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Abstract

Mathematical models of biological reactions at the system-level lead to a set of ordinary dif-

ferential equations with many unknown parameters that need to be inferred using relatively

few experimental measurements. Having a reliable and robust algorithm for parameter infer-

ence and prediction of the hidden dynamics has been one of the core subjects in systems

biology, and is the focus of this study. We have developed a new systems-biology-informed

deep learning algorithm that incorporates the system of ordinary differential equations into

the neural networks. Enforcing these equations effectively adds constraints to the optimiza-

tion procedure that manifests itself as an imposed structure on the observational data.

Using few scattered and noisy measurements, we are able to infer the dynamics of unob-

served species, external forcing, and the unknown model parameters. We have success-

fully tested the algorithm for three different benchmark problems.

Author summary

The dynamics of systems biological processes are usually modeled using ordinary differ-

ential equations (ODEs), which introduce various unknown parameters that need to be

estimated efficiently from noisy measurements of concentration for a few species only. In

this work, we present a new “systems-informed neural network” to infer the dynamics of

experimentally unobserved species as well as the unknown parameters in the system of

equations. By incorporating the system of ODEs into the neural networks, we effectively

add constraints to the optimization algorithm, which makes the method robust to noisy

and sparse measurements.

Introduction

Systems biology aims at a system-level understanding of biological systems, which is a holistic

approach to deciphering the complexity of biological systems [1]. To understand the biological

systems, we must understand the structures of the systems (both their components and the

structural relationships), and their dynamics [2]. The dynamics of a biological system is usually
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modeled by a system of ordinary differential equations (ODEs), which describes the time evo-

lution of the concentrations of chemical and molecular species in the system. After we know

the pathway structure of the chemical reactions, then the ODEs can be derived using some

kinetic laws, e.g., the law of mass action or the Michaelis-Menten kinetics [3].

System-level biological models usually introduce some unknown parameters that are

required to be estimated accurately and efficiently. Thus, one central challenge in computa-

tional modeling of these systems is the estimation of model parameters (e.g., rate constants or

initial concentrations) and the prediction of model dynamics (e.g., time evolution of experi-

mentally unobserved concentrations). Hence, a lot of attention has been given to the problem

of parameter estimation in the systems biology community. In particular, extensive research

has been conducted on the applications of different optimization techniques, such as linear

and nonlinear least-squares fitting [4], genetic algorithms [5], evolutionary computation [6],

and more [7]. Considerable interest has also been raised by Bayesian methods [8, 9], which

could extract information from noisy data. The main advantage of Bayesian methods is the

ability to infer the whole probability distributions of the unknown parameters, rather than just

a point estimate. More recently, parameter estimation for computational biology models has

been tackled by the algorithms in the framework of control theory. These algorithms were

originally developed for the problem of estimating the time evolution of the unobserved com-

ponents of the state of a dynamical system. In this context, extended Kalman filtering [10],

unscented Kalman filtering [11], and ensemble Kalman methods [12] have been applied as

well. In addition, different methods have also been developed to address the issue of hidden

variables and dynamics [13, 14], but in their examples the number of observable variables is

almost one half of the number of total variables, while as we will show in the results below our

proposed method requires less observable variables (e.g., one out of eight in the cell apoptosis

model) to correctly infer unknown parameters and predict all unobserved variables.

Due to technical limitations, however, biological reaction networks are often only partially

observable. Usually, experimental data are insufficient considering the size of the model,

which results in parameters that are non-identifiable [15] or only identifiable within confi-

dence intervals (see more details in [16]). Furthermore, a large class of models in systems biol-

ogy are sensitivity to the parameter values that are distributed over many orders of magnitude.

Such sloppiness is also a factor that makes parameter estimation more difficult [17]. In the pro-

cess of parameter inference, two issues accounting for system’s (non-)identifiability have to be

considered: structural identifiability that is related to the model structure independent of the

experimental data [18, 19]; and practical identifiability that is related to the amount and quality

of measured data. The a priori structural identifiability can be used to address the question of

unique estimation of the unknown parameters based on the postulated model. However, a

parameter that is structurally identifiable may still be practically non-identifiable assuming

that the model is exact, but the measurements are noisy or sparse [20].

