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Abstract

We introduce an estimation method of covariance matrices in a high-dimensional setting, i.e., 

when the dimension of the matrix, p, is larger than the sample size n. Specifically, we propose an 

orthogonally equivariant estimator. The eigenvectors of such estimator are the same as those of the 

sample covariance matrix. The eigenvalue estimates are obtained from an adjusted profile 

likelihood function derived by approximating the integral of the density function of the sample 

covariance matrix over its eigenvectors, which is a challenging problem in its own right. Exact 

solutions to the approximate likelihood equations are obtained and employed to construct 

estimates that involve a tuning parameter. Bootstrap and cross-validation based algorithms are 

proposed to choose this tuning parameter under various loss functions. Finally, comparisons with 

two well-known orthogonally equivariant estimators are given, which are based on Monte-Carlo 

risk estimates for simulated data and misclassification errors in real data analyses.
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1. Introduction

Many multivariate methods require an estimate of the covariance matrix. In this paper, we 

are interested in the problem of estimating the covariance matrix of a multivariate normal 

distribution, N(0, Σ), using a sample of mutually independent draws X1, …, Xn, from it, 

when n is less than the dimension p of Σ. This problem has received much attention in the 

recent past because of an increasing number of applications where measurements are 

collected on a large number of variables, often greater than the available experimental units. 

The sample covariance matrix is not a good estimator in this case. In the general framework 

where both p and n go to infinity in such a way that their ratio p/n converges to a positive 
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finite constant (often referred to as the large-dimensional asymptotic regime), the sample 

covariance matrix, its eigenvalues and its eigenvectors cease to be consistent. Some 

alternative estimators have thus been proposed in the literature. Ledoit and Wolf (2015) 

propose estimators of the eigenvalues of the covariance matrix in the large-dimensional 

framework that are consistent, in the sense that the mean squared deviation between the 

estimated eigenvalues and the population eigenvalues converges to zero almost surely. Their 

method is based on a particular discretization of a version of the Marčenko-Pastur equation 

that links the limiting spectral distribution of the sample eigenvalues and that of the 

population eigenvalues (Ledoit and Wolf, 2017). This method is then used to derive 

estimators of the covariance matrix itself that are asymptotically optimal with respect to a 

given loss function in the space of orthogonally equivariant estimators (Ledoit and Wolf, 

2018). Additional results by these same authors have very recently appeared when our paper 

was under review (Ledoit and Wolf, 2020). Estimators that are derived in the large-

dimensional asymptotic regime are proposed also by El Karoui (2008), Mestre (2008), Yao 

et al. (2012), among others. Estimators that deal with the case p > n and are derived in a 

decision-theoretic framework are those of Konno (2009), and, more recently, Tsukuma 

(2016). There is a vast literature on estimation of Σ where structural assumptions on Σ are 

made such as ordering or sparsity, for example Bickel and Levina (2008); Bien and 

Tibshirani (2011); Naul and Taylor (2017); Won et al. (2013).

In this paper, we propose an estimator for the covariance matrix that is equivariant under 

orthogonal transformations. In particular, these transformations include rotations of the 

variable axes. Equivariant estimation of the covariance matrix under the orthogonal group 

has been studied extensively (e.g., Dey and Srinivasan (1985); Ledoit and Wolf (2015); 

Takemura (1984)) since the pioneering work of Stein (1975, 1986). In this study, we follow 

our previous work Banerjee et al. (2016), where we describe estimators that are valid when n 
> p, and extend it to the case when p > n. Because of the property of equivariance, the 

eigenvectors of the covariance matrix are estimated by those of S = ∑i = 1
n XiXi

⊤, to which 

we refer as the sample covariance matrix in this paper. Thus, the estimation problem is 

completed by providing estimates of the eigenvalues. These estimates are obtained from an 

adjusted profile likelihood function of the population eigenvalues, which is derived by 

approximating the integral of the density function of S over its eigenvectors (corresponding 

to the non-zero eigenvalues). This approximation is however not the large-n (Laplace) 

approximation of such integral, which results in the modified profile likelihood of 

Barndorff-Nielsen (1983), but it is an approximation suggested in Hikami and Brézin (2006) 

useful for large p. Our estimates are a mixture λκ = (1 − κ)λ0 + κλ1 of an exact critical point 

λ0 of such a likelihood function, which is in fact a maximum when some conditions are 

satisfied, and an approximate critical point λ1 whose components are a modification of the 

non-zero sample eigenvalues by terms of order 1/p. The tuning parameter κ is determined 

from the data and controls the shrinkage of the eigenvalues. We will describe two algorithms 

to determine κ: one based on bootstrap and one based on cross-validation. High-dimensional 

estimators are generally derived under an asymptotic regime in which both n and p increase 

in such a way that their ratio tends to a constant. In our case, n is kept fixed, and the high-

Banerjee and Monni Page 2

J Stat Plan Inference. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dimensionality of the estimator comes into play because we consider a large-p 
approximation of the marginal density of the eigenvalues of S.

In a variety of finite-sample simulation scenarios, we compare our estimator to two Ledoit-

Wolf estimators, which are also orthogonally equivariant and have previously been shown to 

better many other estimators under some loss functions. Figures 3 and 4 summarize the 

results of our comparison, in terms of risk evaluated with respect to nine loss functions. To 

assess how our covariance matrix estimator estimates the eigenvalues of the population 

covariance matrix, we also compare the eigenvalues of our estimator with Ledoit-Wolf 

consistent estimator of the population eigenvalues themselves, under loss functions that 

depend only on the eigenvalues. Figure 5 displays such a comparison. Finally, comparison of 

covariance matrix estimators is also carried out using two real data applications of breast 

cancer data and leukemia data: in a linear discriminant analysis of these data, we use 

plugged-in estimates of the covariance matrix in the classifier and demonstrate that our 

estimator leads to lower misclassification errors in the breast cancer data and similar 

misclassification errors in the leukemia data. The two Ledoit-Wolf covariance matrix 

estimators are optimal asymptotically under two loss functions, but we show that finite 

sample improvements and improvements under other loss functions are indeed possible. 

Since the tuning parameter κ of our estimator can be chosen by minimizing risk estimates 

with respect to any loss function, our estimator can be used with any loss function 

appropriate to a statistical application.

This paper is organized as follows. In Section 2, we introduce the adjusted profile likelihood 

that is used to obtain our estimator, which is introduced and discussed in Section 3. Section 

4 and Section 5 present some numeric assessment of the performance of our estimator in 

simulated and real data respectively.

