samples were collected with an axial cyclone cloud water collector (Crosbie et al., 2018) 

mounted on the aircraft wing. As air passes through the sampler, a helical flow pattern forms 

that centrifugally separates larger droplets from the flow and impacts them on the sampler's 

inner wall. These collected droplets get pumped to polypropylene centrifuge tubes that are 

capped immediately after collection and stored also at 5°C.
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Three types of analyses were conducted on cloud water samples, including pH, water-

soluble ionic composition, and water-soluble elemental composition. Sample pH was 

measured with a Thermo Scientific Orion 9110DJWP pH probe for the NiCE campaign and 

a Thermo Scientific Orion 8103BNUWP Ross Ultra Semi-Micro pH probe for the FASE 

campaign. Both probes were calibrated with 4.01 and 7.00 pH buffer solutions prior to 

measurements. Ionic composition was measured with the ion chromatography (IC) 

technique using a Thermo Scientific Dionex ICS-2100 system. Elemental composition was 

measured by Inductively Coupled Plasma Mass Spectrometry (Agilent 7700 Series) for 

NiCE and by triple quadrupole inductively coupled plasma mass spectrometry (ICP-QQQ; 

Agilent 8800 Series) for FASE. A list of each measured IC and ICP species and their limits 

of detection are provided in Table S1 of the supporting information. All mass concentrations 

from the cloud water analyses represent total air-equivalent concentrations by multiplying 

aqueous concentrations by the average LWC experienced during sample collection for when 

LWC exceeded a threshold value of 0.02 g m−3.

2.3. Aerosol Measurements

Aerosol size distribution data were obtained with a PCASP probe (Particle Measuring 

Systems, Inc., modified by Droplet Measurement Technologies, Inc.), which resolved 

number concentrations in 20 different diameter bins between 0.12 and 2.95 μm and 0.12 and 

3.42 μm for NiCE and FASE, respectively. CCN number concentrations were measured at 1-

Hz resolution by a continuous flow streamwise thermal gradient CCN counter (Droplet 

Measurement Technologies; Lance et al., 2009) at a constant supersaturation of 0.2%. 

Aerosol parameters reported subsequently as being above cloud denote vertically averaged 

values from cloud top to 100 m above tops. Also, below-cloud values refer to vertically 

averaged values from immediately below the cloud base to the lowest possible altitude at 

which data were collected below bases.

2.4. Case Study Analysis of BB Impacts on Sc

To gain insight into the impact of BB plumes on Sc microphysical properties, soundings 

with the highest level of BB aerosols are compared to those with lowest level of any type of 

aerosols (Figure 1). More specifically, the chosen BB-impacted soundings exhibited the 

highest PCASP Na concentrations above the cloud top, while the selected non-BB-impacted 

soundings exhibited the lowest total mass concentration among the cumulative set of species 

measured in cloud water samples. Relevant cloud and aerosol characteristics for these 

selected soundings are summarized in Table 1.

Owing to the difficulty of collecting cloud water during each sounding, the cloud water 

samples were collected during the horizontal flight legs in cloud near each sounding. Cloud 

water samples were denoted as BB-impacted if BB plumes were present either above or 

below the cloud layer. The same strategy was employed for the AMS-CVI measurements for 

which data were collected near the soundings as there was insufficient time during 

soundings to collect such data.
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3. Results and Discussion

3.1. CCN-Nd Relationship at Cloud Base and Top

Activation of CCN into cloud droplets occurs via several mechanisms. This typically occurs 

via updrafts carrying aerosols at cloud base (primary activation) or by entrainment through 

turbulent mixing at cloud top or edge (secondary activation; Hoffmann et al., 2015; Korolev 

& Mazin, 1993; De Rooy et al., 2013; Slawinska et al., 2012). The relative importance for 

each of these mechanisms in influencing the Nd budget may vary depending on various 

parameters such as level of turbulence or concentration of aerosols adjacent to a cloud either 

aloft in the FT or below in the MBL. Our measurements provide an opportunity to examine 

the relative degree of importance for both mechanisms.

Figure 2 examines the relationship between cloud layer-mean Nd and CCN0.2% 

concentrations based on 14 soundings with BB influence. Nd exhibited an average ± 

standard deviation of 125 ± 48 cm3, while above-cloud CCN0.2% exhibited an average of 

454 ± 493 cm3 as compared to 157 ± 97 cm3 below cloud. The results indicate a greater 

correlation between log (Nd) and log (CCN0.2%) below cloud base (r = 0.91; p < 0.01) as 

compared to log (CCN0.2%) above cloud top (r = 0.49; p = 0.08); note that in our discussion 

of correlative relationships, that p < 0.05 corresponds to statistical significance. The 

exponent of the power law fitted to the points is also different for each scenario, with values 

of 0.17 and 0.48 when using CCN0.2% above and below cloud, respectively. Past studies 

have quantified cloud responses to BB aerosols by computing the value of ∂ln(Nd)/

∂ln(CCN), which corresponds to the power of X for the power law fit depicted in Figure 2. 