In this work, we introduce a new deep learning [21] method—systems-informed neural

networks, based on the method of physics-informed neural networks [22, 23], to infer the hid-
den dynamics of experimentally unobserved species as well as the unknown parameters in the

system of equations. By incorporating the system of ODEs into the neural networks (through

adding the residuals of the equations to the loss function), we effectively add constraints to the

optimization algorithm, which makes the method robust to measurement noise and few scat-

tered observations. In addition, since large system-level biological models are typically encoun-

tered, our algorithm is computationally scalable and feasible, and its output is interpretable

even though it depends on a high-dimensional parameter space.
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Materials and methods

Throughout this paper, we assume that the systems biological process can be modeled by a sys-

tem of ordinary differential equations (ODEs) of the following form

dx
dt
¼ f ðx; t; pÞ; ð1aÞ

xðT0Þ ¼ x0; ð1bÞ

y ¼ hðxÞ þ �ðtÞ; �ðtÞ � N ð0; s2Þ; ð1cÞ

where the state vector x = (x1, x2, . . ., xS) represents the concentration of S species, and p = (p1,

p2, . . ., pK) are K parameters of the model, which remain to be determined. Hence, the system

of ODEs will be identified once p is known. y = (y1, y2, . . ., yM) are the M measurable signals

(consistent with the ODE system), which we can measure experimentally and could possibly

be contaminated with a white noise � of Gaussian type with zero mean and standard deviation

σ. The output function h is determined by the design of the experiments that are used for

parameter inference. While h could, in general, be any function, it is assumed to be a linear

function with M� S in most models as follows:
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i.e., y1, y2, . . ., yM are the noisy measurements of the species xs1 ; xs2 ; . . . ; xsM among all S species

(1� s1 < s2 < � � �< sM� S).

Systems-informed neural networks and parameter inference

Based on the method of physics-informed neural networks proposed in [22], we introduce a

deep learning framework that is informed by the systems biology equations that describe the

kinetic pathways (Eq (1a)). A neural network with parameters θ takes time t as the input and

outputs a vector of the state variables x̂ðt; θÞ ¼ ðx̂1ðt; θÞ; x̂2ðt; θÞ; . . . ; x̂Sðt; θÞÞ as a surrogate

of the ODE solution x(t) (Fig 1). In our network, in addition to the standard layers, e.g., the

fully-connected layer, we add three extra layers to make the network training easier, described

as follows.

• Input-scaling layer. Because the ODE system could have a large time domain, i.e., the input

time t could vary by orders of magnitude, we first apply a linear scaling function to t, i.e.,

~t ¼ t=T, such that ~t � Oð1Þ. We can simply choose T as the maximum value of the time

domain.

• Feature layer. In many models, the ODE solution may have a certain pattern, e.g., periodicity

in the yeast glycolysis model and fast decay in the cell apoptosis model, and thus it is benefi-

cial to the network training by constructing a feature layer according to these patterns.

Specifically, we employ the L functions e1(�), e2(�), . . ., eL(�) to construct the L features

e1ð~tÞ; e2ð~tÞ; . . . ; eLð~tÞ. The choice of the features is problem dependent, and we can select the

features based on the available observations. For example, if the observed dynamics has
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certain periodicity (e.g., the yeast glycolysis model), then we can use sin(kt) as the features,

where k is selected based on the period of the observed dynamics; if the observed dynamics

decays fast (e.g., the cell apoptosis model), then we can use e−kt as a feature. However, if there

is no clear pattern observed, the feature layer can also be removed.

• Output-scaling layer. Because the outputs x̂1; x̂2; . . . ; x̂S may have different magnitudes, sim-

ilar to the input-scaling layer, we add another scaling layer to transform the output of the last

fully-connected layer ~x1; ~x2; . . . ; ~xS (of order one) to x̂1; x̂2; . . . ; x̂S, i.e., x̂1 ¼ k1~x1, x̂2 ¼ k2~x2,

. . . ; x̂S ¼ kS~xS. Here, k1, k2, . . ., kS are chosen as the magnitudes of the mean values of the

ODE solution x1, x2, . . ., xS, respectively.

The next key step is to constrain the neural network to satisfy the scattered observations of

y as well as the ODE system (Eq (1a)). This is realized by constructing the loss function by con-

sidering terms corresponding to the observations and the ODE system. Specifically, let us

assume that we have the measurements of y1, y2, . . ., yM at the time t1; t2; . . . ; tNdata , and we

enforce the network to satisfy the ODE system at the time point t1; t2; . . . ; tNode . We note that

the times t1; t2; . . . ; tNdata and t1; t2; . . . ; tNode are not necessarily on a uniform grid, and they

could be chosen at random. Then, the total loss is defined as a function of both θ and p:

Lðθ; pÞ ¼ Ldata
ðθÞ þ Lode

ðθ; pÞ þ Laux
ðθÞ; ð3Þ

where
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Ldata
is associated with the M sets of observations y given by Eq (1c), while Lode

enforces the

Fig 1. Neural network architecture. The network consists of an input-scaling layer, a feature layer, several fully-

connected layers, and an output-scaling layer. The input-scaling layer and output-scaling layer are used to linearly

scale the network input and outputs such that they are of order one. The feature layer is used to construct features

explicitly as the input to the first fully-connected layer.

https://doi.org/10.1371/journal.pcbi.1007575.g001
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structure imposed by the system of ODEs given in Eq (1a). We employ automatic differentia-

tion (AD) to analytically compute the derivative
dx̂s
dt jtn in Lode

(see more details of AD in [23]).

The third auxiliary loss term Laux
is introduced as an additional source of information for the

system identification, and involves two time instants T0 and T1. It is essentially a component of

the data loss; however, we prefer to separate this loss from the data loss, as in the auxiliary loss

data are given for all state variables at these two time instants. We note that Ldata
and Laux

are

the discrepancy between the network and measurements, and thus they are supervised losses,

while Lode
is based on the ODE system, and thus is unsupervised. In the last step, we infer the

neural network parameters θ as well as the unknown parameters of the ODEs p simultaneously

by minimizing the loss function via gradient-based optimizers, such as the Adam optimizer

[24]:

θ�; p� ¼ arg min
θ;p

Lðθ; pÞ: ð7Þ

We note that our proposed method is different from meta-modeling [25, 26], as we optimize θ
and p simultaneously.

The M + 2S coefficients ðwdata
1
;wdata

2
; . . . ;wdata

M Þ in Eq (4), ðwode
1
;wode

2
; . . . ;wode

S Þ in Eq (5), and

ðwaux
1
;waux

2
; . . . ;waux

S Þ in Eq (6) are used to balance the M + 2S loss terms. In this study, we man-

ually select these weight coefficients such that the weighted losses are of the same order of mag-

nitude during the network training. We note that this guideline makes the weight selection

much easier, although there are many weights to be determined. These weights may also be

automatically chosen, e.g., by the method proposed in [27]. In this study, the time instants

t1; t2; . . . ; tNdata for the observations are chosen randomly in the time domain, while the time

instants t1; t2; . . . ; tNode used to enforce the ODEs are chosen in an equispaced grid. Addition-

ally, in the auxiliary loss function, the first set of data is the initial conditions at time T0 for the

state variables. The second set includes the values of the state variables at any arbitrary time

instant T1 within the training time window (not too close to T0); in this work, we consider the

midpoint time for the cell apoptosis model, and the final time instant for the yeast glycolysis

model and ultradian endocrine model. If data is available at another time point, alternatively

this point can be considered.

Analysis of system’s identifiability

A parameter pi is identifiable if the confidence interval of its estimate p̂i is finite. In systems

identification problems, two different forms of identifiability namely, structural and practical
are typically encountered. Structural non-identifiability arises from a redundant parameteriza-

tion in the formal solution of y due to insufficient mapping h of internal states x to observables

y in Eq (1) [15]. A priori structural identifiability has been studied extensively, e.g., using

power series expansion [28] and differential algebraic methods [29], yet mostly limited to lin-

ear models as the problem is particularly difficult for nonlinear dynamical systems. Further-

more, practical non-identifiability cannot be detected with these methods, since experimental

data are disregarded.

A parameter that is structurally identifiable may still be practically non-identifiable. Practi-

cal non-identifiability is intimately related to the amount and quality of measured data and

manifests in a confidence interval that is infinite. Different methods have been proposed to

estimate the confidence intervals of the parameters such as local approximation of the Fisher-

Information-Matrix (FIM) [20] and bootstrapping approach [30]. Another approach is to

quantify the sensitivity of the systems dynamics to variations in its parameters using a
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probabilistic framework [31]. For identifiability analysis, we primarily use the FIM method,

which is detailed in S1 Text.

Implementation

The algorithm is implemented in Python using the open-source library DeepXDE [23]. The

width and depth of the neural networks (listed in Table 1) depend on the size of the system of

equations and the complexity of the dynamics. We use the SwishðxÞ ¼ x
1þe� x function [32] as

the activation function σ shown in Fig 1, and the feature layer is listed in Table 2.

For the training, we use an Adam optimizer [24] with default hyperparameters and a learn-

ing rate of 10−3, where the training is performed using the full batch of data. As the total loss

consists of two supervised losses and one unsupervised loss, we perform the training using the

following two-stage strategy:

Step 1. Considering that supervised training is usually easier than unsupervised training, we

first train the network using the two supervised losses Ldata
and Laux

for some itera-

tions, such that the network can quickly match the observed data points.

