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Abstract

Epitranscriptome is an exciting area that studies different types of modifications in transcripts and 

the prediction of such modification sites from the transcript sequence is of significant interest. 

However, the scarcity of positive sites for most modifications imposes critical challenges for 

training robust algorithms. To circumvent this problem, we propose MR-GAN, a generative 

adversarial network (GAN) based model, which is trained in an unsupervised fashion on the entire 

pre-mRNA sequences to learn a low dimensional embedding of transcriptomic sequences. MR-

GAN was then applied to extract embeddings of the sequences in a training dataset we created for 

eight epitranscriptome modifications, including m6A, m1A, m1G, m2G, m5C, m5U, 2′-O-Me, 

Pseudouridine (Ψ) and Dihydrouridine (D), of which the positive samples are very limited. 

Prediction models were trained based on the embeddings extracted by MR-GAN. We compared 

the prediction performance with the one-hot encoding of the training sequences and SRAMP, a 

state-of-the-art m6A site prediction algorithm and demonstrated that the learned embeddings 

outperform one-hot encoding by a significant margin for up to 15% improvement. Using MR-

GAN, we also investigated the sequence motifs for each modification type and uncovered known 

motifs as well as new motifs not possible with sequences directly. The results demonstrated that 

transcriptome features extracted using unsupervised learning could lead to high precision for 

predicting multiple types of epitranscriptome modifications, even when the data size is small and 

extremely imbalanced.
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INTRODUCTION

Epitranscriptome is an exciting emerging area that studies modifications in transcripts. The 

insurgent interest is largely fuelled by the recent discovery of widespread N6-methyl-

adenosine (m6A) methylation in mammalian mRNAs [1, 2], which has been shown to play 

important regulatory roles in every stage of RNA metabolism and involve in many diseases. 

Besides m6A, many other types of modifications are found to exist in the eukaryotic 

transcriptome. While some of them including N1-methyladenosine (m1A), 5-

hydroxymethylcytosine (hm5C), 5-methylcytidine (m5C), 2′-O-methylation (2’-O) and 

pseudouridine (Ψ) are found widespread, other types such as Dihydrouridine (D), and m2G 

have only a hundred sites discovered thus far. These exciting findings have spurred intense 

research to identify transcriptome modifications in different cells and to decipher their roles 

in regulating various biological processes[3].

We consider in this paper the prediction of transcriptome modification sites from transcript 

sequences. This problem is naturally a supervised learning task, which aims to train 

predictive models for each type by using labeled positive and negative modification sites. 

There is a large collection of algorithms for predicting m6A sites from mRNA sequences[4–

10], most notably SRAMP. However, such predictive algorithms for other modifications are 

still scarce because training robust models for these modification sites face several 

challenges. First, training for modification types with scarce labeled samples suffers from 

significant overfitting, making the model incapable of learning true methylation-specific 

sequence features from random noise patterns. Second, training data for all modifications 

suffer the significant class imbalance, a common challenge in most of the genomics 

applications, where only a small percentage of transcriptome nucleotides are true 

methylation sites and the majority of them are negatively labeled unmodified sites. 

Unfortunately, traditional supervised learning tends to treat these extremely small numbers 

of instances as noise and again fails to learn desired methylation-specific sequence features 

from the positive samples [11]. Third, predicting modification sites of these different types 

altogether imposes a greater challenge as different types are likely to share similar biological 

sequence patterns making them less distinguishable from each other. One viable solution to 

address these challenges is to take advantage of the vast unlabelled part of the transcriptome 

sequences with unsupervised representation learning to learn transcriptome-wide sequence 

features as a whole. We assume that the unlabelled part of the transcriptome could contain 

unidentified modification sites and/or modification related functional sites (e.g., RNA 

binding protein binding sites). Therefore, the unsupervised learning of transcriptome 

sequences may help capture modification-related features, which are difficult to learn 

otherwise by a supervised approach using only labeled sequences. We intend to learn these 

features in an unsupervised setting to leverage the supervised learning using labeled data 
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such that the classifiers trained using only a few labeled examples can generalize to predict 

modification sites robustly. Unsupervised learning methods have recently attracted an influx 

of research interest, especially in the field of bioinformatics. For example, Restricted 

Boltzmann machines have been applied for unsupervised pre-training of neural networks 

that were later used to initialize the supervised learning of protein 3D structures [12, 13] and 

amino acid contacts [14]. Besides, Asgari et al. [15] proposed a low dimension 

representation method for protein sequences, which is inspired by the widely known 

word2vec model of natural language processing. However, none of these methods have been 

trained to extract features from RNA sequences.