For the SEA region, values of this parameter based on CCN0.3% data below and above cloud 

were 0.45 and 0.16 (Diamond et al., 2018), respectively. These values are comparable to 

those shown in Figure 2 of this study based on CCN0.2% data.

As another way of examining whether above-cloud or subcloud aerosols are more influential 

in impacting Nd, aerosol chemical markers were compared to Nd. In the study region, 

aerosol composition has been extensively characterized with sulfate shown to be an excellent 

marker for MBL sources such as ship exhaust and marine emissions, specifically 

dimethylsulfide (DMS; Coggon et al., 2012; Wang et al., 2016). Nitrate and organics have 

been shown to be remarkably enhanced in BB airmasses (Coggon et al., 2014). Subcloud 

and above-cloud AMS mass concentrations of sulfate, nitrate, organics, and ammonium 

were compared to cloud layer-mean Nd for 13 available BB-impacted clouds during NiCE 

(AMS data unavailable during FASE). The subcloud concentrations of sulfate, nitrate, and 

organics exhibited higher linear correlations with Nd (r = 0.31, 0.31, 0.38, and p = 0.30, 

0.35, 0.22, respectively) as compared to above-cloud concentrations (r = 0.25, −0.21, −0.02, 

and p = 0.43, 0.59, 0.96, respectively). Ammonium exhibited negative relationships with Nd 

(subcloud r = −0.25, p = 0.63; above-cloud r = −0.33, p = 0.52). Although none of the 

mentioned correlations were statistically significant (i.e., p < 0.05), the subcloud mass 

concentrations of sulfate, nitrate, and organics were still better related to Nd, which is 

consistent with the conclusions derived from Figure 2.

These collective results are indicative of the greater role played by primary activation of 

CCN near cloud base as compared to secondary activation of CCN entrained at cloud top. 
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This result is consistent with those of Diamond et al. (2018), who similarly reported a higher 

correlation between Nd and subcloud CCN concentration for the SEA region during the 

ObseRvations of Aerosols above CLouds and their intEractionS study. In both Diamond et 

al. (2018) and the current study, it is hypothesized that the increase in amount of aerosols 

below the cloud is due to entrainment of BB aerosols from cloud top to below the cloud. 

While Table 1 shows the obvious result that Na values are much higher above cloud in BB 

conditions 2,400 cm3 (95% confidence interval, 1,518–3,363 cm3) versus non-BB conditions 

202 cm3 (110–294 cm3), an important result is that BB conditions also yielded much higher 

Na values below cloud 912 cm3 (415–1,725 cm3) versus 123 cm−3 (73–180 cm−3). Thus, 

primary activation of subcloud CCN into cloud droplets is not limited to aerosols emitted 

within the MBL but rather can be entrained from the FT as documented in several past 

works (e.g., Capaldo et al., 1999; Clarke et al., 1998; Dadashazar et al., 2018; Katoshevski et 

al., 1999; Wood et al., 2012). Past work has examined how the variation in subcloud aerosol 

number concentration is related to parameters such as the gradient of CCN number 

concentration between vertical layers above and below cloud, boundary layer depth, and the 

time passed since aerosol and cloud layer have come into contact (e.g., Diamond et al., 

2018; Wood et al., 2012). We compared CCN0.2% concentrations below and above cloud for 

the cases in Figure 2 and observed a significant correlation (r = 0.69, p < 0.01), with the 

same conclusion reached when comparing Na below and above cloud (r = 0.60, p = 0.02; 

Figure S1). These results provide support for both the interconnectedness in CCN below and 

above clouds. It is critical to note though that there are factors preventing a stronger 

instantaneous correlation between above and below cloud BB particles such as the time 

dependence of entrainment (e.g., Bretherton et al., 1995; Diamond et al., 2018) and also 

precipitation (e.g., Wang et al., 2013).

The ease of above-cloud CCN to reach the subcloud region depends in part on how close the 

BB plume is to cloud top. To address this issue, we examined the relationship between both 

cloud layer-mean Nd and subcloud CCN0.2% concentration and the vertical distance between 

top of the cloud and bottom of the BB layer (referred to as AB2CT based on the terminology 

presented by Rajapakshe et al., 2017, to represent the gap between aerosol layer bottom to 

cloud top height; Figure S2). The base of the BB aerosol layer was defined as the lowest 

altitude of the plume where Na exceeded 1,000 cm3 based on our previous work with the 

same data set (Mardi et al., 2018). A weak negative correlation was observed between cloud 

layer-mean Nd and AB2CT (r = −0.27, p = 0.35). The correlation became more negative for 

subcloud CCN0.2% (r = −0.45, p = 0.11) versus AB2CT likely due to other additional factors 

involved with droplet activation. These negative relationships are suggestive of the 

importance of BB plume proximity to cloud top for being able to impact both the MBL CCN 

budget.

3.2. Na-Nd Relationship

Various physically based droplet activation schemes have established a relationship between 

cloud bulk microphysical properties and Na for application in climate models (Abdul-

Razzak & Ghan, 2000; Chuang et al., 1997; Nenes & Seinfeld, 2003; Simpson et al., 2014). 