Step 2. We further train the network using all the three losses.

We found empirically that this two-stage training strategy speeds up the network conver-

gence. The number of iterations for each stage is listed in Table 1.

Results

Yeast glycolysis model

The model of oscillations in yeast glycolysis [33] has become a standard benchmark problem

for systems biology inference [34, 35] as it represents complex nonlinear dynamics typical of

biological systems. We use it here to study the performance of our deep learning algorithm

used for parsimonious parameter inference with only two observables. The system of ODEs

for this model as well as the target parameter values and the initial conditions are included in

S2 Text. To represent experimental noise, we corrupt the observation data by a Gaussian noise

Table 1. Hyperparameters for the problems in this study. The fist and second number in the number of iterations correspond to the first and second training stage.

Model NN depth NN width #Iterations

Yeast glycolysis Noiseless 4 128 1000, 9 × 104

Noisy 4 128 1000, 2 × 106

Cell apoptosis Survival 5 256 0, 1.5 × 106

Death 5 256 0, 1.5 × 106

Ultradian endocrine Parameters only 4 128 2000, 6 × 105

Hidden nutrition 4 128 2000, 1.5 × 106

https://doi.org/10.1371/journal.pcbi.1007575.t001

Table 2. The feature layer used in the network for each problem.

Model Features

Yeast glycolysis ~t , sinð~tÞ, sinð2~tÞ, sinð3~tÞ, sinð4~tÞ, sinð5~tÞ, sinð6~tÞ
Cell apoptosis ~t , e� ~t

Ultradian endocrine ~t , sinð~tÞ, sinð2~tÞ, sinð3~tÞ, sinð4~tÞ, sinð5~tÞ

https://doi.org/10.1371/journal.pcbi.1007575.t002
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with zero mean and the standard deviation of σ� = cμ, where μ is the standard deviation of each

observable over the observation time window and c = 0 − 0.1.

We start by inferring the dynamics using noiseless observations on two species S5 (the con-

centration of NADH) and S6 (the concentration of ATP) only. These two species are the mini-

mum number of observables we can use to effectively infer all the parameters in the model. S1

Fig shows the noiseless synthetically generated data by solving the system of ODEs in S2 Text

with the parameters listed in S1 Table. We sample data points within the time frame of 0 − 10

minutes at random and use them for training of the neural networks, where the neural net-

work is informed by the governing ODEs of the yeast model as explained above. S2 Fig shows

the inferred dynamics for all the species predicted by the systems-informed neural networks,

and plotted against the exact dynamics that are generated by solving the system of ODEs. We

observe excellent agreement between the inferred and exact dynamics within the training time

window. The neural networks learn the input data given by scattered observations (shown by

symbols in S2 Fig) and is able to infer the dynamics of other species due to the constraints

imposed by the system of ODEs.

Next, we verify the robustness of the algorithm to noise. For that purpose, we introduce

Gaussian additive noise with the noise level c = 10% to the observational data. The input train-

ing data are shown in Fig 2 for the same species (S5 and S6) as the observables, where similar to

the previous test, we sample random scattered data points in time. Results for the inferred

dynamics are shown in Fig 3. The agreement between the inferred and exact dynamics is excel-

lent considering the relatively high level of noise in the training data. Our results show that the

enforced equations in the loss function Lode
act as a constraint of the neural networks that can

effectively prevent the overfitting of the network to the noisy data. One advantage of encoding

the equations is their regularization effect without using any additional L1 or L2 regularization.

Our main objective in this work, however, is to infer the unknown model parameters p.

This can be achieved simply by training the neural networks for its parameters θ as well as the

model parameters using backpropagation. The results for the inferred model parameters along

with their target values are given in Table 3 for both test cases (i.e., with and without noise in

the observations). First thing to note is that the parameters can be identified within a confi-

dence interval. Estimation of the confidence intervals a priori is the subject of structural iden-

tifiability analysis, which is not in the scope of this work. Second, practical identifiability

Fig 2. Glycolysis oscillator noisy observation data given to the algorithm for parameter inference. 500

measurements are corrupted by a zero-mean Gaussian noise and standard deviation of σ = 0.1μ. Only two observables

S5 and S6 are considered and the data are randomly sampled in the time window of 0 − 10 minutes.

https://doi.org/10.1371/journal.pcbi.1007575.g002

PLOS COMPUTATIONAL BIOLOGY Systems biology informed deep learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007575 November 18, 2020 7 / 19

https://doi.org/10.1371/journal.pcbi.1007575.g002
https://doi.org/10.1371/journal.pcbi.1007575


analysis can be performed to identify the practically non-identifiable parameters based on the

quality of the measurements and the level of the noise. We have performed local sensitivity

analysis by constructing the Fisher Information Matrix (FIM) (S1 Text) and the correlation

matrix R derived from the FIM.

