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CTNND2 and GADD45G have
proved to be promising blood
biomarkers to be used for the
diagnosis and prognosis of is-
chemic stroke disease,
respectively.
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AMouse Brain-basedMulti-omics Integrative
Approach Reveals Potential Blood Biomarkers
for Ischemic Stroke
Alba Simats1 , Laura Ramiro1, Teresa García-Berrocoso1, Ferran Briansó2,4,
Ricardo Gonzalo2, LunaMartín3, Anna Sabé3, Natalia Gill1, Anna Penalba1, Nuria Colomé3,
Alex Sánchez2,4, Francesc Canals3, Alejandro Bustamante1, Anna Rosell1, and
JoanMontaner1,*

Stroke remains a leading cause of death and disability
worldwide. Despite continuous advances, the identifica-
tion of key molecular signatures in the hyper-acute phase
of ischemic stroke is still a primary interest for translational
research on stroke diagnosis, prognosis, and treatment.
Data integration from high-throughput -omics techni-
ques has become crucial to unraveling key interactions
among different molecular elements in complex biologi-
cal contexts, such as ischemic stroke. Thus, we used
advanced data integration methods for a multi-level
joint analysis of transcriptomics and proteomics data
sets obtained from mouse brains at 2 h after cerebral is-
chemia. By modeling net-like correlation structures, we
identified an integrated network of genes and proteins
that are differentially expressed at a very early stage
after stroke. We validated 10 of these deregulated
elements in acute stroke, and changes in their expres-
sion pattern over time after cerebral ischemia were
described. Of these, CLDN20, GADD45G, RGS2, BAG5,
and CTNND2 were next evaluated as blood biomarkers
of cerebral ischemia in mice and human blood samples,
which were obtained from stroke patients and patients
presenting stroke-mimicking conditions. Our findings
indicate that CTNND2 levels in blood might potentially
be useful for distinguishing ischemic strokes from
stroke-mimicking conditions in the hyper-acute phase
of the disease. Furthermore, circulating GADD45G con-
tent within the first 6 h after stroke could also play a key
role in predicting poor outcomes in stroke patients. For
the first time, we have used an integrative biostatistical
approach to elucidate key molecules in the initial stages
of stroke pathophysiology and highlight new notable
molecules that might be further considered as blood
biomarkers of ischemic stroke.

Stroke remains a major leading cause of death and disabil-
ity worldwide (1) and is a major public health problem that
contributes to rising costs of healthcare in many developed
countries (2). Effective therapies based on reperfusion mech-
anisms are currently used (3, 4), but only a small percentage
of ischemic stroke patients currently benefit from them. The
reason is the narrow therapeutic time window and absolute
contraindications for those who present risk of bleeding (5,
6). Thus, new therapeutic strategies are needed to protect
the ischemic brain.

More prompt and accurate diagnoses of ischemic stroke
might increase the number of patients that benefit from
therapies. At present, stroke diagnosis is based on neurologi-
cal exploration and costly imaging techniques (7), which are
still scarcely accessible in pre-hospital settings, primary
healthcare centers, and developing countries. Blood bio-
markers are expected to become potential substitutes for
these neuroimaging approaches (8–10) because they might
accelerate the distinction of stroke from other neurological
disorders that present similar clinical symptoms. Further-
more, blood biomarkers might also accelerate stroke treat-
ment, help with patient monitoring for adverse effects, and
help to anticipate poor patient prognoses at later stages of
the disease (11, 12). With this goal, better characterization of
the stroke pathophysiology is required to facilitate the identi-
fication of molecular indicators of ischemic stroke and pro-
vide novel insights into potential therapeutic targets. Such
efforts could help to restrain or even reverse the progression
of ischemic damage.

In this context, -omics techniques have emerged as so-
phisticated large-scale analytical tools that enable the accu-
rate identification of biological changes in the brain at differ-
ent molecular levels (13). Joint analyses of multiple data sets
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from different –omics techniques are becoming crucial to
unravel the relationships among different molecular compo-
nents and globally interpret all findings in a complex biologi-
cal context (14). Thus, the combination of multi-omics
techniques through integrative analyses is expected to
enhance the comprehension of the molecular dynamics
underlying ischemic stroke and might provide a framework
where the complexity of the interactive molecular net-
works prevails over the individual alterations of each com-
ponent separately.

The aim of this study was to identify the main transcrip-
tomics and proteomics changes that occur in the brains of
mice during the hyper-acute phase of cerebral ischemia. The
goal is to determine potential biomarkers of ischemic stroke.
We aimed to combine data from both –omics techniques
using an integrative analysis to reveal potential networks of
inter-connected genes and proteins with substantial involve-
ment in the very first stages of the stroke pathology. This
integrative approach has helped us to identify a set of mole-
cules that are positively replicated and could be further
explored in the brains and blood of mice at different time
points after cerebral ischemia. Finally, we analyzed the per-
formance of several highlighted candidates as biomarkers for
the diagnosis or prognosis of ischemic stroke in a clinical
setting.

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

The study being presented here is divided into 3 main sections: a
first discovery phase and a second replication phase, both con-
ducted in brain mouse samples, and a third qualification phase con-
ducted on mice and human brain and blood samples. Sample size
for the initial discovery phase was selected based on technical con-
siderations for the proteomics and transcriptomics approaches.
Once candidates were selected for replication, the minimum sample
size to replicate the results from the discovery phase was estimated
for each candidate separately (power of 80%, a = 0.05) (Ene 3.0,
GlaxoSmithKline, UK). To reach a successful replication of at least
half of the initially selected candidates, a sample size of 6 animals
per group was chosen. The number of mouse and human samples
used for the qualification phase was subjected to sample availability.
Details about statistical analyses and demographic and clinical data
are given below.

Animals

All animal procedures were conducted in compliance with the
Spanish legislation and in accordance with the Directives of the Eu-
ropean Union and were approved by the Ethics Committee of the
Vall d’Hebron Research Institute. C57BL/6J male mice were used for
the experiments (8/12-week-old; Janvier Labs, France). Animals were
kept in a climate-controlled environment on a 12-h light/12-h dark
cycle. Food and water were available ad libitum. Analgesia (Bupre-
norfine, 0.05mg/kg, s.c, Divasa Farma-Vic S.A, Spain) was adminis-
tered to all animals to minimize pain and discomfort. Anesthesia (iso-
flurane, 4% for induction, 2% for maintenance in air, Abbot
Laboratories, Spain) was given via facemask during all surgical pro-
cedures described below. All experiments were conducted in a
randomized manner and in adherence to the ARRIVE guidelines (15).

A total of 37 animals were used to complete the whole study. In
the discovery phase, 15 animals were needed. Among them, 3 were
excluded after applying the following criteria: incomplete occlusion
or reperfusion after removal of the filament (n=2) and death during
the experimental protocol (n=1). In the replication phase, 18 animals
were used. From those, 6 were excluded because of incomplete
occlusion or reperfusion after removal of the filament (n=2), death
during the experimental protocol (n=3) or poor brain perfusion during
euthanasia (n=1).

Transient Cerebral Ischemia Model (tMCAO)

Transient infarction in the middle cerebral artery territory was
induced for 90min by introducing an intraluminal filament (Doccol
602256PK10Re), as described elsewhere (16). Only animals that
exhibited a reduction of CBF of 80% after filament introduction and
a recovery of 75% after filament removal were included in the study.
After reperfusion, animals could recover for 30min or 4.5 h (corre-
sponding with 2 h or 6 h from the beginning of the MCA occlusion),
according to their experimental group. Sham surgery was performed
by the same surgical procedures without insertion of the nylon-
coated filament.