However, several factors add to the complexity of understanding and modeling of droplet 

activation. A factor limiting accurate simulation of droplet activation is linked to insufficient 
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field data, specifically for a wide range of aerosol types including BB particles. Motivated 

by this shortcoming, we examined how well a commonly used equation relating Na and Nd 

performs with and without BB influence. Prior to doing so, it is worth noting that the two 

aerosol proxy variables used thus far, CCN0.2% and Na, were related with high correlation 

coefficients when compared to one another below (r = 0.88, p < 0.01) and above cloud (r = 

0.72, p < 0.01) for the BB cases inFigure S3.

Parameterizations of Nd based on Na have been suggested in various formats (e.g., linear, 

exponential, power law) depending on the application, data set, and for various levels of 

required computation (Jiang et al., 2008 and references therein). One of the frequently used, 

yet simple, schemes is a power law relationship between cloud mean Nd and Na at cloud 

base: Nd ∼ αNa
β. This scheme is based on the assumption that for nonprecipitating clouds, 

droplet growth is dominated by the condensation processes and that Nd is uniform through 

the depth of the cloud. On the aerosol side, a homogeneous chemical composition is 

assumed for aerosols rather than considering different activation ratios for varying aerosol 

types in an air mass. Based on this assumption, there have been similar parameterization 

attempts to link the variations in cloud Nd to the variations of sulfate (SO4
2 − ), which is one 

of the most abundant aerosol species in the atmosphere (Boucher & Lohmann, 1995; 

Haywood & Boucher, 2000; Kiehl et al., 2000; Lohmann & Feichter, 1997; Novakov et al., 

1994).

Figure 3 demonstrates the relationship between the cloud layer-mean Nd and subcloud Na 

for 23 BB-impacted soundings in contrast to 266 non-BB-impacted soundings over the five 

campaigns. Resampling of data via bootstrapping yielded the median value (95% confidence 

interval) of α = 7.73 (1.79-26.23), β = 0.56 (0.28-0.81), and a correlation coefficient (r) of 

0.78 (0.44-0.89) for non-BB-impacted data. These three values were as follows for BB-

impacted soundings: α = 33.25 (12.18-65.05), β = 0.26 (0.15-0.42), and r = 0.70 (0.52-0.80). 

Thus, there was a significant difference in median α and β values for the BB-impacted cases 

as they were outside the 95% confidence interval of values from non-BB-impacted cases. 

When combined, all the data in this study for BB and non-BB conditions yielded α = 9.52 

(2.50-33.23), β = 0.50 (0.26-0.76), and r = 0.76 (0.40-0.89). Table 2 contrasts this study's 

values for α and β with those from other work. The range of β spans from 0.26 to 0.96 with 

an average of 0.52, which is a range that includes β values from this study for BB- and non-

BB-impacted conditions. For non-BB conditions in this work, the β value falls close to those 

from other studies with a similar maximum subcloud Na value; in contrast, the value of β for 

BB conditions in this study (0.26) is just as low as those from other studies with a much 

higher maximum subcloud Na value. The relationship between β and the highest Na 

concentration in this work (separated for BB and non-BB conditions) and for other studies is 

shown in Figure 4, where it is demonstrated that values adhere well to a logarithmic fit (r = 

−0.78, p = 0.01). Interestingly, if data are compared between BB and non-BB conditions 

from Figure 3 below the maximum Na value recorded for non-BB conditions (522 cm3), the 

value of β for BB conditions (0.22) is still much lower than that for non-BB conditions.

The observed difference in the Nd-Na relationship between BB- and non-BB-impacted 

conditions in this work is similar to several other studies in that higher activation fractions 
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were observed for cleaner air masses (Albrecht et al., 1995; Lu et al., 2008; Martin et al., 

1994; O'Dowd et al., 2002). Factors explaining the differences in β could include variability 

in updraft speed and size distribution effects (Modini et al., 2015; Wood, 2012 and 

references therein). Also, it has been shown that reduced adiabaticity in clouds coincides 

with higher activation fractions (Braun et al., 2018), which could be an artifact of higher 

drizzle rates and thus scavenging of subcloud aerosols (Duong, Sorooshian, Craven, et al., 

2011; MacDonald et al., 2018). Lastly, another factor affecting the activation fraction could 

be aerosol hygroscopic properties, where BB aerosol are typically less CCN active than the 

background aerosol in the study region (Hegg et al., 2008; Hersey et al., 2009; Shingler et 

al., 2016). Section 3.6 addresses chemical and hygroscopic differences between BB and non-

BB aerosols in more detail.

3.3. Vertical In-Cloud Structure of Nd

Various in situ observational and large eddy simulation studies reported a vertically 

homogeneous structure for Nd in marine Sc (Grosvenor et al., 2018 and references therein; 

Painemal & Zuidema, 2011). To assess the degree of vertical Nd homogeneity in the study 

region during periods of BB influence, vertical profiles of Nd for the selected soundings in 

Table 1 were examined (Figure 5). Thirteen BB-impacted clouds were compared to seven 

non-BB ones from NiCE and FASE.