2. Marginal Density and Likelihood Function

In this section, we introduce some notations, review the singular Wishart distribution, derive 

an approximation to the marginal density of the sample eigenvalues and then obtain an 

adjusted profile likelihood for the eigenvalues of the population covariance matrix. Consider 

the case of mutually independent draws X1, …, Xn from a multivariate p-dimensional 

normal distribution N(0, Σ), with Σ a p × p maximum-rank positive definite matrix. Assume 

p > n, and let S be the p × p sample covariance matrix X⊤X, with X the matrix whose rows 

are the vectors Xi
⊤. S is positive semi-definite and of maximum rank, with distinct positive 

eigenvalues: ℓ1 > ℓ2 > … > ℓn > 0. Geometrically, S is an interior point of an (n+1)n/2-

dimensional face of the closed convex cone of semi-positive definite p × p symmetric 

matrices (Barvinok, 2002). Uhlig (1994) showed that S has a distribution specified by the 

density

p(S)(dS) = K (detΣ)−n/2 etr −Σ−1S /2 (detL)(n − p − 1)/2(dS), (1)

where K = π −pn + n2 /22−pn/2/Γn(n/2), L = diag(ℓ1, …, ℓn) is the diagonal matrix of the non-

zero eigenvalues of S, etr(.) = exp(tr(.)), and (dS) is the volume element on the space of 
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positive semi-definite p × p symmetric matrices of rank n, with n distinct positive 

eigenvalues. This distribution, which extends the usual (n > p) Wishart distribution, is often 

called (non-central) singular Wishart distribution, but some authors (Srivastava and Khatri, 

1979) prefer the name non-singular pseudo-Wishart distribution. It corresponds to the case 7 

of the classification scheme of Díaz-García et al. (1997) (described in Table 1 therein), 

where generalizations are considered that include the cases when Σ and S have non-

maximum rank and when the samples are not independent. The method we will present can 

be also extended to the case when S does not have maximum rank. For example, in some 

applications, one may wish to center the observations to have mean zero. The resulting 

matrix S constructed from the centered data will have rank less than n.

Consider now the singular value decomposition of X = UL1/2H1
⊤ with U ∈ O(n) an 

orthogonal n × n matrix, L = diag(ℓ1, …, ℓn) as defined above and H1 the matrix whose n 
columns are the corresponding n eigenvectors of S. These n eigenvectors are uniquely 

determined up to column multiplication by ±1. The formulae below assume that one of these 

2n choices has been made. H1 is a point in the Stiefel manifold, V n ℝp , of all orthonormal n-

frames in ℝp. The joint density of H1 and L is

p H1, L H1
⊤dH1 ∧ (dL)

where

p H1, L = 2−nK (detΣ)−n/2etr −Σ−1H1LH1
⊤/2 (detL)(p − n − 1)/2 ∏

i < j

n
li − lj ,

∧ is the exterior product, (dL) = dℓ1 ∧ ⋯ ∧ dℓn, and H1
⊤dH1  is the Haar measure of V n ℝp

normalized as follows

∫V n ℝp H1
⊤dH1 = Vol V n ℝp = 2nπpn/2

Γn
1
2 p

.

Even if we have written the densities of S and of H1, L as differential forms, we need not 

keep track of the sign of the form, if we define the integrals to be positive. In the following, 

when the measure is clear, we will revert to using the term density for the scalar part.

We are interested in obtaining an estimator for Σ that belongs to the class of orthogonally 

equivariant estimators. This equivariance is intended in the usual meaning. Namely, consider 

the action of the orthogonal group O(p) on the sample space that is defined by X ↦ XG⊤, 

or equivalently, by S ↦ GSG⊤. We require Σ(S) GΣ(S)G⊤, which is the same way as Σ 
transforms Σ ↦ GΣG⊤. Under such action, p(S) is invariant and so is the measure (dS). This 

equivariance implies that the eigenvectors of Σ are the same as those of S. This is to say that 

the estimators are of the form Σ = HΛH⊤, where the elements of the diagonal matrix Λ are 
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functions of the non-zero eigenvalues of S and the orthogonal matrix H = [H1 : H2] is that of 

the eigenvectors of S (Stein, 1986). In the case in which p > n, the zero eigenvalue has 

multiplicity (p − n), so that the corresponding eigenvectors of S given by the (p − n) columns 

H2 = (hn+1, …, hp), are unique only up to an orthogonal transformation of the last (p − n) 

coordinate axes. Namely, we can consider H2 or H2 · P with any orthogonal matrix P ∈ O(p 
− n). In general each different choice (of P) will lead to a different estimator of Σ. However, 

if the estimates of the smallest (p − n) eigenvalues of Σ are identical, all such choices will be 

immaterial, in the sense that they will lead to the same Σ. The estimates of the last (p − n) 

eigenvalues that we propose are indeed identical, so that one can use as estimates of all the 

eigenvectors of Σ whatever representative of the class of the eigenvectors of S a numerical 

routine outputs.

To find the eigenvalue estimates, we follow our previous paper Banerjee et al. (2016), and 

consider the marginal density of the sample roots of S = X⊤X = H1LH1
⊤:

p l1, …, ln = 2−np/2π −pn + n2 /2

2nΓn(n/2)
(detΣ)−n/2 ∏

i = 1

n
li

(p − n − 1)/2 ∏
i < j

n
li − lj ⋅ Jn

where

Jn = ∫V n ℝp  etr − 1
2Σ−1H1LH1

⊤ H1
⊤dH1 .

The integral Jn cannot be computed in closed form. However, in Appendix A, we derive a 

useful approximation. Namely,

Proposition 1.

For large p, the integral Jn is approximated by the following expression

Jn ≈ exp − 1
2 ∑

i = 1

n li
λi

⋅ ∏
i < j

p
1 + 1

p
λi − λj

λiλj
li − lj

− 1
2

with li = li for 1 ≤ i ≤ n and li = 0 for i > n.

Remark.

The following condition 0 ≤ (li − lj)(λi − λj)/λiλj < p is employed in the proof of the 

proposition.

Remark.

This approximate formula is valid even when some of the population eigenvalues are equal. 

It is also interesting to notice that when Σ = μIp is proportional to the identity matrix, the 

value of Jn obtained using such formula is equal to the exact value of the integral, which can 

be computed to be exp −∑i = 1
n li/2μ  times the volume of the Stiefel manifold, which is 
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omitted in the formula above (see Appendix A). In the following, however, we assume the 

population eigenvalues to be distinct except when stated otherwise.

Employing such an approximation, we then obtain an approximate log-likelihood function 

for the true eigenvalues λ

ℒ(λ) = − n
2 ∑

i = 1

p
ln λi − 1

2 ∑
a = 1

n la
λa

− 1
2 ∑

1 ≤ a < b ≤ n
ln 1 + 1

p
λa − λb

λaλb
la − lb

− 1
2 ∑

1 ≤ a ≤ n < r ≤ p
ln 1 + 1

p
λa − λr

λaλr
la .

(2)

The first two terms of this function are the profile log-likelihood function for the parameters 

λ, which is the partially maximized log-likelihood function of (λ, V), where V is replaced 

by the maximum likelihood estimator V λ for fixed λ. We show in Appendix C that V λ is a 

solution to the equation V⊤H1 = M, where M is a p × n matrix such that Mij = ±δij, with δij 

the Kronecker delta. The other terms in ℒ can thus be interpreted as an adjustment to the 

profile log-likelihood.

3. The Proposed Estimator

In this section, we derive an estimator for the eigenvalues of the population covariance 

matrix and discuss its properties.

Our starting point is ℒ(λ), the function given in (2), which can be considered as a pseudo-

(log)likelihood, of which our goal is to find the maximum points. We note that this function 

of λ ∈ ℝ+ +
p  is not concave on the whole domain ℝ+ +

p , for all given values of (ℓ1, …, ℓn). 