Brain and Blood Collection and Extraction of Protein and RNA

Animals were deeply anesthetized at their respective times and
blood samples were collected through cardiac puncture, contained
in EDTA collection tubes and centrifuged at 1500 3 g at 4 °C for
15min. The top layer containing the platelet-poor plasma fraction
was stored at 280 °C until further use. Then, animals were transcar-
dially perfused with cold saline to remove blood from brain vessels.
Immediately after perfusion, mouse brains were quickly removed and
sectioned into 1mm slices in cold conditions. The slice correspond-
ing to the bregma anatomical point (as the core of the infarct tissue
(17)) was carefully dissected to isolate the right (ipsilateral, IP) and
left (contralateral, CL) hemispheres separately (supplemental Fig. S1).
Each hemisphere was flash-frozen in liquid nitrogen and stored at
280 °C. Flash-frozen tissues were pulverized into powder in liquid
nitrogen, and total fractions of protein and RNA were then isolated
using the MirVanaTM ParisTM (Thermo Fisher Scientific Inc., MA).
RNA and protein fractions were kept at 280 °C until further use.

Discovery Phase Study

The discovery phase was performed on RNA and protein extracts
from brain samples from 8 ischemic animals euthanatized 2 h after
the MCAO onset. Four sham-control animals were also included in
this phase to discard the selection of gene and protein candidates
differentially altered because of other phenomena rather than the is-
chemic insult.

Transcriptomics Study—Total RNA concentrations from mouse
brain samples were measured with a Nanodrop 1000 Spectropho-
tometer (ThermoFisher) and RNA integrity was assessed using
the Agilent 2100 BioAnalyzer (Agilent Technologies, USA). The
Genechip© Mouse Clariom S 24 3 arrays plate (Affymetrix, Thermo-
Fisher) was used to analyze gene expression patterns on a whole-ge-
nome scale on a single array. Starting material was 100ng of total
RNA of each sample. Briefly, sense ssDNA was generated from total
RNA with the GeneChip WT Plus Reagent Kit (Affymetrix) according
to the manufacturer’s instructions. Then, sense ssDNA was frag-
mented, labeled and hybridized to the arrays with the GeneChip WT
Terminal Labeling and Hybridization Kit (Affymetrix). Arrays plate was
scanned and processed with Affymetrix GeneChip Command Con-
sole to obtain expression array intensity .cel files.
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Statistical and bioinformatics analyses of microarray data were
performed using custom scripts in R language version 3.4.2 (R Core
Team, 2017, Vienna, Austria) with common Bioconductor packages.
In brief, after following a standard quality control (18), Robust Multi-
array Average algorithm (19) was used for pre-processing microarray
data to perform background adjustment, normalization and summari-
zation of probe set expression values. Then, genes whose standard
deviation (S.D.) was below the 50 percentile of all S.D., without a
known Entrez Gene database identifier and without a valid annotation
to the Gene Ontology database were filtered out from the whole data
set and the final amount of 9324 genes was considered for the sta-
tistical analysis. Selection of differentially expressed elements was
based on a linear model analysis with empirical Bayes modification
for the variance estimates (20). False Discovery Rate (FDR)-based
corrections for multiple testing were also calculated (Adj. p-value)
(21). Fold-change (FC) was calculated by dividing the IP to the CL
expression value for each animal. Data on the brain transcriptomic
profile after stroke was analyzed by Ingenuity Pathway Analysis (IPA,
Qiagen, USA) (supplemental Methods).

Proteomics Study—Protein extracts from mouse brain samples
were quantified using the BCA Protein Assay (ThermoFisher). Twenty
mg of each sample were resolved in 12% SDS-polyacrylamide gels
under reducing conditions and stained with colloidal Coomassie
G250 (Bio-Rad, CA). Each lane was divided in five segments that
were individually processed to perform in-gel digestion of the pro-
teins. Briefly, stained gel fragments were cut into small pieces,
washed with 50mM ammonium bicarbonate/50% ethanol and dehy-
drated with ethanol. Reduction was performed by incubating sam-
ples with 10mM DTT (DTT) for 1h at 56 °C, followed by alkylation with
55mM iodoacetamide for 30min at dark. After washing and dehydra-
tion with acetonitrile, gel pieces were covered with 2.7ng/ml trypsin
(Promega, USA) in 25mM ammonium bicarbonate (300mL) and diges-
tion was run overnight at 37 °C. Peptide extraction was carried
out by incubation at 37 °C with acetonitrile (150mL) and further incu-
bation with 0.2% trifluoroacetic acid (400mL). The eluted peptides
were dried in a SavantTM SpeedVacTM High Capacity Concentrator
(ThermoFisher) and stored at 220 °C until further use.

Tryptic digests from excised bands were analyzed using a LC–MS
(LC–MS) approach in a linear trap quadrupole (LTQ) Orbitrap Velos
mass spectrometer (ThermoFisher). Peptide mixtures were fractio-
nated by on-line nanoflow liquid chromatography using an EASY-
nLC system (Proxeon Biosystems, ThermoFisher) with a two-linear-
column system: digests were loaded at 4mL/min onto a trapping
guard column (EASY-column, 20 3 0.1mm, packed with Reprosil
C18, 5 mM particle size) and then eluted from the analytical column
(EASY-column, 100 3 0.75mm, packed with Reprosil C18, 3 mM par-
ticle size). Separation was achieved by using a mobile phase of 0.1%
formic acid in water (Buffer A) and acetonitrile with 0.1% formic acid
(Buffer B) and applying a linear gradient from 0 to 35% of buffer B
for 120min at a flow rate of 300 nL/min. Ions were generated apply-
ing a voltage of 1.9kV to a stainless steel nano-bore emitter.

The mass spectrometer was operated in a data-dependent mode.
A scan cycle was initiated with a full-scan MS (MS) spectrum (from
m/z 300 to 1600) acquired in the Orbitrap with a resolution of 30,000.
The 20 most abundant ions were selected for collision-induced dis-
sociation fragmentation in the LTQ when their intensity exceeded a
minimum threshold of 1000 counts, excluding singly charged ions.
Automatic gain control (AGC) target values were set to 1 3 106 ions
for survey MS and 5000 ions for MS/MS experiments. The maxi-
mum ion accumulation time was 500 and 200ms in the MS and
MS/MS modes, respectively. The normalized collision energy was
set to 35%, and one microscan was acquired per spectrum. Ions
subjected to MS/MS with a relative mass window of 10 ppm were
excluded from further sequencing for 20 s. For all precursor

masses a window of 20 ppm and isolation width of 2 Da was
defined. Orbitrap measurements were performed enabling the
lock mass option (m/z 445.120024) for survey scans to improve
mass accuracy.