For both campaigns, BB-impacted clouds exhibited higher vertically resolved mean and 

standard deviation values for Nd values along the depth of clouds as compared to non-BB-

impacted clouds. Cloud layer-mean values for the mean and standard deviation of Nd were 

as follows: non-BB = 71 ± 7 cm3; BB = 184 ± 28 cm3. Albrecht et al. (1995) similarly 

reported both lower absolute values and less vertical variability in Nd for a Sc sheet when 

exposed to cleaner maritime air (PCASP Na ~ 50 cm3; Nd ~ 50 cm03) as compared to more 

polluted continental air (PCASP Na ~ 1,700 cm3; Nd ~ 250 cm3).

There was no evidence of any type of enhancement in Nd near cloud top, which presumably 

would have been an indicator for secondary activation of aerosols near cloud top. This result 

is consistent with Figure 2 that primary activation of subcloud aerosols plays the dominant 

role in governing Nd.

3.4. Nd Relationship with re and R

Sections 3.1 and 3.2 examined the process of droplet activation by comparing CCN and Na 

to Nd, and now, this section probes relationships between Nd and two other cloud properties 

for varying BB influence: cloud droplet effective radius (re) and rain rate (R). This analysis 

is conducted within the framework of how previous investigations have examined such 

relationships, with our results compared to those studies.

Figure 6a shows the relationship between re versus the ratio of LWP/Nd for BB versus non-

BB conditions; note that all three parameters are cloud layer-mean values for consistency. 

Thirty BB-impacted soundings from NiCE and FASE were compared to more than 300 

background non-BB-impacted soundings from MASE I and II, NiCE, BOAS, and FASE. 

The results do not show a significantly different response of re to BB particles as compared 

to non-BB particles. In both scenarios, a power law correlation exists between re and LWP/
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Nd with an exponent of 0.22 and 0.21 and a correlation coefficient of 0.95 and 0.91 for BB 

and non-BB conditions (p < 0.01 for both), respectively. Various studies have applied similar 

parameterizations between re and LWC/Nd with a power law scheme, with the exponent 

being ~0.33 for LWC/Nd (Jones & Slingo, 1996; Kiehl et al., 2000; Lu et al., 2008; Reid et 

al., 1999; Rotstayn, 1999). Liu and Hallet (1997) suggested a similar parameterization and 

validated it by comparison with in situ collected data for non-precipitating water clouds. The 

values of 0.21 and 0.22 in this study are lower than 0.33 potentially owing to differences 

when using layer-mean values (e.g., LWP) rather than vertically resolved values (e.g., 

LWC), differences in the Nd (this study: 30–328 cm3) and LWP range examined (this study: 

11–338 g m2), cloud dynamical processes, meteorology, and spatial scale of analysis 

(McComiskey et al., 2009).

In another study by Reid et al. (1999) for clouds partially embedded in smoky haze during 

the SCAR-B field project over the Amazon Basin, a power law relationship was developed 

with an exponent of 0.31 for LWC/Nd. As they compared the results from BB-impacted 

warm non-precipitating clouds to less polluted conditions such as the east coast of the 

United States, they concluded that even for extreme cases of clouds impacted by BB 

aerosols, the parameterization provided for re is still valid. This is a result similar to the one 

obtained for our region of study as the exponent did not change much between BB and non-

BB conditions.

Figure 6b demonstrates the correlation between R and the ratio of LWP/Nd and compares 

results from 30 BB-impacted soundings of NiCE and FASE campaigns with 232 non-BB-

impacted soundings from MASE I and II, NiCE, and FASE campaigns (note that R data 

were unavailable during BOAS). Correlation coefficients of linear best-fit lines in log-log 

space were quantified based on the parameterization provided by Khairoutdinov and Kogan 

(2000), which demonstrated that variations in log(R) are negatively correlated with log (Nd) 

in a linear manner. Our analysis shows similar results for both scenarios (BB versus non-

BB) with power law fitting; the resulting exponents were 1.06 (r = 0.61, p < 0.01) and 1.08 

(r = 0.62, p < 0.01) for BB and non-BB conditions, respectively. In contrast, Comstock et al. 

(2004) presented a power law relationship with an exponent of 1.75 for LWP/Nd for an 

analysis conducted over the eastern Pacific Ocean. The differences in results can be partly 

attributed to factors including those outlined by Duong et al. (2011a) such as data analysis 

choices (e.g., calculation methods for parameters such as R, minimum R threshold) and 

spatial scale of data analysis.