The inferred parameters from both noiseless and noisy observations are in good agreement

with their target values. The most significant difference (close to 30% difference) can be seen

Fig 3. Glycolysis oscillator inferred dynamics from noisy measurements compared with the exact solution. 500

scattered observations are plotted using symbols for the two observables S5 and S6.

https://doi.org/10.1371/journal.pcbi.1007575.g003
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for the parameter N (the total concentration of NAD+ and NADH). However, given that the

glycolysis system (S2 Text) is identifiable (c.f. [33, 35] and S3 Fig), and the inferred dynamics

shown in S2 Fig and Fig 3 show that the learned dynamics match very well with the exact

dynamics, the inferred parameters are valid. We used Eq. (S3) in S1 Text to estimate the stan-

dard deviations of the model parameters. The σi estimates for the parameters are the lower

bounds, and thus, may not be informative here. Further, these estimates are derived based on a

local sensitivity analysis. A structural/practical identifiability analysis [15] or a bootstrapping

approach to obtain the parameter confidence intervals is probably more relevant here. Using

the FIM, we are able to construct the correlation matrix R for the parameters. Nearly perfect

correlations (|Rij|� 1) suggest that the FIM is singular and the correlated parameters may not

be practically identifiable. For the glycolysis model, as shown in S3 Fig, no perfect correlations

can be found in R (except for the anti-diagonal elements), which suggests that the model

described by S2 Text is practically identifiable. In the example above, we considered 500 data

measurements, but in systems biology we often lack the ability to observe system dynamics at a

fine-time scale. To investigate the performance of our method to a set of sparse data points, we

used only 200 data points, and still have a good inferred dynamics of the species S1, S2, S5 and

S6 (S4 Fig).

Cell apoptosis model

Although the glycolysis model is highly nonlinear and difficult to learn, we have shown that its

parameters can be identified. To investigate the performance of our algorithm for non-identi-

fiable systems, we study a cell apoptosis model, which is a core sub-network of the signal trans-

duction cascade regulating the programmed cell death-against-survival phenotypic decision

[36]. The equations defining the cell apoptosis model and the values of the rate constants for

the model are taken from [36] and listed in S2 Table.

Although the model is derived using simple mass-action kinetics and its dynamics is easy to

learn with our algorithm, most of the parameters are not identifiable due to both structural

and practical non-identifiability. To infer the dynamics of this model, we only use 120 random

samples of measurements collected for one observable (x4), where we assume that the mea-

surements are corrupted by a zero-mean Gaussian noise and 5% standard deviation as shown

Table 3. Parameter values for yeast glycolysis model and each corresponding inferred values. The standard deviations are estimated using Eq. (S3) in S1 Text as practi-

cal non-identifiability analysis based on the FIM.

Parameter Target value Inferred value (Noiseless observations) Inferred value (Noisy observations) Standard deviation

J0 2.5 2.50 2.49 0.18

k1 100 99.9 86.1 62.0

k2 6 6.01 4.55 21.3

k3 16 15.9 14.0 21.9

k4 100 100.1 97.1 103.6

k5 1.28 1.28 1.24 0.25

k6 12 12.0 12.7 5.1

k 1.8 1.79 1.55 4.34

κ 13 13.0 13.4 25.9

q 4 4.00 4.07 0.27

K1 0.52 0.520 0.550 0.091

ψ 0.1 0.0994 0.0823 0.317

N 1 0.999 1.29 2.94

A 4 4.01 4.25 2.28

https://doi.org/10.1371/journal.pcbi.1007575.t003
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in Fig 4. Furthermore, it is possible to use different initial conditions in order to produce dif-

ferent cell survival outcomes. The initial conditions for all the species are given in S3 Text,

while we use x7(0) = 2.9 × 104 (molecules/cell) to model cell survival (Fig 4(top)) and x7(0) =

2.9 × 103 (molecules/cell) to model cell death (Fig 4(bottom)).