Progenesis® QI for proteomics software v3.0 (Nonlinear dynamics,
UK) was used for MS data analysis using default settings. The re-
sults from each of the five gel fractions were independently
analyzed and all MS runs were automatically aligned to a selected
reference sample. Alignments were then manually supervised and
automatically normalized to all features. A first normalization (within-
fraction) of MS signals, based on the median of ratiometric distribu-
tion of the abundance measurements, was performed automatically
by the Progenesis® QI for proteomics software. Only features within
the 400 to 1600 m/z range, from 5 to 115min of retention time, and
with positive charges between 2 to 4 were considered for identifica-
tion and quantification. Peaklists were generated using Proteome
Discoverer 2.1 (Thermo Fisher) and analyzed using the Mascot
search engine (v5.1, Matrix Science, UK). Protein identification was
carried out using the SwissProt-MusMusculus database (2017_10:
16.942 entries), setting precursor mass tolerance to 10ppm and
fragment mass tolerance to 0.8Da. Oxidized methionine was con-
sidered as variable amino acid modification and carbamidomethyla-
tion of cysteines as fixed modification. Trypsin was selected as the
enzyme allowing up to two missed cleavage. Significant threshold
for protein identification was set to p ,0.05 for the probability-
based Mascot score. Peptide and protein identifications were further
filtered to,1%FDR as measured by a concatenated target-decoy
database search strategy. Finally, the five fractions were combined
into one single Progenesis experiment and a second (between-frac-
tion) normalization was automatically performed by the software to
compensate for different running conditions. Label-free protein
abundance quantification was based on the sum of the peak areas
within the isotope boundaries of peptide ion peaks. Proteins identi-
fied by identical peptide sets were grouped to satisfy the principles
of parsimony. Only those proteins quantified and identified with at
least 2 unique and nonconflicting peptides (it is, features assigned
unambiguously to peptides belonging to the protein, as assessed by
Progenesis software) were considered for the statistical analysis
(44.8%, 2485 proteins). Protein and peptide identifications are pro-
vided in supplemental Table S1.

Data were further processed using custom scripts in R language
version 3.4.2 (R Core Team, 2017). Protein abundance values were
log-10 transformed and column-wise standardized (22). Selection of
differentially expressed proteins was based on a linear model anal-
ysis implemented in the Bioconductor limma package (23). False
Discovery Rate (FDR)-based corrections for multiple testing were
also calculated (Adj. p-value) (21). Fold-change (FC) was calcu-
lated by dividing the IP to the CL expression value for each ani-
mal. Data on the brain proteomic profile after stroke was analyzed
by Ingenuity Pathway Analysis (IPA, Qiagen, Germany) (supple-
mental Methods).

Integrative Analyses—For the integrative analyses only samples
from ischemic animals were considered. All features (genes and
proteins) with a nonadjusted p-value ,0.05 were included in the
analyses. Individual pre-processing of ischemia-related differentially
expressed gene and protein data sets through Principal Component
Analysis (PCA) resulted in the identification of two samples (corre-
sponding to the IP and CL hemispheres from one single animal)
behaving as outliers, which were beforehand excluded for the inte-
grative analyses (supplemental Fig. S2). Thus, the integrative analy-
ses of significant differentially expressed genes and proteins were
only performed with samples from 7 MCAO animals. Besides, the
protein TXN2 was momentarily precluded from these integrative anal-
yses, because its relatively high fold change expression in the
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ischemic hemisphere masked all other candidates with a similar
abundance profile when data were integrated.

Standardized and normalized gene and proteins data sets were
used for the integrative analysis. Three different integrative tools
were employed, all of them implementing omics-focused versions of
already known dimension reduction techniques. First, Multiple Co-
Inertia Analysis (MCIA (24)) included in made4 R package (v1.52.0
(25)) was performed to maximize the covariance between gene and
protein data sets for each group of samples. To that end, data were
matched according to the measurements (samples) and weight-
equalized. Then, data were transformed into comparable lower
dimensional spaces and a generalization of the Co-Intertia Analysis
(CIA) was applied to provide a simultaneous ordination of measure-
ments (samples) and features (genes and proteins) within the same
hyperspace. Second, mixOmics R package (v6.3.1, http://mixomics.
org) was used to perform a regularized Canonical Correlation Analy-
sis (rCCA (26)) between gene and protein data sets. In brief, data
were properly transposed and scaled and the tuning of the rCCA pa-
rameters were iterated until achieving a cross-validation score of 0.8
(lambda 1=0.1318 and lambda 2=0.001). Resulting relevance net-
work was plotted for a correlation cutoff of R�0.75. Third, the
mogsa R package (v1.12.2 (27)) was employed to annotate and
weight genes and proteins data sets against gene sets from the
Gene Ontology (GO). This analysis was based on the application of
the Multiple Factor Analysis (28) and was fed with the gene sets
corresponding to GO annotations in Mus musculus for Hallmark
(v5.2 (29)) and Broad Institue’s C2 Cannonical Pathways molecular
signature databases (http://software.broadinstitute.org/gsea/login.jsp,
v5.2). Default parameters were used, applying weighting of the indi-
vidual data sets to prevent data sets with more features or different
scales dominating the MFA results. Only those gene sets significantly
enriched in our joint data set (genes and proteins) that depict any of
our 18 selected candidates from the correlation-based integrative
network are shown. The mogsa R package also generated gene set
scores (GSS) by computing all gene and protein contributions to
each gene set found to be enriched (27). GSS were further decom-
posed with respect to each data set (genes and proteins).

Replication Phase Study

The replication phase was conducted on brain samples from 6 is-
chemic animals obtained 2 h after ischemia. Replicated candidates
were further evaluated on other brain samples from 6 ischemic ani-
mals collected 6 h after ischemic onset. RNA and protein fractions
were obtained from the mouse brains following the same procedure
as in the discovery phase.

Digital Multiplexed Gene Expression Assay—The Nanostring’s
nCounter® XT Assay (NanoString Technologies®, USA) was per-
formed at the Genomics Core Facility, Center Esther Koplowitz, Bar-
celona (Spain). The assay was conducted according to manufac-
turer’s instructions. Briefly, Nanostring’s nCounter ElementsTM XT
probes were created (Integrated DNA Technologies, S.L, Spain) for
candidate genes from the discovery phase, along with 3 housekeep-
ing genes (beta-2-microglobulin (B2m), glyceraldehyde-3-phosphate
dehydrogenase (Gapdh) and peptidyl-prolyl cis-trans isomerase A
(Ppia)) (supplemental Table S2). One hundred ng of the total RNA
from mouse brain samples was hybridized with the complete Master
Mix containing the pool of probes. Then, samples were loaded onto
the NanoString PrepStation, placed into the nCounter cartridge and
transferred to the nCounter digital analyzer for image capture and
data acquisition of fluorescent reporters. Measurements were taken
at high sensitivity with 280 fields of view. Data analysis and normal-
ization with standard procedures was performed with the Nano-
String-supplied software (v3.0). Briefly, following background sub-

traction, raw intensity values (RNA counts) were normalized to the
geometric mean of the positive control spike-in RNAs, followed by a
second normalization to the geometric mean of the housekeeping
genes. Values were finally expressed as fold-change of the IP com-
pared with the CL hemispheres for each animal. Differences in gene
levels between IP and CL hemispheres were assessed by paired t
test (normally distributed variables) or Wilcoxon signed-rank test (non-
normally distributed variables). Comparisons between fold-change
expressions at 2 h and at 6 h were evaluated through the Student t
test (normally distributed variables) or the Mann-Whitney test (nonnor-
mally distributed variables). All p-values were then corrected by the
false discovery rate (Adj. p-values).

Targeted Mass Spectrometry: Parallel Reaction Monitoring
(PRM)—This proteomic experiment was categorized as a Tier 2 tar-
geted MS measurement, as previously published elsewhere (30). Pro-
tein extracts from mouse brain samples were subjected to buffer
exchange to 8M Urea in 50mM ammonium bicarbonate using 3KDa
cutoff Amicon Ultra ultrafiltration devices (Merck-Millipore, USA).
Afterward, total protein content was quantified using the RCDC kit
(Bio-Rad), and 4mg of each protein extract were processed. Samples
were reduced with 10mM DTT for 1h, and then alkylated with 20mM

iodoacetamide for 30min at dark. Carbamidomethylation reaction
was quenched by addition of 35mM N-acetyl-L-cysteine for 15min at
dark. Samples were diluted with 50mM ammonium bicarbonate to a
final concentration of 1M Urea before being digested with trypsin in
a ratio of 1:20 (w/w) overnight at 37 °C. The reaction was stopped
with 0.5% formic acid, and the tryptic digest was kept at 220 °C until
further analysis.