While Sections 3.1 and 3.2 showed significant differences in aerosol-Nd relationships 

between BB and non-BB conditions, there were no such differences when comparing Nd to 

re and R for these two conditions. It can be concluded that the existing bulk 

parameterizations are valid for both BB and non-BB conditions as long as Nd is captured 

accurately. It is cautioned though that the exponents observed in our study in Figures 6a and 

6b are reduced as compared to previous work, which may at least be partly due to 

differences in measurement platforms, spatial scales of analysis, and how parameters were 

calculated (e.g., cloud-layer mean values used here).
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3.5. Cloud Water Composition

Cloud water chemical measurements help to both identify influences from different air mass 

sources and shed light on cloud-gas-aerosol interaction processes like wet scavenging 

(Houghton, 1955; MacDonald et al., 2018; Petrenchuk & Drozdova, 1966). To further 

improve our understanding of BB plume impacts on marine Sc, we analyzed cloud water 

samples collected from BB-impacted clouds and contrasted them against non-BB-impacted 

ones (cases listed in Table 1). Total air-equivalent mass concentrations of measured species 

are reported in Table 1 for NiCE and FASE and further categorized into BB and non-BB 

categories. Additionally, the average mass concentration and mass fraction of measured 

species in BB and non-BB conditions are reported in Tables S2 and S3 for NiCE and FASE, 

respectively. For species including SO4
2 − , Mg2+, Ca2+, and K+, the non-sea-salt portion is 

reported based on pure sea water ratios (Seinfeld & Pandis, 2016).

For both campaigns, the total mass concentration (μg m−3) of species is significantly higher 

for BB-impacted soundings with values of 29.66 ± 14.64 and 11.73 ± 10.37 from NiCE and 

FASE, respectively, as compared to 1.21 ± 0.23 and 1.71 ± 1.21 (μg m−3) for non-BB-

impacted samples. This equates to an approximate increase in total mass concentration of 

2,351% for NiCE and 586% for FASE. The enhancement in mass loading in BB conditions 

is partly attributed to higher concentrations of aerosol and gaseous species in BB plumes that 

enter into clouds through either cloud top or cloud base. The similarity in mass loadings 

between NiCE and FASE during non-BB conditions is expected as the predominant sources 

impacting the region in the absence of wildfires is similar between different years in the 

summer months. However, the difference in mass concentrations between NiCE and FASE 

during BB conditions can be explained by some combination of factors related to the fire 

characteristics (fuel type, flame condition, fire strength) and transport pathway from the fire 

source to the sampled clouds as during NiCE the fires were farther to the north while in 

FASE the fire source was very close to the base of operations in Marina.

Figures 7 and 8 show the relative mass fractions of species in BB and non-BB-impacted 

cloud water samples during NiCE and FASE, respectively. For the FASE campaign, the mass 

fraction of non-sea-salt species is much higher for BB-impacted cloud water samples as 

compared to the non-BB ones. This was especially the case for NO3
−, which is associated 

with BB particles in the study region (Prabhakar et al., 2014). In sharp contrast, during 

NiCE, the total mass concentrations of species derived from sea salt (e.g., Na+, Cl−) were 

more enhanced for BB conditions; in fact, when excluding Na+ and Cl− from the analysis, 

the total mass concentration of species in FASE BB periods (7.57 μg m−3) exceeded that 

during NiCE (5.98 μg m−3). It is uncertain as to why sea salt mass was so high (Na+ + Cl− = 

23.64 μg m−3) during BB periods in NiCE, and it is very likely that this was only a 

coincidence without any relationship between the presence of a BB plume aloft and higher 

sea salt fluxes. During both campaigns, regardless of BB or non-BB conditions, the Cl−:Na+ 

mass concentration ratios were close to the expected ratio for pure sea salt (1.81): NiCE = 

1.71 ± 0.12 (BB) and 1.65 ± 0.40 (non-BB); FASE = 1.76 ± 0.36 (BB) and 1.76 ± 0.04 (non-

BB). The slight reductions as compared to sea salt are likely attributed to well-documented 

chloride depletion reactions owing to inorganic and organic acids that are ubiquitous in the 

study region (Braun et al., 2017). Future research is warranted to identify if the extent of 
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chloride depletion observed here was minor owing to the abundance of surface area provided 

by crustal material to accommodate acidic gases, thereby relieving sea salt particles.

A noteworthy difference between BB and non-BB conditions was the concentration increase 

in crustally derived species (e.g., Ca2+, Si, and Mg2+) for the former, which was especially 

pronounced during FASE. During FASE, Ca2+ and Mg2+ exhibited a significant correlation 

(r = 0.92, p < 0.01). This suggests a similar source for Ca2+and Mg2+ in FASE samples, 

which is most probably terrestrial dust; this is confirmed by their significant correlation with 

Si (r = 0.64, p = 0.03), which is a crustal tracer in the study region (Wang et al., 2014). Soil 

dust can be entrained into buoyant BB plumes, which is common across the western United 

States (Schlosser et al., 2017 and references therein). The proximity of the FASE fire to the 

sampling areas may be a reason for why the chemical signature of crustal matter was more 

evident than NiCE when the absolute concentrations of the same crustal species were lower 

by an order of magnitude.

The enhancement of crustal tracer species in FASE BB plumes can explain why the average 

pH in BB-impacted cloud water was significantly higher (6.85 ± 0.22) than non-BB-

impacted samples (4.81 ± 0.08). Such a difference was not observed in the pH of samples 

collected during NiCE with values of 4.21 ± 0.28 and 4.63 ± 0.16 for BB and non-BB-

impacted samples, respectively. Higher pH values typically coincide with enrichment of 

crustal species, which increase the alkalinity of cloud water samples as observed in other 

regions (e.g., Loye-pilot & Morelli, 1988; Rhoades et al., 2010; Schwikowski et al., 1995; 

Sorooshian, Shingler, et al., 2013; Williams & Melack, 1991).