In pursuit of addressing the challenges described above, we propose an unsupervised feature 

construction approach based on Generative Adversarial Network (GAN) [16]. Our method, 

aptly known as MR-GAN, predicts multiple types of modification sites in RNA using GAN 

based unsupervised feature learning. This method delves deep into the largely unexplored 

area of low dimension representation of RNA sequences and demonstrates the usefulness of 

the unsupervised feature learning in handling some of the most difficult problems in the 

intersection of machine learning and bioinformatics (small and imbalance dataset). Though 

the idea of GAN has been fervently researched in the computer vision domain in recent 

years [17–19], this architecture is largely uncharted territory for bioinformatics except a few 

[20, 21]. The original GAN framework [16], which consists of two modules known as 

generator and discriminator, was designed to learn a generative distribution of data through a 

two-player minimax game. While the generator’s goal is to “fool” the discriminator by 

producing samples that are as close to the real data distribution as possible, the discriminator 

strives to be not fooled by correctly classifying between real and fake data. The adversarial 

framework has been shown to provide a superior loss to other traditional ones based on 

mean square error or mutual information for learning data distributions.

Despite the success of GAN in mimicking the underlying data distribution, GANs cannot be 

readily applied to learn the abstract representation of data due to the lack of an efficient 

inference module. Hence, in order to learn the low dimension feature representation of RNA 

sequences using GAN based framework, we employed Adversarial Learned Inference (ALI) 

model [22], which jointly learns an encoder network and a decoder network using the 

adversarial process similar to GAN. The decoder network takes random noise as input and 

maps it to the data space, whereas the encoder network maps RNA sequences to the latent 

representation. Finally, the encoder, decoder, and a discriminator network get combined into 

the adversarial game, where the discriminator network is trained to distinguish between the 

joint distribution of latent/data-space samples from the decoder and encoder network.

We adapted the inference learning approach of ALI and employed it to a large compendium 

of the pre-mRNA sequence of the human transcriptome. The objective was to learn an 

abstract representation of transcriptomic sequences that are typically 51 bp long and utilize 

the embedding as feature vectors for predicting eight different types of transcriptome 

modification sites including m1A, m1G, m2G, m5C, 2’O, m5U, pseudouridine (Ψ), and 

Dihydrouridine (D). Evaluating the effectiveness of features by predicting multiple post-

transcriptional modifications serves in the manifold. First, the computational prediction of 

distinct epitranscriptomic marks is biologically significant and a long-sought goal for 
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bioinformatics researchers. Accurate identification of these marks is essential for 

deciphering their biological functions and mechanism. However, discriminating between 

RNA modifications using only genomic sequence is a challenging task because there are 

more than 100 different types of RNA modifications characterized so far in diverse RNA 

molecules, including mRNAs, tRNAs, rRNAs and lncRNAs and they may share similar 

nucleotide sequence preference. Many transcriptome-wide sequencing technologies have 

been developed recently to determine the global landscape of RNA modifications (e.g, 

Pseudo-seq, Ψ-seq, CeU-seq, Aza-IP, MeRIP-seq, m6A-seq, miCLIP, m6A-CLIP, 

RiboMeth-seq, Nm-seq and m1A-seq) that identifies distinct epitranscriptomic marks [23]. 

However, individual experimental identification of these modification sites is very costly, 

labor-intensive and time-consuming. So, we created a benchmark dataset by combining eight 

different types of post-transcriptional modification data (e.g., m1A, m1G, m2G, m5C, m5U, 

2′-O, Ψ and D). We compared the effectiveness of the embeddings with the one-hot 

encoding of RNA sequences and demonstrated that the learned embeddings outperform one-

hot encoding by a significant margin (Fig. 2). We have also applied our method on the m6A 

dataset provided by SRAMP and improved the performance by 4%–12% for different case 

scenarios in predicting m6A site (Fig. 3). Finally, we carried out exploratory analysis via t-

SNE to rationalize the superiority of MR-GAN features as well as investigated motifs 

learned by our model to determine the biological relevance of the embedded representation.