Proteotypic peptides from the selected protein candidates, along
with 3 housekeeping proteins (B2M, GAPDH and PPIA), were
selected from the LC–MS experimental results on the discovery
phase or from MS data repositories (Peptide Atlas, SRM Atlas) (sup-
plemental Table S2). Isotopically labeled versions of target peptide
sequences were purchased from ThermoFisher. Analysis of the
heavy labeled peptides spiked into a pool of the samples yielded
concentration response curves with high correlation coefficients (typ-
ically .0.9) and low coefficients of variation (�20%) over a 10-fold
concentration range.

Prior to LC–MS analysis, known amounts of each labeled peptide
(ranging from 1-18000 fmol per mg of digest) were mixed with sample
digests, from which 500ng were analyzed using LTQ Orbitrap Velos
MS. In brief, peptide mixtures were fractionated in the EASY-nLC
1000 system: digests were loaded at 4mL/min onto a trapping guard
column (Acclaim PepMap 100 nanoviper, 20 3 0.75mm, packed
with C18, 3 mM particle size; ThermoFisher) and then eluted from the
analytical column (250 3 0.75mm, packed with Reprosil Pur C18-
AQ, 3 mM particle size; Dr. Maisch GmbH). Separation was finally
achieved by the same procedure used for the discovery phase LC–
MS analysis (4.2.2.).

The LTQ Orbitrap Velos MS was operated in parallel reaction mon-
itoring (PRM) mode. PRM was used to acquire full MS/MS spectra of
the target peptides, from which a precursor ion mass list was gener-
ated based on their sequence into Skyline (v4.1.0. MacCross Lab
Software, WA). AGC target value was set for 5000 ions in MS/MS.
The maximum ion accumulation time was 50ms. Normalized collision
energy was set to 38% and one microscan was acquired per spec-
trum. For all precursor masses an isolation width of 2Da was
defined.

Raw data were imported to Skyline software to analyze the results
in a blind manner. Chromatographic ion extractions of the 3 to 5
transitions that gave the highest intensities were used to quantify
each peptide (available in the Panorama Public repository). For pep-
tides giving significant amounts of two different charge state ions,
signals were acquired for both. Dot product values of the selected
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transitions compared with the standard peptide were used as a crite-
rion to remove signals with potential interferences. Ratios between
the unlabeled endogenous peptide and the labeled internal standard
(L/H) were then used to calculate endogenous peptide levels within
each sample. In brief, amounts of each endogenous peptide were
extrapolated from their respective concentration-response curves
and normalized to the geometric abundance average of the house-
keeping proteins. For those proteins with more than one representa-
tive peptide, the geometric mean of all peptide values was also com-
puted for each sample. All samples were run twice and the mean
protein value for each sample was finally obtained. Final values were
expressed as fold-change of the IP compared with the CL hemi-
sphere. Differences in protein levels between IP and CL hemispheres
were assessed by paired t test (normally distributed variables) or Wil-
coxon signed-rank test (nonnormally distributed variables). Com-
parisons between fold-change expressions at 2 h and at 6 h were
evaluated through the Student t test (normally distributed varia-
bles) or the Mann-Whitney test (nonnormally distributed varia-
bles). All p-values were then corrected by the false discovery rate
(Adj. p-values).

Western Blot—BAG5 and SRGAP2 were evaluated by means of
Western Blot. Detailed methodology is described in supplemental
Methods.

Qualification Phase Study

The qualification phase was conducted on brain and blood sam-
ples from the same ischemic and sham-control animals obtained 2
h (n = 8) and 6 h (n = 6) after ischemia and from sham-control ani-
mals (n = 4). Outstanding candidates were further evaluated as
stroke blood biomarkers on human blood samples from ischemic
stroke patients and patients suffering from stroke-mimicking
conditions.

Human Blood Samples—All human studies were approved by
the Ethics Committee of Vall d’Hebron Hospital (PR[AG]157/2011)
and written informed consent was obtained from all subjects or rela-
tives in accordance with the Declaration of Helsinki (1964) and its
later amendments or comparable ethical standards. All patients were
admitted to the emergency department of the Vall d’Hebron Hospital
(Barcelona, Spain) from August 2012 to June 2015 within the first 6 h
after neurological symptoms onset. On admission, patients under-
went a standardized protocol of brain imaging to differentially diag-
nose ischemic stroke and stroke-mimicking conditions (mimics).
Trained neurologists assessed stroke severity using the National
Institutes of Health Stroke Scale (NIHSS) and obtained demographic
and clinical data from all patients. Eighty-nine ischemic stroke
patients and 40 other patients suffering from stroke-mimicking condi-
tions (mimics) were included in this study. Fifteen (16.8%) out of the
89 stroke patients received the standard thrombolytic treatment (in-
travenous 0.9mg/Kg recombinant tissue-plasminogen activator), and
5 (5.6%) underwent mechanical thrombectomy to remove the arterial
clot. Only 3 ischemic stroke patients (3.4%) receive both thrombo-
lytic therapies. The clinical follow-up of each patient was carried out
at hospital discharge. Functional outcome was evaluated according
to the modified Rankin Scale (mRS); patients with a mRS score
below 2 were classified as “good outcome” and patients with a mRS
from 2 to 6 as “poor outcome.”

Blood samples from all patients were drawn on admission (,6 h
from symptoms onset) and before administration of any treatment.
Samples were collected in EDTA tubes and centrifuged at 1500 3 g
at 4 °C for 15min. The top layer containing the platelet-poor plasma
fraction was then stored at 280 °C until further use.

Mouse and Human ELISAs—Selected candidates were evaluated
by means of commercial ELISA immunoassays, following manufac-
turer’s instructions (supplemental Methods).

Statistical Analyses

SPSS statistical package (v22.0; IBM Corporation, Armonk, NY,
USA) and R software were used for statistical analyses and Graph-
Pad Prism (v6.0; GraphPad Software, La Jolla, CA, USA) for creating
graphs. Normality was assessed by Shapiro-Wilk and/or Kolmo-
gorov–Smirnov tests. In mice, brain protein levels between the IP
and CL hemispheres, and IP/CL ratios between different time points
were compared using Student t test and/or Mann-Whitney test.
Blood protein levels after MCAO were compared with those after
sham-control surgery through One-way ANOVA or Kruskall Wallis,
followed by Tukey’s multiple comparison test.

For analyzing human data, Chi-squared test was used to assess
intergroup differences for categorical variables, expressed as fre-
quencies. Correlations between continuous variables were calculated
using Spearman’s test (no parametric data). Receiver operating char-
acteristics (ROC) curves were used to obtain the cutoff points of
GADD45G and CTNND2 circulating levels with optimal accuracy
(both sensitivity and specificity) for each specific end point. To iden-
tify whether the biomarkers potentially and significantly improve the
capacity of the clinical markers now used to predict stroke diagnosis
or stroke prognosis, forward stepwise multivariate logistic regression
analyses were performed. All clinical variables associated with each
end point at p ,0.1 were included as covariables. Odds ratio and
95% confidence interval (CI) were adjusted by age, sex and NIHSS
score at baseline. Using the selected cutoff point, baseline levels of
each biomarker were also added on top of their respective clinical
model (only clinical) to assess its independent association and to
build new predictive models (clinical 1 biomarker). The likelihood-ra-
tio test was used to assess the goodness of fit of the two predictive
models (lmtest package) and the integrated discrimination improve-
ment (IDI) was used to determine the added value of each biomarker
to the clinical model alone (Hmisc R package). In all cases, a two-
sided p-value ,0.05 was considered significant at a 95% confidence
level.