The critical points are the solutions to the following equations

nλi = li − 1
p ∑

b = 1

n li − lb

1 + 1
p

λi − λb
λiλb

li − lb
− li

p ∑
r = n + 1

p 1
1 + 1

p
λi − λr

λiλr
li

(3)

where ℓi = 0 when i = n + 1, …, p. Exact solutions to (3) satisfy what we can call a trace 

condition: n∑i = 1
p λi = ∑a = 1

n la, which is desirable since E(S) = nΣ.

A solution to (3) is seen to be given by λi
0 = ∑a = 1

n la/np, for i = 1, …, p. This results in a 

diagonal estimator for the covariance matrix Σ0 = tr(S) · Ip/np. However there is no 

guarantee that such a solution may be a maximum of ℒ for all given values of (ℓ1, …, ℓn). 

Indeed, for some data (sample eigenvalues) the Hessian matrix evaluated at this solution can 

have positive eigenvalues. However, one can notice that λ0 is a genuine maximum of the 

likelihood function at order 1 in 1/p. Namely, it is a maximum of
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ℒ′ = − n ∑
i = 1

p
ln λi − ∑

a = 1

n la
λa

− 1
p ∑

1 ≤ a < b ≤ n

λa − λb
λaλb

la − lb − 1
p ∑

1 ≤ a ≤ n < r ≤ p

λa − λr
λaλr

la,

which is obtained by expanding to first order the logarithm in (2). Furthermore, λ0 is also the 

maximum of the exact likelihood function when the true covariance matrix is proportional to 

the identity matrix, which can be computed exactly, without the need of any approximation, 

as remarked earlier. The advantage of the solution λ0 is that it shrinks the highest and pushes 

up the lowest eigenvalue. Indeed, the general theorem of van der Vaart (1961) tells us that 

the highest eigenvalue ℓi/n is upward biased and (obviously in this p > n case) the lowest 

eigenvalue downward biased. The disadvantage is that the shrinkage may be too extreme. It 

is perhaps not surprising that the eigenvalue estimates are degenerate. In our derivation, the 

sample size n is fixed and p is large, thus there may not be enough information in the sample 

to obtain a different estimate for each eigenvalue. To deal with the degeneracy of the 

estimates, we construct approximate solutions to the equations (3). We look for λi with an 

expansion of the form ai + fi/p + O(p−2), for i = 1, …, n. There is no reason a priori why 

solutions should take this form. However, the solution λi
0 is of this form, with ai = 0 and fi 

the same for all i = 1, …, n. Our goal is to perturb the exact solution λ0 away from having all 

components equal, keeping the resulting estimates ordered and satisfying the trace condition. 

We find

λa
1 =

la
n − 1

n ∑
b = 1

n la − lb
p + n 1

lb
− 1

la
la − lb

, a = 1, …, n

λr
1 = 0, r = n + 1, …, p .

which are a modification of the eigenvalues ℓi/n of the (usual) sample covariance matrix S/n 
(in our conventions ℓi are the eigenvalues of S = X⊤X) with a correction term of order 1/p. 

We do not use such an approximate solution as the estimate of our eigenvalues (it would lead 

to a non-invertible estimator of the covariance matrix, for one thing). We employ λ1 as a 

perturbation of the true solution λ0. In fact, what we propose as an estimator is a linear 

combination of λ0 and λ1, controlled by a tuning parameter κ. Namely,

λa
κ = κ

n la − ∑
b = 1

n la − lb

p + n 1
lb

− 1
la

la − lb
+ (1 − κ)

∑a = 1
n la
np , a = 1, …, n

λr
κ = (1 − κ)

∑a = 1
n la
np , r = n + 1, …, p

(4)

where 0 ≤ κ < 1. The parameter κ controls the shrinkage of the eigenvalue estimate and is to 

be determined from the data. When κ is zero, the shrinkage is highest, and we recover the 

solution to the ML equations, with all the eigenvalues being equal and, accordingly, Σ = Σ0
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is proportional to the identity Ip. When κ tends to one we get λ1 with distinct estimates of 

the first n eigenvalues. There is no guarantee that λκ is a maximizer for (2). For these reason, 

one could try to maximize (2) numerically. We did consider numerical solutions to (3) using 

Newton’s method and a constraint of positivity on the solutions. The resulting roots were 

always found to be close to λ1 with the last (p − n) values negligible. Furthermore, when 

used in place of λ1, in the estimator (4), these numerical components had similar estimates 

of risk compared to our estimator (4) in the simulation study conducted in Section 4.2 

(results not shown), but added an un-necessary computational step.

The last (p − n) estimates of the eigenspectrum (4) are all equal. As observed in Section 2, 

this property guarantees that any chosen basis for the eigenspace corresponding to the zero 

eigenvalues of S will give rise to the same estimator Σκ. In fact, this property should be 

required of any orthogonally equivariant estimators of Σ in the p > n setting, although it has 

not been explicitly mentioned before, and it also holds for the non-linear estimators of 

Ledoit and Wolf (2015). Our proposed estimators for the true eigenvalues have the following 

additional properties proven in Appendix B.

Proposition 2 (The properties of the eigenvalue estimates).

For κ, such that 0 ≤ κ < 1, the estimates λκ given in (4) have the following properties

a. λ1
κ > λ2

κ > … > λn
κ > λn + 1

κ = … = λp
κ > 0

b. n∑i = 1
p λi

κ = ∑a = 1
n li

Thus the corresponding estimator Σκ of Σ will be positive definite. In addition, because of 

the ordering of the estimates, there is no additional step, such as re-ordering or isotonization, 

that often is necessary. The computational burden of obtaining the proposed estimates only 

stems from finding the singular value decomposition of the data matrix X or the 

eigenspectrum of S, and by the evaluation of the parameter κ, which we discuss in Section 

3.1.

The formulae presented so far have been obtained under the assumption that the data matrix 

X or S = X⊤X were of maximum rank n. In some applications one may wish to center the 

data, Y i = Xi − X, and consider the matrix ∑iY iY i
⊤ in place of S. All formulae can be applied 

to these situations, if we replace n with the rank q of the rescaled matrix in the 

corresponding maximum rank equations. A sketch of their derivation is given in Appendix 

D.

3.1. Selecting the Tuning Parameter κ

The tuning parameter κ, 0 ≤ κ < 1, of λκ needs to be determined from data. Selection of 

tuning parameters in an unsupervised setting is a difficult problem, and there is no method 

which is always satisfactory. In the context of covariance estimation, tuning parameters are 

often determined by minimizing estimates of risks (see for example Bickel and Levina 

(2008) for a cross-validation approach and Yi and Zou (2013) for an approach using Stein’s 
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unbiased estimate of risk). This is also the approach we follow to choose κ, although our 

estimates of risk differ. Namely, we consider some loss function L(Σ, Σ) and compute the 

corresponding risk as follows:

R(Σ, Σ) = E(L(Σ, Σ)), (5)

where the expectation is over the data distribution. When Σ = Σκ, the risk can be seen as a 

function of κ. The “oracle” κ is then κ′ = argmin
κ

R(κ).