Of note is that a series of organic acids (oxalate, acetate, formate, glycolate, succinate, 

adipate, maleate, pyruvate) were collectively higher in concentration by an order of 

magnitude in BB-impacted clouds during NiCE (1.68 μg m−3) versus FASE (0.21 μg m−3), 

whereas their respective non-BB levels were much lower (0.04–0.07 μg m−3 for FASE and 

NiCE, respectively). During NiCE, the additional transport time of the BB plumes to the 

points of measurement may have aided in organic acid formation owing to the lengthy 

chemistry required to produce such species from gaseous volatile organic compound 

precursors (Mardi et al., 2018). Furthermore, there could have been recondensation of 

organic species following their evaporation after aging was allowed to ensue, which has been 

shown in other studies (e.g., Akagi et al., 2012; Grieshop et al., 2009).

As further support for aging leading to more organic acids during the NiCE BB periods, 

Figure 9 shows the spatial distribution of two relevant ratios from the AMS instrument 

during one particular flight when the plume was traced from near the source at southern 

Oregon toward the central coast of California: the fraction of organic at m/z 44 (f44) and of 

organic at m/z 60 (f60). The former ratio (f44) increased with plume transport indicating that 

the plume aged quickly, yielding a relatively high amount of oxygenated organic material 

such as organic acids (Ng et al., 2011). The reduction of (f60) along the plume track showed 

that levoglucosan, a marker for fresh BB emissions (Alfarra et al., 2007), decreased 

relatively quickly and that consequently, primary organic aerosol near the source was 

replaced by secondary organic aerosol farther downwind. It is noted that levoglucosan has 
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been observed to decrease when exposed to hydroxy radicals (Hennigan et al., 2010) and 

possibly due to dilution.

3.6. Cloud Droplet Residual Particle Composition

The relative mass concentrations of nonrefractory aerosol constituents measured with the 

CVI-AMS technique are shown in Figure 10 for non-BB and BB-impacted soundings from 

NiCE (unavailable during FASE). The main difference is that, relative to non-BB conditions, 

BB influenced samples coincided with an increase in the organic fraction (95% confidence 

intervals: BB = 64–66%, non-BB = 27–32%) and a decrease in the mass fraction of SO4
2− 

(BB = 19–21%, non-BB = 50–55%). Nitrate and NH4
+ mass fractions exhibited less change 

between the two types of conditions (BB/non-BB): NO3
− = 6–7%/4–6%; NH4

+ = 8–9%/11–

15%. Numerous studies have reported that BB plumes are enriched with organic constituents 

(e.g., Akagi et al., 2012; Duong, Sorooshian, & Feingold, 2011; Formenti et al., 2003; Gao 

et al., 2003; Reid et al., 1998), and thus, the remarkable enhancement in the organic mass 

fraction in BB-impacted clouds is expected. The relative importance of SO4
2− decreased in 

BB-impacted clouds simply due to the usual sources in the boundary layer (DMS, shipping) 

being outweighed by the injection of organics. While there was significant enhancement of 

NO3
− in the regional BB plumes, the heating of the CVI counter-flow promotes 

repartitioning of NO3
− back to the gas phase as has been documented in past work (e.g., 

Hayden et al., 2008). While these results demonstrate the impact of BB plumes on droplet 

residual chemistry, it is noted that there are differences with the cloud water results for the 

following reasons: (i) The AMS is limited to submicrometer aerosols unlike cloud water 

collection; (ii) semi-volatile species are vulnerable to evaporation in the heated counterflow 

of the CVI inlet (and thus would not be sampled by the AMS) unlike cloud water collection; 

and (iii) the cloud water collector can sample constituents such as sea salt and an assortment 

of crustal elements that the AMS cannot.

As hinted to before in the discussion of CCN activation ratios, aerosol compositional effects 

can potentially be important for CCN activity for the regional-scale BB events sampled in 

this work. Martin et al. (1994) cited differences in aerosol composition in explaining why 

the activation ratio of continental aerosols was different than marine aerosols. Similar 

reasoning of higher CCN activity for more water-soluble aerosol types has been provided by 

other studies in our study region based on ship-board measurements (Wonaschuetz et al., 

2013) and modeling studies (Sanchez et al., 2016). As shown by the CVI-AMS results and 

confirmed by previous studies in the same region, BB air masses have much higher 

concentrations of organics (Crosbie et al., 2016; Mardi et al., 2018; Maudlin et al., 2015), 

which have reduced hygroscopicity as compared to aerosol less enriched with organics (e.g., 

Hersey et al., 2009; Shingler et al., 2016). While it is difficult to attribute the relative 

importance of chemical effects to the reduced activation fraction for BB conditions in this 

study, it is at least one plausible factor that may have played a role.