MATERIAL AND METHODS

Transcriptome dataset for training MR-GAN

Because our goal is to learn a low dimensional representation of transcriptome sequences 

using GAN, we employed pre-mRNA sequences from the entire human transcriptome to 

train the proposed MR-GAN model. Engaging the large corpus of pre-mRNA sequences is 

important as it aids our unsupervised training to learn patterns from coding and noncoding 

region to ensure that sufficient contexts are observed. The training dataset was compiled 

from all the chromosomes of the human genome hg38 assembly [24]. Separate fasta format 

files (*.fa) were downloaded from the UCSC genome browser for each of the chromosomes. 

Each of the files comprises of intronic and exonic sequences for all the genes belonging to 

the specific chromosome. We then chopped the sequences at the non-overlapping interval of 

every 51 bp and got rid of the sequences that contain character N (represents ambiguous 

nucleotide). We selected 51 bp as the input RNA sample length because previous studies 

involving the prediction of RNA modifications have discovered this length as preferable for 

capturing contextual information [6, 25]. This preprocessing step results in a total of 40.7 

million samples of length 51 bp. Finally, in order to feed into the MR-GAN for unsupervised 

learning, each of these sequences was represented by a 4 × 51 binary one-hot encoded 

matrix with rows corresponding to A, C, G, and U.

Datasets for epitranscriptome modifications

To train and evaluate models for human transcriptome modification site prediction using 

transcript sequence features extracted by the MR-GAN encoder, we created two benchmark 

datasets. The first dataset includes sites from eight different types of transcriptome 

modification and negative random sequences (see Table 1). The positive sites were collected 
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primarily from RMBase [26], which provides location information of the modified single 

base. We utilized the modified single base as the center and extended it to 51 bp by 

including 25 bp nucleotide sequences from both the upstream and downstream direction to 

form positive sequences. We also extracted a set of background sequence samples, randomly 

sampled from the genomic locations that do not contain any modification sites; we ensured 

that the proportions of the sequences centered at either A, U, C or G are roughly balanced 

(see Table 1). Then, the negative training samples were created for different types of 

modifications separately. For 2’-O or Pseudouridine, which occur on all four different 

nucleotides, the negative samples include the background samples and samples from all 

other eight types of modification. Otherwise, for any of the other seven modifications that 

are associated with a unique nucleotide, the negative samples include only sequences 

centered at that unique nucleotide from the background samples and those from other types. 

While some of the modifications have large positive sample sizes, the majority of others as 

in m2G and m1G have very few positive samples. Training reliable prediction models with 

small, highly imbalanced training datasets are highly challenging leaning tasks. In this work, 

we show the power of the MR-GAN encoder in helping extract discriminate sequencing 

features for different modification sites.

The second dataset consists of positive and negative samples for transcriptome m6A 

methylation. We choose to train an MR-GAN on m6A separately because m6A is the most 

abundant and widely studied transcriptome modification and there are also existing 

sequence-based prediction algorithms. This dataset was derived mostly from [6], which used 

a similar dataset to train an m6A site predictor called SRAMP. Positive samples of this 

dataset are miCLIP sites from [27] that also contain the m6A motif (DRACH) and the 

negative samples are random sequences that also have the DRACH motif located at the 

center but have no miCLIP detected m6A sites. Similar to for SRAMP, two sets of training 

data, namely the full transcript mode, where the training sequences were collected from the 

full transcripts, and the mature mRNA mode, which extracted training sequences from 

cDNA sequences, were prepared. Table 2 provides detailed information about the m6A 

training datasets.