It is noteworthy that estimating the risk and estimating the tuning parameter that minimizes 

that risk, are not necessarily the same problem. The estimation of the risk is complicated by 

the fact that the true population matrix Σ is unknown in practice. We propose two methods to 

estimate the risk of the estimator Σκ under a loss L: one method relies on a bootstrap re-

sampling scheme and the other on cross-validation.

κ-selection via bootstrap—To estimate the risk via bootstrap, we randomly choose n 

rows with replacement from our data matrix X. Let Xb be such a sample and Sb = Xb
⊤Xb be 

the corresponding sample covariance matrix. We then compute the reduced rank estimator, 

Σb
κ, as described in Appendix D and evaluate the loss L Σb

κ, Σ  with respect to a reference 

estimator Σ for a grid of values of κ ∈ [0, 1). This procedure is iterated B times. The risk 

estimate is taken to be

R(κ) = 1
B ∑

b = 1

B
L Σb

κ, Σ

and the optimal κ determined as

κ = argmin
κ ∈ [0, 1)

R(κ) .

The choice of the reference estimator Σ in our proposed κ-selection procedure requires 

discussion. We have considered using S and Σ1 (matrix estimator corresponding to λ1) as 

reference estimators. However, since these estimators are singular, they may not be used 

when computing loss functions that require their inversions (such as Stein’s loss function or 

the quadratic loss function, see Section 4). In these cases, we have flipped the role of the 

reference estimator and the estimator at hand when computing the loss functions. As an 

alternative approach, we have used as reference estimator a non-singular extension of Σ1, 

which we call ΣNS
1 , where the zero eigenvalues are replaced with the smallest non-zero 

eigenvalue estimate. Our simulation studies (not shown here) indicate that the second 

strategy of using a non-singular estimator performs better than the first approach in selecting 

κ. We should emphasize that the choice of κ closest to the κ′ depends largely on the 

reference estimator and a better reference estimator will lead to a much improved estimator.
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κ-selection via cross-validation—A second method estimates the risk using cross-

validation (CV). Different losses lead to different estimates, and we have implemented this 

method for Stein’s, quadratic and Frobenius loss functions (see Section 4.1 for definition of 

these loss functions). First, consider the Frobenius loss, or actually its square, for reasons 

that we will be readily apparent:

frob Σκ, Σ
2

= tr Σκ − Σ Σκ − Σ
⊤

= tr ΣκΣκ − 2tr ΣΣκ + tr Σ2 .

We can now ignore terms that do not depend on κ since we wish to minimize with respect to 

κ. Observing further that

tr ΣΣκ = E* x*
⊤Σκx*

where the expectation E* is taken with respect to the distribution of x*, an independent 

sample from N(0, Σ), we obtain the following leave-one-out cross-validation estimate of the 

risk

frobκ2 = tr ΣκΣκ − 2
n ∑

i = 1

n
Xi⊤ Σ\i

κ Xi

where Σ\i
κ is the estimator obtained removing the i-th row Xi

⊤ from X. If n is not very small, 

one can consider K-fold CV instead of leave-one-out CV, to ease the computational burden. 

When the loss function is quadratic or Stein’s, we reverse the role of Σ and Σ and consider 

L Σ, Σκ  rather than L Σκ, Σ . We can express the traces involving Σ and the inverse of Σκ as 

expectation with respect to samples of N(0, Σ), and we are able to obtain the estimates of 

risks, or, more accurately, of functions that have the same minimum as the risks, since terms 

that do not depend on κ can be ignored. More precisely, the quadratic loss with the reversed 

role of Σ and Σ is

q(Σ, Σ) = tr ΣΣ−1 − I
2

= p − 2tr ΣΣ−1 + tr ΣΣ−1ΣΣ−1

= p − 2E* x*
⊤Σ−1x* + 1

2E* x*
⊤Σ−1x* ⋅ x*

⊤Σ−1x*

− 1
2 E* x*

⊤Σ−1x*
2

.

Ignoring terms that do not depend on κ, the leave-one-out cross-validation estimate of the 

risk under the quadratic loss is

qκ = − 2
n ∑

i = 1

n
Xi⊤ Σ\i

κ −1
Xi + 1

2n ∑
i = 1

n
Xi⊤ Σ\i

κ −1
Xi

2
− 1

2
1
n ∑

i = 1

n
Xi⊤ Σ\i

κ −1
Xi

2
.
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The Stein’s loss st(Σ, Σ), which is now twice the KL-divergence of normal densities with 

covariance matrix Σ and Σ, is equal, up to terms that do not depend on κ, to

Sκ = 1
2E* x*

⊤Σ−1x* + 1
2lndetΣκ,

from which one obtains the leave-one-out cross-validation risk estimate

stκ = 1
2n ∑

i = 1

n
Xi⊤ Σ\i

κ −1
Xi + 1

2lndetΣκ .

Numerical comparison of κ-selecting methods—We conducted a simulation study 

(see Section 4.2 for details) to evaluate these two strategies and compare the corresponding 

values of κ with the “oracle” κ′. We considered nine different loss functions (see Section 

4.1), eight different covariance structures and p = 50, 100, 500, 1000 with γ = p
n = 1.25, 2, 5. 

The results of this study are shown in Figures 1 and 2 where each panel corresponds to a loss 

function, the horizontal axis of each panel represents various combinations of the true 

covariance structure Σ, γ and p, and the vertical axis of each panel represents the chosen κ 
for the two proposed methods (CV in dashed line and bootstrap in dotted line) and the 

“oracle” κ′ (in solid line) which is determined using the true matrix Σ. Figure 1 has true 

covariance structures Σ1 to Σ4 and Figure 2 has true covariance structures Σ5 to Σ8. Note that 

the leave-one-out CV is only available for three out of the nine loss functions (i.e., 

Frobenius, Stein’s and quadratic). The leave-one-out CV estimates the oracle κ′ almost 

perfectly for the Frobenius loss and also works well for Stein’s and quadratic loss functions. 

The bootstrap method on the other hand works reasonably well in choosing κ for most loss 

functions except the ones that depend on the smallest eigenvalues entirely. We have observed 

in our simulations that when the bootstrap estimate κ is quite different from the oracle κ′, 

the risk curves are quite flat, i.e., R(κ) and R κ′  are quite similar and there is little risk 

improvement with different choices of κ.

As noted earlier, the choice of κ depends largely on the reference estimator. When analyzing 

real data, we recommend the analyst to choose a loss function that is appropriate for the 

applied problem. If any of Stein’s, quadratic or Frobenius (i.e., st, q or frob) loss functions is 

an appropriate choice, we recommend using the CV-method to select κ as it does not depend 

on a reference estimator. For any other loss function, we would recommend using other 

estimators as reference (e.g., the estimators of Ledoit and Wolf) in addition to ΣNS
1 .

4. Numerical Risk Comparisons with Other Estimators

In this section we perform Monte Carlo simulations to evaluate our proposed estimator with 

respect to various loss functions. Specifically, we compare it with the two non-linear 

shrinkage estimators of Ledoit and Wolf, one which is asymptotically optimal under 

Frobenius loss (LW1) and one which is asymptotically optimal under Stein’s loss (LW2). 