RESULTS

Differentially Expressed Genes and Proteins Early after Cerebral
Ischemia—A chart of the study workflow is shown in Fig. 1.
We elucidated the specific gene and protein changes that
occur early in the brain after cerebral ischemia by evaluating
mouse-brain samples obtained at 2 h after a surgery to
induce ischemia or a sham-control surgery. The changes
were identified using transcriptomics and proteomics
approaches. After cerebral ischemia, 76 genes and 192
proteins were found to be differentially regulated between
IP and CL brain regions (nonadjusted p-values, 0.05;
supplemental Table S3). In contrast, only 2 genes and 60
proteins were altered between IP and CL hemispheres af-
ter the sham-control surgery (nonadjusted p-value,0.05).
Alteration of the transcriptome and proteome after cere-
bral ischemia is also evidenced by the differential contri-
bution of genes and proteins to key deregulated pathways
after stroke, as shown in supplemental Fig. S3.

Integrative Analysis of Differentially Abundant Proteins and
Genes after Cerebral Ischemia—To explore the mechanisms
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underlying cerebral ischemia more deeply, we conducted a
comprehensive integration analysis of both -omics data sets
from MCAO animals. Overall, 76 genes and 191 proteins that
were deregulated after ischemia (after excluding TXN2; see
methods section) were used to combine data in these inte-
grative approaches (Fig. 2). Using MCIA, we examined how
the experimental samples behaved when projecting gene
and protein components in the same bi-dimensional space
(Fig. 2A). We clearly differentiated two separated co-struc-
tures corresponding to each brain hemisphere, which con-
firmed that integrated data from both data sets had the ability
to plainly discriminate phenotypical changes because of
cerebral ischemia. However, both data sets’ structures
were substantially different in the bi-dimensional projec-
tion and only showed around a 43% overall similarity (RV
coefficient = 0.429).

We modeled network-like correlation structures (rCCA)
between our protein and gene data sets, through which we
identified an integrated network where highly correlated ele-
ments are represented (Fig. 2b). Positive and negative corre-
lations were found among 24 genes and 8 proteins. Interest-
ingly, two clusters were visually highlighted around CAMK2A
and SRGAP2, with 19 and 10 directly connected genes,
respectively. This suggests an important role of these candi-
dates in the pathophysiology of stroke.

From this correlation-based integrated network, 14 repre-
sentative candidates were selected to replicate their perform-
ance in the hyper-acute phase of cerebral ischemia (as
shown in gray in Fig. 2B). Furthermore, 3 other candidates

were also included because of their leading position in the
analysis of the gene individual data set (sorted by p-value:
Gadd45g and Rgs2) and in the protein data set (sorted by
logFC: TXN2). Overall, 17 candidates (12 genes and 5 pro-
teins) were chosen to be further replicated in a new cohort of
ischemic animals (Table I). Gene and protein data sets from
sham-control animals were used to discard the selection of
any relevant component disturbed because of other reasons
rather than cerebral ischemia itself. In this regard, all selected
candidates were assumed to be specifically deregulated
because of cerebral ischemia because none of them were
altered after the sham-control surgery.

Further information was also obtained about the main bio-
logical processes and molecular functions in which these
selected candidates were involved (mogsa). In this regard,
the results indicated that some of our selected candidates
have a role in the post-stroke impaired neuronal system (Fig.
2C). Others are involved in altered transmission across syn-
apses and the overactivation of the hypoxic pathways, which
are all well-known altered functions in acute cerebral ische-
mia. Moreover, changes in the immune system were already
noticeable at this early time point as well, reinforcing its
involvement in the acute pathophysiology of stroke. Media-
tors and contributors of hypoxic signaling pathways were
also over-represented in our set of candidates, together
with several intracellular signaling pathways, including
those involving mitogen-activated protein kinase (MAPK),
activator protein-1 (AP-1) transcription factor, G protein–
coupled receptors (GPCRs), p53, and tumor necrosis

FIG. 1.Workflowchart.Schematic representation of the different phases of our study.
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FIG. 2. Integrative analysis of transcriptomic andproteomic data from themouse ischemic brain.A, Multiple co-inertia analysis (MCIA), dis-
tribution of samples based on their transcriptomic (dot) and proteomic (arrow) information for CL (dark gray) and IP (light gray) samples. Circle and
arrows from each sample are joined by a line, the length of which is proportional to the divergence between those samples in the two data sets. B,
Relevance network of top correlations between genes (circles) and proteins (rectangles). Dashed lines indicate positive correlations; continuous lines
indicate negative correlations. Selected candidates for replication are marked in dark grey. C, Altered biological processes and signaling pathways in
which the selected candidates (in bold) are involved. Genes are indicated in italics; proteins are shown in regular type.D, Decomposed gene set score
(GSS) of themost outstanding intracellular signaling pathways weighted for genes (light grey) and proteins (dark grey). Means and 95%of confidence
intervals are depicted in bar graphs. The higher decomposedGSS, the larger contribution of the data set to the specific process or pathway.
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factor alpha (TNFa). Interestingly, deeper exploration of
these altered pathways indicated that genes were contrib-
uting substantially more than proteins to the alteration of
all the specific signaling cascades at the time point exam-
ined (Fig. 2D).

Replication and Exploration of the Selected Candidates over
Time after Cerebral Ischemia—To confirm the robustness of
the microarray and LC–MS results, the selected gene and
protein candidates were evaluated in a new cohort of MCAO
animals using the Nanostring® nCounter assay and PRM-MS
(supplemental Table S2). Eight of the 12 selected genes
(66.7%) were correctly replicated in this new cohort of ani-
mals: 2 h after MCAO, Ccl3, Atf3, Fosb, Gadd45g, and
Rgs2 significantly increased in the IP compared with the
CL hemisphere, whereas 4933427D14Rik, Cldn20, and
Cstad decreased in the IP versus the CL brain region
(Table I). Regarding proteins, 2 out of the 5 selected pro-
teins (40%) were also successfully replicated: both BAG5
and CTNND2 protein levels showed a decrease in the IP
hemisphere compared with their CL.

Gene and protein candidates were also explored in the
brain at 6 h after MCAO. The brain expression of Ccl3, Atf3,
and Fosb remained at high levels at 6 h after the ischemic
event, and no differences in the IP/CL ratios were detected
between the 2 studied time points (Table I). Conversely, the
genes Gadd45g and Rgs2 showed a decrease by half in their

fold-change expression at 6 h after MCAO compared with
that at 2 h, but the expression remained high in the IP com-
pared with the CL hemisphere.

Regarding the early downregulated genes, 4933427D14Rik
no longer maintained the changes between IP and CL hemi-
spheres at 6 h after ischemia. At this later time point, the
expression of Cldn20 also returned to normal levels, whereas
that of Cstad decreased over time. In terms of protein candi-
dates, BAG5 levels decreased further in the IP than the CL
hemisphere at 6 h after MCAO, whereas CTNND2 protein
levels reversed their initial downregulation at this later time
point (Table I).