Generative adversarial network

GAN, proposed by Goodfellow et al. [16], is a generative network that learns the distribution 

of data and produces samples of synthesized data from the captured distribution. GAN 

includes two differentiable functions characterized by neural networks: the discriminator 

function C(x;θC) with parameters θC that outputs a single scalar representing the probability 

of x. from the real rather than synthesized data distribution and the generator D(z; θD) 

parameterized by θD that maps samples from a prior of input noise variables Pz(z) to data 

distribution pdata(x). GAN is trained by implementing a two-player minimax game, where D 
is optimized to tell apart real from synthesized or fake data and D is optimized to generate 

data (from noise) that “fools” the discriminator. This joint optimization can be formulated as

minDmaxCV (D, C) = Ex ∼ pdata(x) logC x + Ez ∼ pz log 1 − C(D(z)) (1)
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Despite the recent successes of GAN in computer vision, the idea was unexplored in the 

genomics domain until Frey et al. [20] applied the framework on DNA sequences with some 

modifications. Instead of training a generative model that produces realistic DNA sequences, 

they synthesize sequences with certain desired properties. For instance, the data distribution 

captured by GAN was utilized to design DNA sequences with higher protein binding affinity 

than those real sequences found in the protein binding microarray (PBM) data.

MR-GAN for unsupervised learning of transcriptome sequences

As discussed earlier, GANs lack an inference network that prohibits them from 

understanding abstract data representations. People have used the discriminator network to 

extract features but as a learning entity to separate the real and synthetic samples, the 

discriminator primarily learns discriminate features between real and synthetic samples. 

Hence, the discriminator features are not a true representation of the underlying data. 

Learning an inverse mapping from generated data E(x) back to the latent input z can be one 

viable solution to the problem under consideration. To this end, we propose MR-GAN, a 

model inspired by the ALI and BiGAN framework, which consists of three multilayer neural 

networks as depicted in Figure 1. Briefly, in addition to the generator D (or decoder in this 

case) from the standard GAN framework, MR-GAN includes an encoder E, which maps 

data x to latent representations z. The discriminator C of MR-GAN discriminates joint 

samples of the data and corresponding latent component (pairs (x;E(x)) versus (D(z);z) as 

real fake pairs, where the latent variable is either an encoder output E(x) or a generator input 

z. Overall, the training is performed to optimize the following minimax objective.

minD, EmaxCV (D, E, C) = Ex ∼ pdata logC x, E(x) + Ez ∼ pz log 1 − C(D(z), z
) (2)

In MR-GAN’s setting, aside from training a generator, we train an encoder Q:Ω(x) → Ω(z), 

which maps data points x into the latent feature space. The discriminator takes input from 

both the data and latent representation, producing PC(Y|x,z), where Y = 1 if x is sampled 

from the real data distribution px, and Y = 0 if x is generated through the output of D(z), and 

z ∼ pz. Each of the C, D, and E modules, which are parametric functions, are optimized 

simultaneously using a stochastic gradient descent algorithm. The specific architecture of C, 

D, and E modules can be found in supplementary Table 1. Since the MR-GAN encoder 

learns to capture the semantic attributes of whole human transcriptome sequences, it 

produces more powerful feature representations than a fully supervised model that is trained 

using only the labeled transcriptome modification site sequences, especially for those 

occasions where training data are limited.

Training MR-GAN

The GAN framework trains a generator, such that no discriminative model can distinguish 

samples of the data distribution from samples of the generative distribution. Both generator 

and discriminator are trained using the optimization function noted in equation (1). In the 

MR-GAN setting, the loss function (2) is considered, which is optimized over the generator, 

encoder, and discriminator. However, both (1) and (2) can be considered as computing the 
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Jensen-Shannon divergence, which is potentially not continuous concerning the generator’s 

parameters, thus leading to poor training convergence and stability [28]. In [28], an 

alternative optimization function was proposed that is based on the Earth-Mover (also called 

Wasserstein-1) distance W(q,p) and is defined as the minimum cost of transporting mass in 

order to transform the distribution q into the distribution p. In contrast to equation (1) and 

(2), the Wasserstein distance is a continuous and differentiable function in the parameter 

space and therefore has improved training stability. However, it requires weight clipping to 

be implemented that still leads to the generation of poor samples and failure to converge. 