Ledoit and Wolf’s nonlinear shrinkage estimators are of the form HDH⊤, and thus 
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orthogonally equivariant, with D = diag φ* l1 , …φ* lp . The function φ* is the nonlinear 

function responsible for shrinking the sample eigenvalues. Its form depends on which loss 

function is asymptotically minimized (Ledoit and Wolf, 2018). We refer the reader to 

Section 3.2 of Ledoit and Wolf (2015) for the specific form of φ* when the loss is Frobenius 

and to Sections 5 and 6 of Ledoit and Wolf (2018) for its explicit form when the loss is 

Stein’s. In addition, we compare our eigenvalue estimates with those of the Ledoit-Wolf 

consistent estimator of the population eigenvalues (Ledoit and Wolf, 2015), which we call 

LW3. The comparison is carried out under the loss functions that only depend on 

eigenvalues: loss functions 3, 4, 7, 8, and 9 in the Section 4.1 below.

4.1. Loss Functions

The comparison of the estimators is carried out using the Monte Carlo estimates of risk as 

defined in eq. (5) with respect to the nine loss functions defined below. We choose a variety 

of loss functions, some of which depend on the complete covariance matrix and its estimate, 

and others depend only on the eigenvalues and their estimates. To an applied statistician, the 

type of loss function is determined by the context of the application which could involve the 

estimation of eigenvalues, an important characteristic of the covariance matrix. Thus, the 

reader will get a sense of overall performance of an estimator under various loss functions. 

We also refer the reader to our previous paper Banerjee et al. (2016) for a detailed 

description of most of these loss functions.

1. Stein’s (entropy) loss st(Σ, Σ) = tr ΣΣ−1 − I − lndet ΣΣ−1 ;

2. the quadratic loss q(Σ, Σ) = tr ΣΣ−1 − I 2
;

3. L1 eigenvalue loss evl1(Σ, Σ) = ∑i = 1
p λi − λi /p;

4. L2 eigenvalue loss evl2(Σ, Σ) = ∑i = 1
p λi − λi

2/p;

5. Frobenius loss frob(Σ, Σ) = Σ − Σ F , with ‖A‖F
2 = tr AA⊤ ;

6. Matrix L1-norm, the max of the L1 norm of the columns of Σ − Σ  or  Σ − Σ 1, 1, 

Onenorm (Σ, Σ) = max
1 ≤ j ≤ p

∑i = 1
p σij − σij ;

7. L1 loss on the largest eigenvalue TopEV (Σ, Σ) = λ1 − λ1 ;

8. L1 loss on the smallest eigenvalue LastEV (Σ, Σ) = λp − λp ;

9. L1 loss on the smallest quartile of the eigenvalues 

EV S(Σ, Σ) = ∑i = 3p/4
p λi − λi .

We notice that, for our estimator Σκ, the oracle κ′ is chosen as described in Section 3.1.

4.2. Simulation Study

We construct eight covariance structures to represent typical applications. The matrix Σ1 has 

widely spaced eigenvalues, Σ2 has one large eigenvalue and mimics a typical principal 
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components analysis covariance structure, Σ3 is a time series example, Σ4 is a spiked 

covariance structure, Σ5 is the identity matrix, Σ6 has eigenvalues drawn from a U-shaped 

beta distribution, Σ7 has eigenvalues drawn from a linearly decreasing beta density and Σ8 

has eigenvalues of 1, 3 and 10 distributed with a frequency of 20%, 40% and 40% 

respectively. Namely,

1. Σ1 = diag(p2, ⋯, 22, 12);

2. Σ2 = diag λ(1)* , λ(2), ⋯, λ(p) , where λi ~ U(1, p/2), λ(i) are the ordered λi’s, 

λ(1)* = λ(1)
2 , with U(a, b) being the uniform distribution over the [a, b] interval;

3. Σ3 = AR(1), the first-order autoregressive covariance matrix, where σij = 4 × 

0.7|i−j| for i ≠ j and σii = 42 for i = 1, ⋯, p;

4. Σ4 = diag(2p, p, 1, ⋯, 1);

5. Σ5 = Ip where Ip is the p-dimensional identity matrix;

6. Σ6 = diag(λi) where λi = 1 + 9F(0.5, 0.5)
−1 i

p − 1
2p i = 1, ⋯, p and F (α, β)is the 

cumulative distribution function (c.d.f) of a beta distribution with parameters (α, 
β); the choice of α = 0.5, β = 0.5 draws eigenvalues from a U-shaped density 

with more mass on large (around 10) and small (around 1) eigenvalues as the 

support of the beta density has been shifted to [1, 10];

7. Σ7 is similar to Σ6 with (α = 1, β = 2) for the shape parameters of the beta c.d.f 

reflecting a linearly decreasing triangle with the highest density at 1 and lowest 

density at 10;

8. Σ8 has 20% of its eigenvalues equal to 1, 40% equal to 3 and the remaining 40% 

equal to 10.

For each covariance structure Σj (j = 1, 2, 3, 4, 5, 6, 7, 8) four values of p are considered p = 

50, 100, 500, 1000. For all eight covariance structures and their various dimensions, three 

values of n are chosen corresponding to p/n = γ = 1.25, 2, 5. We generate n vectors 

Xi N 0, Σj , i = 1, ⋯ , n, for the first seven covariance structures. For the eighth case, we 

generate n vectors from a p-variate Student t distribution with four degrees of freedom so 

that Σ8 is used to test robustness to deviations from normality. We evaluate all nine loss 

functions, denoted henceforth by st, q, evl1, evl2, frob, Onenorm, topev, lastev and evs, on 

our estimator and compare the latter with LW1 (nonlinear shrinkage estimator that is optimal 

under Frobenius loss) and LW2 (nonlinear shrinkage estimator optimal under Stein’s loss) 

(see Section 4.1). Additionally, we evaluate the five loss functions (evl1, evl2, topev, lastev, 

evs) that depend only on eigenvalues to compare our estimator with LW3 (the Ledoit-Wolf 

consistent estimator of population eigenvalues). Risk estimates are based on 1000 repetitions 

for each simulation scenario.

As a measure of comparison, we use the Proportion Reduction in Integrated Average Loss 

(PRIAL) of our estimator Σ over ΣLW k, which is LW1 (k = 1) or LW2 (k = 2). Namely, for 

a loss function L(.), PRIAL is defined similarly to that in Lin and Perlman (1985):
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∑
i

L Σi
LW k, Σ − ∑

i
L Σi, Σ /∑

i
L Σi

LW k, Σ (6)

where the sum (over i) is over all datasets. For LW3, we replace ΣLW 3 with λ
LW 3, Σ with λ, 

and Σ with λ in (6) to compute the PRIAL. Figure 3, 4 and 5 are heatmaps of PRIAL with 

respect to LW1, LW2 and LW3 respectively. The rows correspond to various simulation 

scenarios (covariance structure, p and γ) just described and the columns correspond to 

various loss functions, described in Section 4.1. The red (blue) shades in the heatmap 

indicate positive (negative) PRIAL and the white represents zero PRIAL. The more intense 

the hue is, the larger the absolute value of the PRIAL. A positive PRIAL means our 

estimator compares favorably with LW1/LW2/LW3, negative PRIAL means the opposite and 

zero PRIAL means the estimators are comparable. Our estimator has positive PRIAL in 

40.4%, 45.7% and 36.9% of all simulation scenarios when compared to LW1, LW2 and 

LW3 respectively.