CLDN20, GADD45G, and RGS2 Protein Levels in the Brain after
Cerebral Ischemia—From all the positively replicated candi-
dates, further attention was focused on Cldn20, Gadd45g,
Rgs2, CTNND2, and BAG molecules because all showed an
interesting and mostly unknown deregulated expression pro-
file in the brain after ischemia. The gene candidates Cldn20,
Gadd45g, and Rgs2 were first evaluated at the protein level.
Similar to its gene expression profile, brain levels of CLDN20
protein significantly decreased in the IP hemisphere at 2 h af-
ter ischemia (p =0.013 versus CL) and tended to return to
normal levels at a later time (p =0.057 versus CL) (Fig. 3A). In
contrast, the GADD45G protein content did not differ
between the IP and CL hemispheres at 2 h after the ischemic
insult but showed a significant increase in the IP hemisphere

TABLE I
Gene expression and protein abundance of the selected candidates in all study phases. *BAG5 and SRGAP2 replication was conducted using
independent western blot experiments, so p-values are not adjusted for multiple comparisons (supplemental Fig. S4). Significant p-values are

indicated in bold, #indicates p,0.1

Discovery phase-2 h after
MCAO-

Replication phase-2 h after
MCAO-

Exploration over time-6 h
after MCAO-

2 h versus 6 h

Fold change
(IP/CL)

Raw
p-value

Adj.
p-value

Fold change
(IP/CL)

Raw
p-value

Adj.
p-value

Fold change
(IP/CL)

Raw
p-value

Adj.
p-value

Raw
p-value

Adj.
p-value

Gene expression
4933427D14Rik 0.341 0.045 0.999 0.865 0.011 0.017 0.942 0.360 0.390 0.338 0.440
Atf3 27.44 <0.001 0.167 7.603 0.002 0.006 14.230 <0.001 0.002 0.198 0.286
Ccl3 161.32 <0.001 0.027 9.012 <0.001 0.001 10.130 0.027 0.050 0.849 0.849
Cldn20 0.216 0.007 0.999 0.494 0.004 0.007 0.845 0.094# 0.135 0.012 0.099#

Cstad 0.352 0.034 0.999 0.498 0.004 0.007 0.456 0.001 0.002 0.580 0.685
Fosb 45.74 <0.001 0.793 7.407 <0.001 0.001 6.349 0.002 0.006 0.683 0.740
Gadd45g 20.06 0.005 0.999 4.010 <0.001 0.001 2.129 <0.001 0.001 0.015 0.099#

Gata2 0.319 0.017 0.999 0.775 0.118 0.171 1.053 0.893 0.893 0.134 0.235
Il1r1 0.299 0.029 0.999 0.882 0.233 0.275 1.145 0.350 0.390 0.125 0.235
Intu 0.384 0.039 0.999 0.937 0.422 0.457 1.158 0.249 0.324 0.145 0.235
Rgs2 43.38 0.008 0.999 3.922 0.002 0.005 2.721 <0.001 0.001 0.074# 0.235
Zfand4 0.308 0.027 0.999 0.997 0.196 0.254 0.620 0.007 0.014 0.125 0.235

Protein
abundance
Bag5* 0.761 <0.001 0.042 0.776 0.048 – 0.558 <0.001 – 0.096# –

Ctnnd2 0.921 0.001 0.220 0.778 0.028 0.084# 0.960 0.457 0.686 0.054# 0.162
Camk2a 0.826 0.001 0.219 0.772 0.120 0.180 0.837 0.124 0.372 0.708 0.708

Srgap2* 1.089 0.007 0.474 1.088 0.597 – 0.784 0.123 – 0.159 –

Txn2 2.851 0.011 0.489 1.013 0.826 0.826 1.015 0.989 0.989 0.629 0.708
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later (p =0.030 versus CL). No tangible differences were
observed in RGS2 protein levels between IP and CL hemi-
spheres at 2 h and 6 h after ischemia.

Exploration of Selected Candidates as Blood Biomarkers of
Cerebral Ischemia in Mice—To study their role as stroke bio-
markers, the levels of CLDN20, GADD45G, RGS2, BAG5,
and CTNND2 protein were also evaluated in blood samples
from mice subjected to cerebral ischemia (at 2 h and 6 h)
and sham-control surgery. Unfortunately, CLDN20 levels

were not detectable in any of our mouse blood samples.
Blood levels of GADD45G and RGS2 were higher 2 h after
cerebral ischemia than in sham-control animals (p = 0.043
and p = 0.017, respectively) (Fig. 3B). Later, circulating
GADD45G levels remained increased (sham versus 6 h post-
MCAO: p = 0.023), whereas RGS2 blood content slightly
decreased and no longer differed from RGS2 levels in the
sham group. In contrast, the CTNND2 protein content
decreased substantially in circulation in mice that underwent

FIG. 3. Qualification study of the selected candidates. A, Protein levels of CLDN20, GADD45G and RGS2 in brain after cerebral ischemia.
The IP/CL ratio (mean 6 S.D.) is shown for each candidate at each examined time point (n=8 for 2 h post MCAO; n=6 for 6 h post MCAO). B,
Blood protein levels in mice after sham-control surgery (n=4) and 2 h (n=8) and 6 h (n=6) after cerebral ischemia. Graph bars represent mean6
S.D. C, Blood protein levels of CTNND2 in ischemic stroke (n=71) and mimic patients (n=36) (median and interquartile range are indicated). ROC
curve comparison between the clinical predictive model (grey line) and clinical predictive model with CTNND2.1.672ng/ml (black dashed line) is
also shown and the AUC (95% CI) is indicated for each ROC curve. D, Blood protein levels of GADD45G in ischemic stroke patients that showed
poor in-hospital functional outcome (n=48) and patients who did not (n=27) (median and interquartile range are indicated). ROC curve compari-
son between the clinical predictive model (grey line) and clinical predictive model with GADD45G.200.141pg/ml (black dashed line) is also
shown, and the AUC (95%CI) is indicated for each ROCcurve. In all cases, *p,0.05 and #p,0.1.
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stroke surgery compared with the sham-controls, although
statistical significance was only reached at 6 h after ischemia
(sham versus 6 h post-MCAO: p = 0.032). BAG5 did not differ
among the experimental groups.

Exploration of Selected Candidates as Blood Biomarkers of Is-
chemic Stroke—To further confirm the potential of the candi-
date biomarkers for ischemic stroke in humans, we evaluated
their circulating levels in human blood samples from patients
suffering from ischemic stroke (n=89) and stroke-mimicking
conditions (mimics, n = 40). The demographic and clinical
characteristics of these patients are shown in supplemental
Table S4. In short, ischemic stroke patients had higher
NIHSS scores at baseline and a higher prevalence of atrial
fibrillation than the mimic group (p = 0.004 and p = 0.003,
respectively). No differences were observed for RGS2
between patient groups.

CTNND2 as a Biomarker for Ischemic Stroke Diagnosis—
CTNND2 blood levels were assessed in 71 ischemic stroke
patients and 36 mimics with very similar demographic and
clinical characteristics to the complete cohort of patients
(data not shown). At baseline, blood levels of CTNND2
appeared to be higher in ischemic stroke group than the
mimic group at just above the margin of statistical signifi-
cance (p =0.054) (Fig. 3C). The ischemic stroke group had
more severe strokes (according to the NIHSS score) and

exhibited a higher prevalence of atrial fibrillation than the
mimic group (supplemental Table S4), but differences in the
circulating levels of CTNND2 could not be explained by any
of these clinical variations (data not shown).

Using ROC curve analysis, we selected a cutoff point for
CTNND2 (1.672ng/ml) with higher sensitivity and specificity
to differentiate the ischemic stroke group from the mimic
group (62% sensitivity and 74% specificity) (p , 0.001) (Fig.
3C). A multivariate logistic regression analysis was performed
to evaluate the capacity of these associated clinical variables
to diagnose stroke. The analysis included the NIHSS score
at admission, the presence of atrial fibrillation, and adjust-
ments for age and sex. The model confirmed that atrial fi-
brillation remained as the only independent predictor of is-
chemic stroke.