Therefore, we trained MR-GAN using Wasserstein optimization function but instead of 

enforcing the weight clipping, we imposed a soft version of the constraint with a penalty on 

the gradient norm as follows

L = Ez ∼ pz C D z , z − Ex ∼ pdata[C x, E x ]
Original Wasserstein Loss

+ λ

* Ex ∼ px[ ∥ ∇xC x ∥2 − 1 2]
Gradient Penalty

(3)

This technique is known as WGAN-GP (Gradient Penalty) and was initially proposed in 

[29]. The entire MR-GAN framework was optimized using the standard stochastic gradient 

descent method, where the learning rate was set to 1e-4. In our implementation, the batch 

size was equal to 100 samples. We trained the network for two epochs, which takes around 

four days in a computer with a single GPU. In our experience, the loss keeps oscillating 

during the training process as has been observed in previous studies [30–32]. However, 

WGAN-GP has shown that the discriminator loss is close to zero when the GAN model 

approaches convergence. As a result, we took a snapshot of our model at every 2,000 

iterations during the training process and selected the model with minimum discriminator 

loss (−5.2) for downstream processing. In our training, the minimum discriminator loss 

occurs at iteration 809,600, whereas the total number of iterations for two epochs was 

814,600.

Training predictors for epitranscriptome sites based on features extracted from the MR-
GAN encoder

After the MR-GAN model is trained in an unsupervised manner using transcriptome-wide 

pre-mRNA sequences, we retained the MR-GAN encoder and used it as a feature extractor 

for modification site sequences and trained prediction models based on these features [17]. 

To train a model to predict modification sites, we first fed each 51 bp long sequences in our 

training and testing datasets into the encoder and concatenated the feature maps from the last 

four convolutional layers into a vector of 2,112 features. Then, support vector machine 

(SVM) classifiers with the Radial basis function kernel were trained as the site predictors for 

each modification type based on the feature vectors extracted from the corresponding 

training sets. This resulted in eight predictors for the first dataset and a separate predictor for 

m6A. Note that these eight predictors together can also be considered as a multi-class 

classifier trained based on the one-vs-rest approach.
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To obtain a baseline prediction performance, we also trained SVM classifiers using the one-

hot encoded modification sequences. One hot encoding is a widely used encoding approach 

in deep learning to represent biological sequences with numeric formats [33–37]. The one-

hot encoding converts a 51 bp mRNA sequence into a 4×51 binary matrix, where each row 

corresponds to either A, C, G or U and a single “1” in each column encodes the 

corresponding nucleotide at that location of the sequence.

RESULTS

Prediction performance of the eight epitranscriptome modifications

In this section, we comprehensively evaluate the performances of the eight modification 

predictors trained on MR-GAN generated features and the one-hot encoding using the first 

dataset. Because the positive and negative samples for any modification are heavily 

imbalanced, where negative samples are about 3 to 200 times more than the positive 

samples, the appropriate metric to gauge the classification performance is the area under the 

precision-recall curve (auPRC). Since both precision and recall are dependent on the number 

of true positives rather than true negatives, the auPRC is less prone to inflation by the class 

imbalance than auROC [37]. Fig. 2 shows the auPRC performances achieved by a 5-fold 

cross-validation scheme for each of the modifications. As described earlier, each 

modification predictor was trained by selecting the samples of the particular modification as 

the positive class whereas the samples having the same center nucleotide as a positive class 

from the rest of the modifications including the random negative ones were attributed to the 

negative class. It is clear from Fig. 2 that MR-GAN extracted features outperform one-hot 

encoding representation by significant margins for most of the RNA modifications. The 

auPRC increase attained by MR-GAN features ranges from 5.6% to 19.2% across different 

modifications. Notably, the performance improvements are more prominent for the 

modifications with a comparatively lower number of samples. For instance, the average 

auPRC for predicting D, m2G, m5C and m5U using MR-GAN embedding is 12.3% higher 

than the one-hot encoding comparing to the 3.8% average auPRC increment for the rest of 

the modifications with larger sample size (2’-O-Me, Pseudouridine, m1A). This indicates 

that the unsupervised training of MR-GAN has helped the model to learn additional 

information that otherwise would be difficult to learn with a limited number of training 

samples. Furthermore, the MR-GAN features consistently deliver prediction results at higher 