Using the systems-informed neural networks and the noisy input data, we are able to infer

most of the dynamics (including x3, x4, x6, x7 and x8) of the system as shown in S5 Fig and Fig

5. These results show a good agreement between the inferred and exact dynamics of the cell

survival/apoptosis models using one observable only.

We report the inferred parameters for the cell apoptosis model in Table 4, where we have

used noisy observations on x4 under two scenarios of cell death and survival for comparison.

The results show that four parameters (k1, kd2, kd4 and kd6) can be identified by our proposed

method with relatively high accuracy, as indicated by the check mark (✓) in the last column of

Table 4. We observe that the standard deviations for most of the parameter estimates are

orders of magnitude larger than their target values, and thus the standard deviations estimated

using the FIM are not informative in the practical identifiability analysis. The only informative

standard deviation is for kd6 (indicated by the symbol †), and kd6 is inferred with relatively

high accuracy by our method.

To have a better picture of the practical identifiability analysis, we have plotted the correla-

tion matrix R in S6 Fig. We observe perfect correlations |Rij|� 1 between some parameters.

Specifically, parameters k1 − kd1, and k3 − kd3 have correlations above 0.99 for cell survival

model, which suggests that these parameters may not be identified. This is generally in agree-

ment with the parameter inference results in Table 4 with some exceptions. Our parameter

inference algorithm suggests that k1 is identifiable, whereas kd1 is not for the cell survival

model. Thus, in order to increase the power of the practical identifiability analysis and to com-

plement the correlation matrix, we have computed the FIM null eigenvectors and for each

eigenvector we identified the most dominant coefficients, which are plotted in Fig 6. We

Fig 4. Cell apoptosis noisy observation data given to the algorithm for parameter inference. 120 measurements are

corrupted by a zero-mean Gaussian noise and standard deviation of σ = 0.05μ. Data for the observable x4 only are

randomly sampled during the time window of 0 − 60 hours for two scenarios: (top) cell survival with the initial

condition x7(0) = 2.9 × 104 (molecules/cell) and (bottom) cell death with x7(0) = 2.9 × 103 (molecules/cell).

https://doi.org/10.1371/journal.pcbi.1007575.g004
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observe that there are six null eigenvectors associated with the zero eigenvalues of the FIM for

both the cell survival and cell death models. The most dominant coefficient in each null eigen-

vector is associated with a parameter that can be considered as practically non-identifiable.

The identifiable parameters include k1, kd4 and kd6 (indicated by the symbol ? in Table 4),

Fig 5. Cell apoptosis inferred dynamics from noisy observations compared with the exact solution. Predictions are

performed on equally-spaced time instants in the interval of 0 − 60 hours. The scattered observations are plotted using

symbols only for the observable x4. The exact data and the scattered observations are computed by solving the system

of ODEs given in S3 Text.

https://doi.org/10.1371/journal.pcbi.1007575.g005
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which agree well with the results of our algorithm. On the contrary, our algorithm successfully

infers one more parameter kd2 than the above analysis. This could be due to the fact that check-

ing practical identifiability using the FIM can be problematic, especially for partially observed

nonlinear systems [37]. We have similar results for the cell death model.

Ultradian endocrine model

The final test case for assessing the performance of the proposed algorithm is to infer parame-

ters of the ultradian model for the glucose-insulin interaction. We use a relatively simple ultra-

dian model [38] with 6 state variables and 30 parameters. This model is developed in a non-

pathophysiologic context and represents relatively simple physiologic mechanics. In this

model, the main variables are the plasma insulin concentration Ip, the interstitial insulin con-

centration Ii, the glucose concentration G, and a three stage filter (h1, h2, h3) that reflects the

response of the plasma insulin to glucose levels [38]. The resulting system of ODEs, the nomi-

nal values for the parameters of the ultradian model along with the initial conditions for the 6

state variables are given in S4 Text.

The nutritional driver IG(t) is the systematic forcing of the model that represents the exter-

nal sources of glucose from nutritional intake. Although the nutritional intake (modeled by

Table 4. Parameter values for cell apoptosis model and their corresponding inferred values. The standard deviations are estimated using Eq. (S3) in S1 Text as practical

identifiability analysis using the Fisher Information Matrix. The symbols ✓, † and ? in the last column denote that the corresponding variable is identifiable using our pro-

posed method, FIM standard deviation, and null-eigenvector analysis.