It seems difficult to arrive at a general conclusion on which estimator (LW1, LW2, LW3 or 

ours) is preferable for which covariance structure or which loss function although they 

perform similarly for the majority of scenarios. Since LW1 is asymptotically optimal under 

the Frobenius loss function, one should expect LW1 to be better than our estimator with the 

Frobenius loss. Figure 3 confirms this, except in the case in which the true covariance matrix 

is the identity (Σ5) and in the case of t-distributed data with covariance matrix Σ8 when our 

estimator has an advantage. The exception with the identity matrix is also expected because 

our approximate solution with κ = 0 is a true maximum of the marginal likelihood function. 

For p ≥ 500, LW1 outperforms our estimator when the true structure is spiked (Σ4) under all 

loss functions and when the true structure represents a PCA-like situation (Σ2) under frob, 

Onenorm and topev loss functions. It is also expected that LW2, which is optimal under 

Stein’s loss function, would outperform our estimator using Stein’s loss. However, we 

observe in Figure 4 that, under the Stein’s loss function, LW2 is better than our estimator 

only for the spiked covariance structure (Σ4). On the other hand, our estimator tends to 

outperform LW2 with Σ8 (robust case) and Σ5 (identity) under multiple loss functions. If we 

compare estimators with respect to the true covariance matrix over all loss functions, LW1 

and LW2 are better than our estimator for the spiked covariance structure (Σ4), while our 

estimator is better than LW1 and LW2 when data are generated from a non-normal 

distribution with fat-tails (Σ8) and it seems preferable to LW1 and LW2, when the true 

covariance matrix is the identity (Σ5). When we compare our eigenvalue estimators with 

LW3 (Figure 5), we see a similar pattern: the estimators perform comparably for the 

majority of scenarios, with LW3 outperforming our eigenvalue estimates for the spiked 

covariance structure (Σ4) when p ≥ 500 under all eigenvalue loss functions and for Σ2 when 

p ≥ 500 under the evl2 and topev.
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5. Linear Discriminant Analysis (LDA) on Breast Cancer and Leukemia 

Data

In this section we apply our estimator to two-class classification problems using LDA in 

breast cancer and leukemia data. Specifically, we plug-in our estimator (and also LW1 and 

LW2) for the common covariance matrix of both classes in the discriminant function of 

LDA. In the first application we consider a breast cancer dataset. Hess et al. (2006) proposed 

a 31-probeset multi-gene predictor of pathologic complete response (pCR) to chemotherapy 

in an experiment with 133 patients with stage I-III breast cancer. Following Hess et al. 

(2006), we split the samples into a training set of size 82 and a test set of size 51. We 

develop our classifier on a subset of the training data so that n < p = 31 by randomly 

selecting 20 patients and preserving the ratio of the two classes. We then evaluate and 

compare discrimination metrics, such as misclassification rate (MCR), sensitivity (Sens) and 

specificity (Spec), of the classifier that uses our estimator with those of the classifiers that 

use LW1 and LW2 as the plug-in estimators for the common-covariance matrix. The 

comparisons are presented in Table 1. To choose κ for our estimator Σκ, we follow the 

procedures described in Section 3.1 with nine loss functions and ΣNS
1  as the reference 

estimator for the bootstrap-based method and the three loss functions for the CV-based 

method. The combination of the κ-selection method and the corresponding loss function that 

was chosen is described in Table 1. In addition, we also use LW1 and LW2 as the reference 

estimators in determining κ for the bootstrap-based method. Our estimator has comparable 

but higher MCR and lower sensitivity and specificity compared to LW1 and LW2 when we 

use ΣNS
1  as the reference estimator to choose κ. However, when we use LW1 as the 

reference estimator our estimator improves MCR by 4%, sensitivity by 7.7 % and specificity 

by 2.6% compared with LW1. Similarly, when using LW2 as the reference estimator in 

choosing κ, our estimator improves MCR by 15.7% and specificity by 21%. The estimator 

identified by the κ that minimizes the criterion qκ via cross-validation as described in 

Section 3.1 also performs well.

In the second application we analyze the leukemia data set of Golub et al. (1999), consisting 

of gene expression measurements on 72 leukemia patients, 47 ALL and 25 AML. We retain 

p = 3571 of the 7148 gene expression levels for the analysis. This smaller data set can be 

downloaded from T. Hastie’s website https://web.stanford.edu/~hastie/CASI_files/DATA/

leukemia.html. A training set and a validation set are then obtained by randomly selecting 

samples from the two classes but preserving the proportion of the classes as in the original 

data, with the training set comprising 31 ALL and 17 AML patients. We consider all LDA-

classifiers as described in the breast cancer example, which employ our estimator, LW1, and 

LW2. All these estimators achieve perfect classification of the samples in the validation set.

6. Summary and Conclusion

Estimation of the covariance matrix is encountered in many statistical problems and has 

received much attention recently. When p is comparable to n or even greater, the sample 

covariance matrix is a poor and ill-conditioned estimator primarily due to an overspread 
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eigenspectrum. Several alternative estimators have been considered in the literature for such 

scenarios, some of which are asymptotically optimal with respect to certain loss functions 

and others are derived under strong structural assumptions on the covariance matrix (e.g., 

sparsity). Often, estimators are valid in the regime in which both n and p go to infinity in 

such a way that their ratio is finite.

In this paper, we consider the class of orthogonally equivariant estimators and propose an 

estimator that is valid when p > n. This work is an extension of our previous work on 

equivariant estimation when p < n. Equivariance under orthogonal transformations reduces 

the problem of estimating the covariance matrix to that of the estimation of its eigenvalues. 

To this end, we find a modification of the profile likelihood function of eigenvalues by 

integrating out the sample eigenvectors. The integration result is approximate and valid for 

large p. The critical point of this pseudo-likelihood function, a maximum under certain 

conditions, is in an estimator λ0 with all components equal, thereby resulting in extreme 

shrinkage. To get distinct eigenvalue estimates, we perturb λ0 by introducing an approximate 

solution λ1 to the likelihood equations along with a tuning parameter κ. The tuning 

parameter, κ ∈ [0, 1), is selected by minimizing the risk, with respect to a loss function. We 

can find estimates of the risk using a bootstrap re-sampling scheme, which can be applied to 

any problem with any loss function. The κ selected with this method depends on the choice 

of a reference estimator, necessary to evaluate the loss function. Our estimator improves risk 

when a good estimator is employed as a reference estimator. Alternatively, a cross-validation 

estimate of the risk can be used, which was implemented for Frobenius, quadratic, and 

Stein’s loss functions. We compare finite sample properties of our proposed estimator with 

two covariance matrix estimators of Ledoit and Wolf (Figure 3 and 4) using Monte Carlo 

estimates of risk with respect to nine different loss functions and eight different covariance 

structures. We also compare the estimates of the population eigenvalues obtained by our 

method with those of a consistent estimator for population eigenvalues proposed by Ledoit 

and Wolf (Figure 5). Furthermore, we demonstrate in a real breast cancer example that our 

estimator can substantially improve risk.