To test whether the biomarker improved the performance
of the clinical variables, we added CTNND2. 1.672ng/ml as
a covariable to this predictive clinical model. We found that
the biomarker also persisted as an independent factor to dis-
criminate between patients showing stroke-mimicking
symptoms and the ischemic stroke group (Table IIA).
Notably, the addition of the CTNND2 also improved the
goodness-of-fit of the clinical model (p = 0.004) and signif-
icantly improved the discriminatory ability to diagnose
nonstroke events by 8.84%.

TABLE II
Predictive comparative models for ischemic stroke diagnosis (A) and post-stroke poor outcome at hospital discharge (B). For logistic regression
models, ORadj (95% CI) and p-values are given. Biomarkers were added to clinical logistic regression using the indicated cutoff point. Clinical
model is always used as a reference model (Ref.). IDI index is given for events, nonevents, and for the sum of both (with 95%CI). Statistical signif-

icant results are highlighted in bold

ACTNND2
Ischemic Stroke Diagnosis

Only Clinical Clinical1CTNND2

Logistic regression (OR adj)
Admission NIHSS score 0.93 (0.86–1.02), p =0.118 0.95 (0.86–1.04), p =0.257
Age 0.98 (0.96–1.01), p =0.286 0.98 (0.95–1.02), p =0.338
Sex 1.23 (0.55–2.71), p =0.613 0.95 (0.40–2.49), p =0.991
Atrial fibrillation 0.31 (0.11–0.93), p =0.036 0.29 (0.08–1.00), p =0.050
CTNND2.1.672 ng/ml 0.26 (0.10–0.67), p =0.005
IDI statistics
IDI Ref. 9.12% (3.50–14.74), p =0.001
IDI events – 0.29%
IDI nonevents – 8.84%

BGADD45G
Poor outcome at discharge

Only clinical Clinical1GADD45G

Logistic regression (OR adj)
Admission NIHSS score 1.23 (1.08–1.40), p =0.001 1.51 (1.19–1.90), p =0.001
Age 1.06 (1.01–1.11), p =0.018 1.09 (1.01–1.17), p =0.019
Sex 1.04 (0.37–2.92), p =0.940 0.70 (0.17–2.90), p =0.620
GADD45G.200.141 pg/ml 13.27 (2.59-67.85), p =0.002
IDI statistics
IDI Ref. 15.46% (7.40–23.54), p < 0.001
IDI events – 8.39%
IDI nonevents – 7.08%
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GADD45G as a Biomarker for Ischemic Stroke Prognosis—
GADD45G blood levels were assessed in 75 ischemic stroke
patients and 38 patients from the mimic group. No differen-
ces were observed between these two populations. How-
ever, and most interestingly, GADD45G blood levels at base-
line were significantly increased in patients who showed poor
in-hospital functional outcomes (n=46, 64%) than those who
showed good outcomes (n=29, p = 0.038) (Fig. 3D) Com-
pared with patients with good functional outcomes, those
with poor outcomes were older, had more severe strokes
(according to the NIHSS score) and exhibited a nonstatisti-
cally significant trend of a lower prevalence of smoking and a
higher incidence of atrial fibrillation (supplemental Table S5).
However, differences in the circulating levels of GADD45G
could not be explained by these demographic and clinical
variations (data not shown).

Through ROC curve analysis, we determined a cutoff point
for GADD45G (200.141pg/ml) that was associated with poor
functional outcome at hospital discharge, which had 43.8%
sensitivity and 81.5% specificity (p =0.028) (Fig. 3D). A multi-
variate logistic regression analysis adjusted for age, sex, and
NIHSS score at admission confirmed that age and baseline
NIHSS score were the only independent clinical predictors of
poor functional outcome of the patients at discharge (Table
IIB).

The addition of GADD45G. 200.141pg/ml as a covariable
to this predictive clinical model showed that GADD45G
strongly remained as an independent predictor of functional
outcome at the studied time point. The addition of this bio-
marker to the predictive clinical model improved the good-
ness-of-fit of the clinical model alone according to the likeli-
hood ratio test (p , 0.001). Furthermore, GADD45G blood
levels substantially increased the discriminatory ability of the
clinical model by 15.46%, thus improving the differentiation
of patients who would present poor outcome by 8.39%.

DISCUSSION

With the translational aim of identifying potential stroke
biomarkers, this study has applied an integrative analysis of
massive transcriptomics and proteomics data compiled from
mouse brains very acutely after cerebral ischemia. As a
result, an integrated network incorporating both inter-con-
nected genes and proteins with a strong involvement in the
hyper-acute stages of stroke pathophysiology has been pre-
sented. CTNND2 and GADD45G were successfully identified
as promising blood biomarkers for acute ischemic stroke di-
agnosis and prognosis, respectively.

Numerous studies have aimed at unraveling the main mo-
lecular changes that occur in the brain following cerebral is-
chemia. Most of these contributions have been based on the
characterization of only protein or gene alterations sepa-
rately. These efforts have provided knowledge about the
pathophysiology of stroke to the point of achieving a reliable
(but still incomplete) understanding of the main mechanisms

of cerebral ischemia at different molecular levels. Beyond the
exploration of individual contributions of genes, proteins, and
metabolites to stroke pathology, global comprehension of all
their complex interactions, associations, and connections is
expected to further improve the identification of biologically rel-
evant disease-associated mediators of stroke. Thus, we used
recently developed multivariate projection-based approaches
to transcriptomics and proteomics data sets to explore the
relationships between genes and proteins.

MCIA pinpointed the separation between the infarcted and
healthy regions of the brain, which were clearly marked for
both genes and proteins. The overall similarity of both data
sets, however, was substantially low, suggesting that genes
and proteins might provide different but complementary in-
formation to the global integrated system at the specific
time points examined. Nevertheless, other biological rea-
sons might also be behind the low correlation coefficient
observed, such as the regulation of the translation effi-
ciency, half-life differences between proteins and mRNAs,
and proteome turnover, which are processes known to be
highly affected by pathological perturbations (31).

We use the mixOmics biostatistical tool to comprehend
the underlying correlations between the differentially altered
genes and proteins, which emphasized complex unnoticed
associations among different molecular elements of stroke
pathology. We verified that most of the resulting inter-con-
nected candidates were involved in well-known biological
processes that are altered early after cerebral ischemia,
including the upregulation of hypoxic pathways, altered syn-
aptic transmission, and unbalanced excitotoxicity mecha-
nisms, as well as the prompt disturbance of the immunologi-
cal system (32). Indeed, some of these candidates have
already been described in the literature as important medi-
ators of the stroke pathology, including Atf3, Ccl3, and
CAMK2A, thus supporting the robustness of our findings
and providing high reliability to this novel integrative
approach (33–37).

It should be stressed that our experiments revealed that
genes had a higher contribution to the observed stroke-
induced molecular alterations than proteins. One feasible ex-
planation for this observation might be the early time point
after ischemia at which we looked for changes. However,
many different (an often undervalued) regulatory processes
that occur after mRNA expression that strictly control protein
abundance might also influence these differential contribu-
tions between the gene and protein data sets (38).