Parameter Target Value Cell Survival Cell Death Identifiable

Inferred Value Standard Deviation Inferred Value Standard Deviation

k1 2.67 × 10−9 0.59 × 10−9 6.2 × 10−6 0.34 × 10−9 1.9 × 10−5 ✓?

kd1 1 × 10−2 7.06 × 10−10 35.5 3.37 × 10−7 96.7

kd2 8 × 10−3 1.72 × 10−3 4.9 2.38 × 10−3 23.8 ✓

k3 6.8 × 10−8 0.15 × 10−8 1.0 × 10−4 0.16 × 10−8 2.1 × 10−4

kd3 5 × 10−2 4.19 × 10−10 62.8 4.23 × 10−10 78.0

kd4 1 × 10−3 0.92 × 10−3 0.20 1.28 × 10−3 1.2 ✓?

k5 7 × 10−5 1.49 × 10−7 0.019 7.25 × 10−8 0.37

kd5 1.67 × 10−5 6.92 × 10−11 0.034 8.51 × 10−11 13.7

kd6 1.67 × 10−4 1.81 × 10−4 0.35 × 10−4 1.57 × 10−4 1.57 × 10−4 ✓†?

https://doi.org/10.1371/journal.pcbi.1007575.t004

Fig 6. Fisher information matrix null eigenvectors of the cell apoptosis model. The most dominant component in each null eigenvector associated

with a specific parameter suggests that the parameter may not be practically identifiable: (left) cell survival and (right) cell death.

https://doi.org/10.1371/journal.pcbi.1007575.g006
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the N discrete nutrition events) is required to be defined and properly recorded by the patients,

it is not always accurately recorded or may contain missing values. Therefore, it would be use-

ful to employ systems-informed neural networks to not only infer the model parameters given

the nutrition events, but also to assume that the intake is unknown (hidden forcing) and infer

the nutritional driver in Eq. S7f (S4 Text) as the same time.

Model parameter inference given the nutrition events. We consider an exponential

decay functional form for the nutritional intake IGðtÞ ¼
PN

j¼1
mjk expðkðtj � tÞÞ, where the

decay constant k is the only unknown parameter and three nutrition events are given by (tj,
mj) = [(300, 60) (650, 40) (1100, 50)] (min, g) pairs. The only observable is the glucose level

measurements G shown in Fig 7 (generated here synthetically by solving the system of ODEs),

which are sampled randomly to train the neural networks for the time window of 0 − 1800

minutes. Because we only use the observation of G and have more than 20 parameters to infer,

we limit the search range for these parameters. The range of seven parameters is adopted from

[38], and the range for other parameters is set as (0.2x, 1.8x), where x is the nominal value of

that parameter (S3 Table).

For the first test case, we set the parameters Vp, Vi and Vg to their nominal values and infer

the rest of the parameters. The inferred values are given in Table 5 (column Test 1), where we

observe good agreement between the target and inferred values. For the second test, we also

infer the values of Vp, Vi and Vg (Table 5). Although the inferred parameters are slightly worse

than the Test 1, when using the inferred parameters, we are able to solve the equations for

unseen time instants with high accuracy. We perform forecasting for the second test case after

training the algorithm using the glucose data in the time interval of t = 0 − 1800 min and infer-

ring the model parameters. Next, we consider that there is a nutrition event at time tj = 2000

min with carbohydrate intake of mj = 100 g. As shown in Fig 8, we are able to forecast with

high accuracy the glucose-insulin dynamics, more specifically, the glucose levels following the

nutrition intake.

Model parameter inference with hidden nutrition events. As detailed in the following,

one of the significant advantages of the systems-informed neural network is its ability to infer

the hidden systematic forcing in the model. For example, in the glucose-insulin model, the

nutritional driver IG is the forcing that we aim to infer as well. Here, we use the glucose mea-

surements to train the model for the time interval t = 0 − 1800 min shown in Fig 7, while we

assume that the time instants and quantities of three nutritional events are additionally

unknown.

We found that it is difficult to infer all the parameters as well as the the timing and carbohy-

drate content of each nutrition event. However, given Vp, Vi, Vg and the timing of each

Fig 7. Ultradian glucose-insulin model observation data given to the algorithm for parameter inference. 360

noiseless measurements on glucose level (G) only are randomly sampled in the time window of 0 − 1800 minutes (*

one day).

https://doi.org/10.1371/journal.pcbi.1007575.g007
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nutrition event, the algorithm is capable of inferring the other model parameters as well as the

carbohydrate content (S4 Table column Test 1). Having the nutrition events as well as all other

unknown parameters estimated, we are able to forecast the glucose levels for t = 1800 − 3000

min assuming there has been a nutritional intake of (tj, mj) = (2000, 100). The predictions for

the glucose G and the nutritional driver IG are shown in S7 Fig, which show excellent agree-

ment in the forecasting of glucose levels. For the second test, we also infer the values of Vp, Vi
and Vg, and the result is slightly worse (S4 Table column Test 2 and S8 Fig).