than 85% auPRC which is a remarkable feat considering the minuscule ratio of positive to 

negative samples in the heavily imbalanced dataset. Using a highly skewed dataset to train 

predictors generally leads to the outcome that most of the positive samples are misclassified 

as negative ones. To solve this complexity, many prediction algorithms resample the negative 

data to balance the ratio of positive and negative subsets. Remarkably, we did not perform 

any data balancing technique in training, as the features learned by the MR-GAN encoder 

were powerful enough to handle the class imbalance problem by itself. Finally, we noticed 

that the one-hot encoded feature representation performs comparably to the MR-GAN 

features for two modification types (m1A and m1G). Because there are only 29 positive 

samples for m1G, it is reasonable to expect that the one-hot encoded feature representation 

and the MR-GAN features reach similar performance but these performances might not be 

generalized due to the small sample size. For m1A, where there are 3,173 positive training 
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samples, it is likely that the positional sequence pattern in training samples already contains 

significant discriminating information for the one-hot predictor to reach maximum accuracy. 

Taken together, these results demonstrate that the proposed unsupervised representation by 

MR-GAN successfully captures the important features required for discriminating the RNA 

modifications, which might not be captured with small training samples.

Prediction performance of m6A sites

While in the previous section we demonstrated the superior prediction performance of MR-

GAN embedding on modifications with relatively smaller training samples, we investigate in 

this section whether this unsupervised feature learning can help improve the performance of 

m6A prediction, where the number of positive samples required for training is large. Because 

of the availability of m6A data from SRMAP, we were able to evaluate the performance on 

independent testing datasets as opposed to cross-validation. Similar to the SRAMP 

evaluations in [6], we investigated the MR-GAN model performance in terms of auPRC on 

the full transcript mode and mature RNA mode using the independent testing data as 

described in Table 2.

Figure 3 summarizes the prediction results of MR-GAN and SRAMP on testing data for 

both the input modes. As evident, the MR-GAN extracted features outperform SRAMP 

proposed encodings in both modes (11.1% for the mature mRNA mode and 3.6% for the full 

transcript mode), suggesting that unsupervised learning from the entire transcriptome 

sequence can improve the learning of modification-related features over the encodings 

employed in SRAMP algorithm. It is pointed out in [6] that SRAMP suffers in the mature 

mRNA mode due to the discarding of all introns, which may disrupt the original sequence 

context of an m6A site and therefore reduce the discriminative capability of the extracted 

features. Also, the distance between an m6A site and a non-m6A site generally becomes 

closer in mature mRNA sequences compared with that in the corresponding pre-mRNA 

sequences, which further aggravates the prediction outcome of SRAMP. By contrast, the 

unsupervised training enables MR-GAN to learn the information about pre-mRNA 

sequences and thus produce considerable prediction improvement.

Visualizing MR-GAN features for different epitranscriptome modifications

To gain an intuitive understanding of the superior performance of MR-GAN features and 

explore the relationship among features of different modifications, we applied t-SNE [38] to 

project the high dimensional features onto 2D and 3D space. t-SNE is a popular nonlinear 

dimension reduction method that optimizes the similarities of the probabilities of distances 

between high dimensional samples space and corresponding lower-dimensional projected 

samples. It has been widely used for data visualization in a variety of fields such as video, 

image, and audio signals [38]. For this visualization, we first utilized principal component 

analysis (PCA) to map the MR-GAN and one-hot encoded representations of different RNA 

modification samples to lower dimensions, which were then fed to t-SNE to obtain 

representations in 2D and 3D spaces. We first compared the t-SNE plots in a 3D space 

between MR-GAN features and the one-hot encodings (Fig. 4). For this comparison, we 

only included the five epitranscriptome modifications with a comparatively larger number of 

samples. As evident in Fig. 4(a), all one-hot encoded samples were squeezed together and 
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barely separable. In contrast, MR-GAN extracted features show well-separated groups of 

samples (Fig. 4(b)). As a result, it is much easier to achieve separable hyperplanes in the 

SVM classifier when MR-GAN features are used.