4. Conclusions

This study represents the second part of a two-part paper series examining BB plumes off 

the California coast. The first study (Mardi et al., 2018) characterized plume properties, 
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while this study examined interactions between plumes and Sc clouds. The main results of 

this study are as follows:

1. Stronger relationships between subcloud aerosol properties with cloud layer-

mean Nd values and the lack of a clear vertical enhancement in Nd at cloud top 

indicated that primary activation of subcloud CCN was more important in 

governing Nd values than secondary activation of CCN entrained at cloud top. 

The data results indicate that the MBL BB aerosols likely were sourced to a large 

extent from the FT at some point. An instantaneous correlation between above- 

and below-cloud BB particles is complicated though by factors such as the time 

dependence of entrainment and also precipitation.

2. BB-impacted clouds exhibited higher vertically resolved mean and standard 

deviation values for Nd values along the depth of clouds as compared to non-BB-

impacted clouds.

3. Lower CCN activation fractions were observed for BB-impacted clouds as 

compared to non-BB clouds owing at least to some extent to less hygroscopic 

aerosol constituents.

4. Relationships between Nd and either re or R were similar regardless of the level 

of influence from BB plumes, indicating that parameterizations relating these 

cloud properties can handle both BB and non-BB conditions as long as the Nd 

value is known.

5. Cloud water data show that in FASE there was more enhancement in crustal 

tracer species due likely to the proximity of the fires to the sampling area, which 

was more conducive to measurement of coarse dust aerosols entrained in the 

buoyant BB plumes. Consequently, pH values were much more enhanced in BB-

impacted clouds during FASE. In contrast during NiCE, higher overall mass 

concentrations of organic acids are thought to have arisen due to longer transport 

times that promoted more production of these species.

6. Cloud droplet residual particle composition results reveal significant 

enhancements in the relative amount of organics during BB periods at the 

expense of sulfate, while nitrate and ammonium remain relatively similar in their 

mass fractions.

The results of this study are useful in terms of contrasting with other regions where BB 

plumes have the ability to impact cloud properties. In particular, impacts of BB plumes on 

cloud composition are generally understudied and important for future research as such 

modifications have an impact on both aqueous chemistry (e.g., Keene et al., 2015; 

Sorooshian, Wang, et al., 2013) and ecosystems after wet deposition of nutrients and 

contaminants (e.g., Galloway et al., 2004; Meskhidze et al., 2005).
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Refer to Web version on PubMed Central for supplementary material.
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Key Points:

• Primary activation of sub-cloud CCN was the key driver of cloud droplet 

concentration (Nd) in biomass burning (BB) and non-BB conditions

• Relationships between Nd and either droplet effective radius (re) or rain rate 

(R) are similar regardless of the level of BB influence

• Cloud water and droplet residual particle composition differed between BB 

and non-BB conditions
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Figure 1. 
Approximate location of BB-impacted soundings during NiCE (n = 14) and FASE (n = 16), 

shown in gray. Of the mentioned soundings, eight from NiCE and five from FASE are 

further analyzed as case studies (Table 1), which are shown as solid gray markers; the rest 

are left as unfilled markers. Five soundings from NiCE and two from FASE are examined as 

non-BB-impacted cases (Table 1), which are shown as solid red markers.
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Figure 2. 
Relationship between cloud layer-mean Nd and the average CCN0.2% number concentration 

calculated for BB-impacted soundings (a) above cloud (between cloud top and 100 m above 

cloud top) and (b) below cloud base. Ten of the soundings were from NiCE (bowtie markers) 

and four were from FASE (square markers).
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Figure 3. 
Relationship between cloud layer-mean Nd and subcloud Na for BB-impacted soundings 

from NiCE and FASE (black markers with black line fit), in addition to non-BB-impacted 

soundings from MASE I and II, NiCE, BOAS, and FASE (red markers with red line fit). The 

solid line shows the median and different dashed lines show the 95% confidence interval 

determined via bootstrapping.
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Figure 4. 
Correlation analysis between maximum subcloud Na concentration and the β value obtained 

from the Nd ∼ αNa
β parameterization for different studies (green markers): Hegg et al. (2012, 

H12), Jiang et al. (2008, J08), Lu et al. (2008, L08), O'Dowd et al. (1999, OD99), Raga and 

Jones (1993, RJ93), Terai et al. (2012, T12), and Twohy et al. (2005, T05). Results from the 

current study are included in derivation of the fitted line and are denoted for BB (black 

marker) and non-BB (red marker) impacted situations.
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Figure 5. 
The vertical profiles of Nd plotted as a function of cloud normalized depth for the selected 

soundings shown in Table 1. The solid black and red lines represent average values for 

conditions of BB influence and minimal impact from any sources of aerosol pollution, 

respectively. Dashed lines indicate one standard deviation.
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Figure 6. 
(a) Correlation analysis between re and LWP/Nd for BB-impacted soundings from NiCE and 

FASE (black markers) as compared to non-BB-impacted soundings from MASE I and II, 

NiCE, BOAS, and FASE (red markers). (b) Same as (a) except with R in place of re. Power 

law fits are provided for both panels separately for BB-impacted and non-BB-impacted 

soundings, with that of Comstock et al. (2004) additionally added as a dashed line in (b).
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Figure 7. 
Average mass fraction of various species in collected cloud water samples during the NiCE 

campaign based on the selected cases in Table 1. Panel (a) demonstrates the average mass 

ratios obtained from non-BB-impacted samples and panel (b) shows results for BB-impacted 

samples. Panels (c) and (d) are expansions of the portion denoted as “Rest” in panels (a) and 