The encouraging finite sample properties of our estimator reported here suggest that our 

method of constructing an orthogonally equivariant estimator on the marginal distribution of 

the sample eigenvalues may provide improved estimation of the covariance matrix, which is 

needed in many statistical applications.
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Appendix A

In this appendix we prove Proposition 1. To do this, we first review a result that is 

fundamental in deriving the approximation. Consider the integral
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I = ∫O(p)etr HXH−1Y (dH)

where (dH) is the Haar measure of the group O(p), X and Y are p × p symmetric matrices 

with eigenvalues x = (x1, …, xp) and y = (y1, …, yp) respectively. In Hikami and Brézin 

(2006), this integral and some of its generalizations (to the unitary and symplectic groups), 

known often as Harish-Chandra-Itzykson-Zuber integrals, are expressed in a form that 

involves the variables τij = (xi −xj)(yi −yj), using the expansion about the saddle points of the 

integrand. Specifically, for the orthogonal group,

I = e∑j = 1
p xjyj ⋅ f(τ), (7)

where the matrix τ is the symmetric matrix with entries τij. The function f can be expanded 

as a power series of τ

f = 1 + f1 + … + fr + O τr + 1

with the term fs being of order s in τ. The solution (7) is obtained from a differential 

equation obeyed by the integral I. The power series in τ for the integral I is also obtained 

from the expression of I in terms of zonal polynomials. The term fs of the expansion of f is a 

polynomial of degree s in the τ variables. Each monomial enjoys a graphical representation, 

as a graph that has p nodes and an edge that connects two nodes i, j if the variable τij appears 

in the monomial. In particular, τij
q  is represented as an edge of multiplicity q, that is, as q 

lines between the nodes i, j. The total number of lines in such graph, and thus the sum of the 

multiplicities of all the edges, is s. The details can be found in Hikami and Brézin (2006), 

but a few example can make the discussion clearer. In the term of order 1,

f1(τ) = − 1
p ∑

i < j
τij,

each monomial τij is represented by a graph in which two distinct nodes i, j are joined by a 

simple (i.e., with multiplicity 1) edge and the remaining nodes are singletons. Terms of order 

2

f2(τ) = 3
2p(p + 2) ∑

i < j
τij2 + 1

p(2 + p) ∑
i, j, k

τijτjk + p + 1
(p − 1)p(p + 2) ∑

i, j, k, l
τijτlk,

are represented by three (types of) graphs with two edges: the first sum is associated with 

graphs that consist of p − 2 singletons and two nodes joined by an edge of multiplicity two; 

the second sum with graphs with p − 3 singletons and a connected component with 3 nodes 

and two simple edges; the third sum with graphs with p − 4 singletons and two connected 

components, each having two nodes and one simple edge. The coefficients cs of the 
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monomials of degree s in τ have different forms in general. However, for large p all 

coefficients are of the same form (Hikami and Brézin, 2006). Namely,

cs = ( − 1)s g
∏t = 0

s − 1(p + 2t)
1 + O 2

p ,

where g is the degeneracy factor due to the multiplicities of the edges in the graph. For a 

graph with q edges with multiplicities (q1, …, qq), the degeneracy is

g = ∏
i = 1

q 1
qi! ∏

m = 1

qi − 1
(1 + 2m) = ∏

i = 1

q 2qi
qi

1
2qi

.

For example, the coefficients c2 for the monomials of degree 2 in f2(τ) above are in the large 

p limit 3/2p2 for the first and 1/p2 for the other two. Because of this formula, one can obtain 

the following large p expression for f

∏
i < j

1 + 2
pτij

−1/2
.

The details of its derivation are omitted in Hikami and Brézin (2006). We present them here. 

To make the notation more compact, let us use a bold symbol, a, say, for an unordered pair 

of integers (ia, ja). In other words, we are using a vector notation for the P = p(p − 1)/2 

distinct elements of τ, whose diagonal elements are zero. By applying the Taylor expansion 

of the inverse of the square root, we find

∏
i < j

1 + 2
pτij

−1/2
= ∏

a = 1

P
1 + 2

pτa
−1/2

= ∏
a = 1

P
∑

k = 0

∞
( − 1)k 2k

k
1
2k

τa
p

k

= ∑
s = 0

∞ ( − 1)s

ps
1
2s ∑

s

2s1
s1

⋯
2sP
sP

τ1
s1⋯τP

sP ,
(8)

where the last sum is over the vectors s = (s1, …, sP) such that 0 ≤ si ≤ s, with ∑i = 1
P si = s. 

Noticing that singletons in the graph just contribute 1, one now recognizes immediately that 

in (8) for each s = 0, 1, …, the sum is over all possible graphs with p nodes and with at most 

s edges whose multiplicities sum to s. These are exactly the graphs associated with the 

expansion of f. Since the Taylor series we have employed is convergent when −1 < 2τij/p < 
1, the above result assumes 0 ≤ 2τij < p (since τij is non-negative). We can thus write (7) for 

large p as

I ≈ e∑i = 1
p xiyi ⋅ ∏

i < j

p
1 + 2

pτij
−1/2

. (9)

We use the approximation (9) in the following
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Proof of Proposition 1.

We follow some steps as in Theorem 9.5.4 of Muirhead (2009). Consider first the integral

I(l) = ∫O(p)etr − 1
2LH⊤Σ−1H H⊤dH

where H ∈ O(p), (H⊤dH) is the Haar measure in O(p) (whose integral gives the volume of 

O(p)) and L = diag l1, …, ln, l, …, l  with ℓ repeated (p − n) times. Partition H = [H1 : H2], 

where H1 ∈ V n ℝp  and thus H2 is a matrix of order p × (p − n) whose columns are 

orthonormal and orthogonal to those of H1. Since H2H2
⊤ = Ip − H1H1

⊤, we have

tr LH⊤Σ−1H = tr LH1
⊤Σ−1H1 + l ⋅ tr H2

⊤Σ−1H2
= tr L − lIn H1

⊤Σ−1H1 + l trΣ−1

where L = diag(ℓ1, …, ℓn). Using lemma 9.5.3 in Muirhead (2009), it follows

I(l) = Vol (O(p − n)) etr − 1
2l ⋅ Σ−1 ⋅ Jn(l)

where Vol (O(k)) = 2kπk2/2

Γk
1
2k

 and

Jn(l) = ∫V n ℝp etr − 1
2 L − l ⋅ In H1

⊤Σ−1H1 H1
⊤dH1 .