If both the timing and carbohydrate content of each nutrition event are unknown, the algo-

rithm is also capable to infer them by assuming that certain model parameters are known. We

found that the selection of the known parameters is important. As shown in S4 Table, we con-

sider different combinations of parameters to be known in Test 3 and Test 4; Test 3 leads to

good prediction accuracy (S9 Fig) while Test 4 does not.

Discussion

We presented a new and simple to implement “systems-biology-informed” deep learning algo-

rithm that can reliably and accurately infer the hidden dynamics described by a mathematical

model in the form of a system of ODEs. The system of ODEs is encoded into a plain “unin-

formed” deep neural networks and is enforced through minimizing the loss function that

includes the residuals of the ODEs. Enforcing the equations in the loss function adds addi-

tional constraints in the learning process, which leads to several advantages of the proposed

algorithm: first, we are able to infer the unknown parameters of the system of ODEs once the

neural network is trained; second, we can use a minimalistic amount of data on a few observ-

ables to infer the dynamics and the unknown parameters; third, the enforcement of the equa-

tions adds a regularization effect that makes the algorithm robust to noise (we have not used

Table 5. Parameter values for the ultradian glucose-insulin model and their corresponding inferred values.

Parameter Nominal value Inferred value (Test 1) Inferred value (Test 2)

Vp 3 – 2.97

Vi 11 – 9.25

Vg 10 – 11.3

E 0.2 0.209 0.216

tp 6 6.58 6.30

ti 100 96.6 136

td 12 11.8 11.6

k 0.0083 0.00837 0.00833

Rm 209 232 198

a1 6.6 6.56 6.48

C1 300 321 277

C2 144 52.6 44.9

C4 80 67.1 73.9

C5 26 25.2 25.6

Ub 72 68.3 73.6

U0/C3 0.04 0.0464 0.0463

Um/C3 0.9 0.790 0.975

Rg 180 182 182

α 7.5 7.89 7.94

β 1.772 1.91 1.85

https://doi.org/10.1371/journal.pcbi.1007575.t005
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any other regularization technique); and lastly, the measurements can be scattered, noisy and

just a few.

The problem of structural and practical non-identifiability (such as the one encountered in

the cell apoptosis model) is a long-standing problem in the field of systems identification, and

has been under extensive research, e.g., [39]. Structural non-identifiabilities originate from

incomplete observation of the internal model states. Because the structural non-identifiability

is independent of the accuracy of experimental data measurements, we cannot resolve it by a

refinement of existing measurements, and one possible way to resolve this issue is increasing

the number of observed species. Our focus in this study is mostly on practical identifiability,

which can guide us to redesign the experiment, improve the model, or collect more experi-

mental measurements. In this study, we used FIM and local sensitivity analysis for the iden-

tifiability analysis, but we note that FIM has many limitations and can be problematic,

especially for partially observed nonlinear systems [37], and hence other advanced alternatives

[15, 40] should be used in future works. However, our goal in this work was not to do system-

atic identifiability analysis, but rather to use identifiability analysis to explain some of our

findings.

Conclusion

We have used three benchmark problems to assess the performance of the algorithm including

a highly nonlinear glycolysis model, a non-identifiable cell apoptosis model, and an ultradian

glucose-insulin model for glucose forecasting based on the nutritional intake. Given the system

Fig 8. Ultradian glucose-insulin inferred dynamics and forecasting compared with the exact solution given

nutrition events. 600 scattered observations of glucose level are randomly sampled from 0 − 1800min and used for

training. Note that the parameter k in the intake function IG is considered to be unknown, while the timing and

carbohydrate content of each nutrition event are given. Given the inferred parameters, we can accurately forecast the

glucose levels following the event at time t = 2000 min.

https://doi.org/10.1371/journal.pcbi.1007575.g008
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of ODEs and initial conditions of the state variables, the algorithm is capable of accurately

inferring the whole dynamics with one or two observables, where the unknown parameters are

also inferred during the training process. An important and very useful outcome of the algo-

rithm is its ability to infer the systematic forcing or driver in the model such as the nutritional

intake in the glucose-insulin model. In this work, we considered the synthetic data of three

small problems to test the performance and limitation of the proposed method. We will apply

our method to larger problems and real data (e.g., the dataset introduced in [41]) in future

work.
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