(b), respectively. Species which contribute to the slice labeled as the “Rest” in panels (c-d) 

are reported in Table S4. Average pH and total mass concentrations for BB and non-BB-

impacted soundings of each campaign are reported in Table 1.
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Figure 8. 
Same as Figure 7, but for the FASE campaign.
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Figure 9. 
Twin Otter flight path colored by (A) the fraction of organic at m/z 44 (f44) and (B) the 

fraction of organic at m/z 60 (f60) for NiCE Research Flight 17 on 30 July 2013. Shown are 

samples containing smoke from the cluster of fires in southern Oregon (blue square). Greater 

f44 is an indication of oxidized organic aerosol (largely associated with organic acids, Ng et 

al., 2011), whereas greater f60 indicates a higher fraction of levoglucosan, a marker for fresh 

BB emissions (Alfarra et al., 2007).
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Figure 10. 
Average mass fraction of species measured by an AMS coupled to a CVI inlet during the 

NiCE campaign for (a) clouds with minimal influence from aerosols and (b) BB-impacted 

clouds. These data are based on the selected cases summarized in Table 1.
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Table 1

A summary of cloud layer-mean property (LWP, Nd, re) values, PCASP aerosol number concentration (Na) 

above and below clouds, and cloud water (CW) pH and total air-equivalent mass concentration of a wide suite 

of species (see Tables S2 and S3) for soundings during NiCE and FASE with and without BB influence

Campaign BB influence Date
LWP

(g m−2)
Nd

(cm−3)
re

(μm)
Na above

(cm−3)
Na below

(cm−3) CW pH
CW mass concentration

(μg m−3)

NiCE BB 7/29/2013 338 134 11 790 N/A 4.21 ± 0.28 29.66 ± 14.64

7/29/2013 162 212 9 1,833 1,118

7/29/2013 197 162 10 3,279 405

7/29/2013 198 131 10 3,993 379

7/30/2013 59 119 10 511 389

8/2/2013 59 144 8 1,288 N/A

8/2/2013 71 147 8 1,707 394

8/2/2013 76 276 7 803 432

Non-BB 7/16/2013 69 29 13 102 108 4.63 ± 0.16 1.21 ± 0.23

7/16/2013 180 69 13 90 123

7/16/2013 164 128 11 141 240

7/16/2013 154 75 13 328 157

7/24/2013 68 17 14 75 N/A

FASE BB 8/4/2016 45 203 6 5,105 365 6.85 ± 0.22 11.73 ± 10.37

8/4/2016 44 185 6 5,599 1,230

8/4/2016 42 134 7 775 207

8/4/2016 11 116 6 1,536 628

8/11/2016 107 233 7 4,008 4,489

Non-BB 8/5/2016 88 61 11 323 59 4.81 ± 0.08 1.71 ± 1.21

8/5/2016 81 27 12 355 51

Note. As multiple cloud water samples may have been collected near the soundings summarized, there were more data points used in the 
calculation of the CW as compared to the number of soundings for the four categories below: NiCE = 8 (BB) and 6 (non-BB); FASE = 12 (BB) and 
7 (non-BB). “N/A” entries in the Na column indicate insufficient flight time below cloud base to get a reliable measurement of aerosols.
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Table 2

A review of parameterizations provided for the relationship between Nd and Na

Region a β r Highest Na(cm−3) Study

Northeast Pacific 7.73 0.56 0.78 500 This study (non-BB)

Northeast Pacific 33.25 0.26 0.70 1,800 This study (BB)

Around the British Isles and over the Atlantic near the Azores Islands 14 0.26 0.95 12,000 Raga and Jonas (1993)

Houston and the northwestern Gulf Of Mexico 33.3 0.26 0.66 11,000 Lu et al. (2008)

Vicinity of Houston, TX 36.3 0.35 N/A 10,000 Jiang et al. (2008)

Southeast Pacific 7.7 0.55 0.89 600 Terai et al. (2012)

Northeast Atlantic and North Pacific 2.75 0.73 N/A 400 O'Dowd et al. (1999)
a

Northeast Pacific 1.03 0.96 0.95 500 Twohy et al. (2005)
b

Pacific offshore of California, Chile, and Atlantic offshore of Namibia 13.39 0.51 0.94 700 Hegg et al. (2012)
c

Note. All mentioned parameterizations are from studies based on in situ measurements. Reported α and β values are either reported directly from a 
power law relationship or were derived from a different type of parameterization by power law fitting. Values reported in the r column belong to the 
original form of equations and N/A values denote that no correlation coefficient was provided by a particular study.

a
Originally presented in form of Nd = 197 (1 – exp(−6.13× 10−3 Na)).

b
Originally presented in form of Nd = −2.2 + 1.027 Na − 0.000837 Na2.

c
Originally presented in form of Nd = 0.72 Na + 47.
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