Since the integrand function is bounded and V n ℝp  is compact, in the limit ℓ → 0, we 

recover the integral of interest

Jn = lim
l 0

Jn(l) = 1
Vol (O(p − n)) lim

l 0
I(l)

with ℓ1 > ℓ2 > … > ℓn > 0. Applying the large-p form (9) of the integral, we obtain

I(l) ≈ Vol O(p) ⋅ exp − 1
2 ∑

i = 1

p li
λi

⋅ ∏
i < j

p
1 + 1

p
λi − λj

λiλj
li − lj

−1/2

and hence the result, ignoring the ratio Vol (O(p))
Vol (O(p − n)) = Vol  V n ℝp . □

Banerjee and Monni Page 19

J Stat Plan Inference. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix B

Proof of Proposition 2 (The properties of the eigenvalue estimates).

a. Let a = 1, …, n, and define ψa,b = p + n(ℓa − ℓb)2/ℓaℓb and ℓa − ℓa+1 = da. Clearly, da 

> 0 and ψab > p. Then

nλa
1 = la − ∑

b = 1

n la − lb
p + n 1

lb
− 1

la
la − lb

= la + 1 + da − ∑
b = 1

n la − la + 1 + la + 1 − lb
ψa, b

> la + 1 + da 1 − n
p − ∑

b = 1

n la + 1 − lb
ψa, b

≥ la + 1 − ∑
b = 1

a la + 1 − lb
ψa, b

− ∑
b = a + 2

n la + 1 − lb
ψa, b

≥ la + 1 − ∑
b = 1

a la + 1 − lb
ψa + 1, b

− ∑
b = a + 2

n la + 1 − lb
ψa, b

≥ la + 1 − ∑
b = 1

n la + 1 − lb
ψa + 1, b

+ ∑
b = a + 2

n la + 1 − lb
ψa + 1, b

− ∑
b = a + 2

n la + 1 − lb
ψa, b

= nλa + 1
1 + ∑

b = a + 2

n
la + 1 − lb

1
ψa + 1, b

− 1
ψa, b

≥ nλa + 1
1 > 0

where we have used the fact that ψa+1, b > ψa,b for b ≤ a and ψa,b > ψa+1, b for b 
≥ a + 1.

Hence λa
κ > λa + 1

κ  for all κ ∈ [0, 1], and λn
κ > λr

κ, r = n + 1, …, p.

b. It follows immediately from the fact that ∑b, a = 1
n la − lb

p + n 1
lb

− 1
la

la − lb
= 0. □

Appendix C

In this appendix, using standard arguments (Muirhead, 2009), we compute the profile log-

likelihood for the eigenvalues λ of the covariance matrix Σ. Let Σ = VΛV⊤ be the spectral 

decomposition of Σ. The log-likelihood function obtained from (1) is

ℒ(Λ, V ) ≡ ℒ Λ, V ∣ L, H1 = − n
2 ∑

i = 1

p
ln λi − 1

2tr Λ−1V ⊤H1L V ⊤H1
⊤

Since tr Λ−1ALA⊤ ≥ ∑i = 1
n li

λi
, when A satisfies the condition A⊤A = I, with equality when 

A is one of the 2n matrices M of dimensions p × n with components Mij = ±δij, where δij is 

the Kronecker delta, we obtain
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ℒ(Λ, V ) ≤ − n
2 ∑

i = 1

p
ln λi − 1

2 ∑
i = 1

n li
λi

and thus the expression on the right-hand side is the profile log-likelihood 

ℒP(Λ) = ℒ Λ, V Λ . Thus the maximizer V Λ of the log-likelihood for a fixed value of Λ is a 

solution to V⊤H1 = M. Since V is orthogonal, then V = H1Mn:H2P , where Mn is the n × n 

matrix of the first n rows of M and P ∈ O(p − n) any orthogonal matrix.

Appendix D

In this appendix we extend our algorithm to the case in which rank(S) = q ≤ n, with q 
distinct positive eigenvalues. In the rank-q case, the density of S and the measure are 

obtained from those in the maximum rank case by replacing n with q (Díaz-García et al., 

1997). Namely,

p(S)(dS) = Kq(detΣ)−q/2etr −Σ−1S /2 (detL)(q − p − 1)/2(dS),

where S = H1LH1
⊤, with L = diag(ℓ1, …, ℓq), and the volume form written in terms of the 

Haar measure H1
⊤dH1  on V q ℝp  is

(dS) = 2−q ∏
i = 1

q
li

p − q ∏
i < j

q
li − lj H1

⊤dH1 ∧ dl1 ∧ ⋯ ∧ dlq .

Accordingly, all non-maximum rank formulae, from the marginal density of the eigenvalues 

to the ML equations, are obtained by replacing n with q in the corresponding maximum rank 

equations. Thus, an exact solution to the ML equations gives all estimates to be ∑a = 1
q la/pq, 

and our proposed estimates have the form

λa
κ = κ

q la − ∑
b = 1

q la − lb
p + q 1

lb
− 1

la
la − lb

+ (1 − κ)
∑b = 1

q lb
pq , a = 1, …, q

λr
κ = (1 − κ)

∑b = 1
q lb

pq , r = q + 1, …, p

with 0 ≤ κ < 1. Such estimates can be shown to be positive and ordered by following the 

same steps as in the proof of Proposition 2.
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Figure 1: κ-selection for Σ1 to Σ4:
Chosen κ via bootstrap (dotted line) and CV (dashed line) are compared with oracle κ′ 
(solid line) with nine loss functions (each panel) for various combinations of true Σ (Σ1 to 

Σ4), γ = p/n and p (see Section 4).
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Figure 2: κ-selection for Σ5 to Σ8:
Chosen κ via bootstrap (dotted line) and CV (dashed line) are compared with oracle κ′ 
(solid line) with nine loss functions (each panel) for various combinations of true Σ (Σ5 to 

Σ8), γ = p/n and p (see Section 4).
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Figure 3: PRIAL comparison with LW1.

The heatmap shows values of PRIAL of Σ with respect to ΣLW 1 for various simulation 

scenarios based on covariance structure, values of p and γ (rows) and various loss functions 

(columns). Top panel shows counts and histogram of various PRIAL values. PRIAL values 

are scaled column-wise for visual clarity. Red (blue) shades mean PRIAL > 0 (PRIAL < 0) 

indicating our estimator is better (worse) than LW1.
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Figure 4: PRIAL comparison with LW2.

The heatmap shows values of PRIAL of Σ with respect to ΣLW 2 for various simulation 

scenarios based on covariance structure, values of p and γ (rows) and various loss functions 

(columns). Top panel shows counts and histogram of various PRIAL values. PRIAL values 

are scaled column-wise for visual clarity. Red (blue) shades mean PRIAL > 0 (PRIAL < 0) 

indicating our estimator is better (worse) than LW2.
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Figure 5: PRIAL comparison with LW3.

The heatmap shows values of PRIAL of λ with respect to λ
LW 3 for various simulation 

scenarios based on covariance structure, values of p and γ (rows) and various loss functions 

(columns). Top panel shows counts and histogram of various PRIAL values. PRIAL values 

are scaled column-wise for visual clarity. Red (blue) shades mean PRIAL > 0 (PRIAL < 0) 

indicating our estimator is better (worse) than LW3.
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Table 1:

Error rates for LDA analysis of breast cancer data

Estimator Reference (Σ) MCR Sens Spec

LW1 - 0.275 0.385 0.842

LW2 - 0.333 0.538 0.711

Σ (Boot‐frob) λNS 0.392 0.538 0.658

Σ Boot‐st LW1 0.235 0.462 0.868

Σ Boot‐OneNorm LW2 0.176 0.538 0.921

Σ CV‐q - 0.216 0.538 0.868
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