Among the 5 candidates, we deeply focused on CLD20.
RGS2 and BAG5 did not provide valuable information about
the diagnosis or prognosis of ischemic stroke when meas-
ured as blood biomarkers. However, all three did show a
strong, acute, deregulated protein profile in the brain during
the hyper-acute phase after cerebral ischemia, which was
replicated throughout the study. Thus, future research could
be done to modulate their levels at the therapeutic level.
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GADD45G and CTNND2 did appear to be promising blood
biomarkers of ischemic stroke prognosis and diagnosis,
respectively. GADD45G is a member of the GADD45 family
of proteins, which are involved in acute cellular stress
response mechanisms, including cell cycle arrest, DNA
repair, and apoptosis (39, 40). We have found a pro-
nounced increase in Gadd45g gene expression in the
brain early after ischemia. This prompt increase in the
mRNA levels was translated into higher GADD45G protein
content, as reported previously (41–43).

The exact implication of this GADD45G increase observed
in the brain after stroke is still quite unclear. Beyond the rec-
ognized role of GADD45 family members during brain devel-
opment and plasticity (44, 45), GADD45G is also closely
related to heart failure because its over-expression results in
increased p-38 MAPK-dependent apoptosis, fibrosis, and left
ventricular dysfunction, whereas Gadd45g deletion confers
resistance to ischemic heart injury (46). In fact, in cancer,
there has been a great variety of proposed mechanisms by
which GADD45G could induce cell cycle arrest and apopto-
sis, which all depend on the cell type and the pathological
conditions (47). Therefore, despite this pro-apoptotic role still
being unexplored in the context of stroke, all evidence of the
negative modulation of GADD45G to limit cell death could
also be taken into consideration as a therapeutic approach in
the development of stroke.

Beyond this plausible therapeutic role, GADD45G has
been explored as a blood biomarker. Circulating GADD45G
levels did not improve the discrimination of ischemic stroke
from stroke-mimicking conditions, but it did show good per-
formance in the estimation of stroke prognosis in the hyper-
acute phase of the disease, when quick decision-making is
essential for thorough management and the prevention of
secondary complications. Higher GADD45G blood levels
were observed in patients that showed early poor out-
comes after stroke.

To the best of our knowledge, no relationship has previ-
ously been established between circulating GADD45G and
stroke prognosis. In fact, GADD45G has only been associ-
ated with the progression of renal disease when measured in
urine (48) and has been proposed as a surrogate biomarker
of cancer treatment when examined in tumor tissue (49).
However, the implications of high circulating GADD45G levels
are still unexplored. It is only known that GADD45G is closely
related to the exacerbation of inflammation because Gadd45g
expression in circulating cells is rapidly triggered by pro-inflam-
matory cytokines (50). Once expressed, GADD45G also further
promotes the upregulation of cytokines such as TNFa and IL-6
(51). Notwithstanding, the usefulness of GADD45G blood levels
as a prognosis factor is promising, and further studies to sup-
port these new findings would be of great value.

CTNND2 (or neural plakophilin-related Armadillo-repeat
protein (NPRAP)) is a neuronal-specific adhesion junction-
associated protein that is specifically enriched in the postsy-

naptic and dendritic compartments (52), where it plays a piv-
otal role as a signaling sensor and integrator (53). CTNND2
also interacts with and stabilizes brain cadherins by linking
them to the actin cytoskeleton and to a wide variety of post-
synaptic scaffold molecules, including the ionotropic N-
methyl-D-aspartic acid receptor 2A (NR2A) and the metabo-
tropic glutamate receptor 1K (mGluR1K) (54). As an acute
response to cerebral ischemia, we have detected a sudden
reduction in CTNND2 gene expression and protein abun-
dance in ischemic brains. Our results are supported by those
of Jones et al., who found that the glutamate-induced down-
regulation of CTNND2 in cortical neurons also leads to its
dissociation from NR2A and mGluR1K very soon after the
insult, when apoptosis is not even noticed. The functional
consequence of this reduction in CTNND2 levels after ische-
mia has not been investigated yet.

CTNND2 is closely related to the Wnt/b-catenin signaling
pathway, which regulates angiogenesis, neurogenesis, and
cell survival. However, it is still not clear whether it promotes
or prevents physiological b-catenin turnover, which would
hamper or facilitate the b-catenin-mediated transcription of
relevant genes involved in angiogenesis and neurogenesis,
respectively (55–57). It might be of interest to investigate the
modulation of CTNND2 levels early after stroke to unravel
these inconsistencies.

In sharp contrast to the brain, we also found that CTNND2
levels in the blood did show a reliable ability to discriminate
the ischemic stroke group from mimic patients. Because
CTNND2 expression is highly specific to the brain, one could
speculate that this increase in CTNND2 blood content might
be a direct consequence of what is being released from the
ischemic cerebral tissue. However, different results have
been observed in blood between the CTNND2 responses to
ischemia in mice and humans, animal studies to unravel the
exact CTNND2 provenance in circulation would be quite
difficult.

CTNND2 has been previously described as a potential
diagnostic biomarker in urine for prostate cancer (58).
Beyond cancer, no previous work has outlined a role for
CTNND2 as a blood biomarker of disease. Thus, although
promising, its usefulness for stroke diagnosis needs to be
considered further because it substantially adds value to the
discriminatory ability of the predictive diagnosis model built
with only clinical variables. Concretely, CTNND2 substantially
improved the discrimination of the nonevents, which might
also have a vital role in ruling out suspected strokes as early
as possible and managing patients according to a nonstroke
cerebral pathology.

We have taken advantage of a novel and complementary
biostatistical strategy to join and integrate data from tran-
scriptomics and proteomics and identify relevant candidates
as acute biomarkers for the diagnosis and prognosis of ische-
mic stroke. We believe that emerging integrative approaches
like the one presented will continue to grow in scale and

Multi-omics Analysis to Discover Stroke Biomarkers

1932 Mol Cell Proteomics (2020) 19(12) 1921–1935



popularity in coming years. They would complement or even
go beyond the traditional biostatistical tools used to analyze
single -omics data sets, which could have missed notable and
relevant data from each –omics analysis separately.

Along these lines, the integration of other -omics techni-
ques might yield even greater insight into the pathogenesis
of stroke. For instance, metabolomics could provide addi-
tional information on the functional consequences of these
altered gene or protein patterns after stroke. Therefore, profil-
ing of the impaired metabolome in the hyper-acute phase af-
ter stroke might strengthen the depiction of the complex
stroke phenotype and provide new potential blood bio-
markers for this devastating disease. Moreover, further efforts
might also be directed toward the exploration of all other pin-
pointed stroke-related elements that we have encountered as
potential therapeutic targets for stroke pathology, as well as
their role as stroke biomarkers.

This study also had some limitations that should be taken
into consideration. First, the integrative analysis identified
network-like correlation structures of inter-connected genes
and proteins, from which notable candidates were selected.
Although these correlations could be understood as hypo-
thetical functional linkages, they do not strictly imply a direct
biological connection among components. Indeed, they have
been used as a novel and complementary theory-based sta-
tistical strategy to highlight relevant yet undescribed associa-
tions among constituents of the stroke pathology, but deep
details about the underlying biological interpretation of all
these connections still need to be elucidated in the future.
Second, time extrapolations between mice and humans are
still not well established and shifts over time might have to
be considered in a future. Furthermore, because of technical
incompatibilities, we were not able to assess infarct vol-
umes in the ischemic animals at the examined time points,
which would have also been an interesting parameter to
analyze and incorporate into the integrative analysis to-
gether with other relevant demographic factors, including
age and sex.

In conclusion, this breakthrough integrative approach
enabled us to identify, positively replicate, and further explore
18 stroke-associated inter-connected genes and proteins in
the ischemic brains of mice over time. Moreover, we took
advantage of this approach to explore the promising poten-
tial of GADD45G and CTNND2 as blood biomarkers of stroke
prognosis and diagnosis, respectively.
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