One way to validate the data embedding is to verify if the samples with similar 

functionalities are clustered together in the embedding space. Therefore, we investigated the 

relationship of MR-GAN features between different modifications, where we projected the 

data samples of eight types of modifications to the 2D space using t-SNE (Fig. 5). To 

produce a clear and uncluttered 2D plot, we randomly picked a maximum of 70 samples 

from each of the modifications. Fig. 5 reveals that the four most abundant mRNA 

modifications, m6A, m1A, m5C, and 2’-O, each form unique groupings with somewhat small 

overlapping among them, suggesting that each of them has its distinct sequence patterns that 

might be associated with modification-specific RNA binding proteins and hence unique 

functions. Such distinct grouping is supported by their different transcript distributions, 

where m6A, m1A, m5C, and 2’-O are mostly enriched in the stop codon, the start codon, the 

3’UTR and the CDS, respectively. However, there is a small overlapping between m6A and 

2’-O. Indeed, single-base mapping technology has found that the second nucleotide from the 

5’ cap of certain mRNA has N6, 2’-O-dimethyladenosine (m6Am) [27]. Moreover, 2’-O 

exists in all four types of nucleotides and it is not surprising to see 2’-O to share some 

overlapping with almost all other modifications. We also observe that the m1A cluster 

contains virtually all m1G samples, implying that m1A and m1G have significantly share 

sequence patterns and potentially similar regulatory functions. Certainly, m1A is shown to 

disrupt the Watson-Crick base-pairing and found to collaborate with m1G to induce local 

duplex melting in RNA [39]. The fact that they are isolated from other modifications may 

suggest that disrupting the base-pairing might be their unique function. Compared with the 

other three clusters, the m5C cluster shows the most overlapping with m6A and 2’-O. 

Although the evidence of collaborations between these three methylations is limited, m6A 

and m5C have been shown to enhance the translation of p21 by jointly methylating its 

3’UTR. In addition to these four clusters, Ψ shows overlapping with m6A, m5C, and 2’-O. 

Ψ is found throughout different regions in mRNA. The samples of the remaining two 

modifications, D and m2G, are widely scattered without any clear patterns. They are also 

much less studied and their actual distributions in mRNA and their functions are mostly 

unknown.

Features learned by MR-GAN confirmed known modification sequence motifs

In this section, we delve into the encoder network to comprehend the sequence motifs for 

different mRNA modifications captured by the latent semantic representation of MR-GAN. 

Following a similar strategy described in DeepBind [40] for the sequence logo generation, 

we extracted the subsequences that give the maximum response in the convolutional 

operation for a kernel at the first layer of the encoder network. We repeated this subsequence 

extraction task on each of the sequences of the benchmark dataset using the 32 kernels at the 

first layer. Next, we performed motif enrichment analysis using MEME-ChIP [41] by 

feeding the unique subsequences from each modification type as the positive set while the 

subsequences extracted from the random samples of the benchmark dataset were utilized as 

the control set for each of the modifications to ensure the common background. The top-3 

Salekin et al. Page 10

Front Phys. Author manuscript; available in PMC 2020 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



enriched motifs discovered by MEME-ChIP and the associated RNA binding proteins 

(RBPs) for the relatively abundant mRNA modifications are shown in Fig. 6. Two of the 

most enriched motifs detected for m6A belong to the well-known DRACH motif. The RBPs 

that share the motifs include FMR1, whose binding mRNAs in the mouse brain have been 

shown to be significantly methylated with m6A marks [42]. Other RBPs associated with 

these top motifs include splicing factors SRSF1 and Zinc finger CCCH domain-containing 

protein ZC3H10. Currently, no evidence of their interaction with m6A exist. However, m6A 

reader protein YTHDC1 is shown to regulate splicing through interacting with splicing 

factor SRSF3 and SRSF10 [43, 44] and the Zinc finger CCCH domain-containing protein 

ZC3H13 is reported to regulate m6A to control embryonic stem cell self-renewal. These 

existing results may point to unknown interactions of m6A with SRSF1 and ZC3H10. Next, 

we examined the known motifs for each of the remaining abundant modifications in the top 

enriched motifs and reported many other new motifs associated with known RBPs. To 

systematically investigate the associated RPBs predicted by MR-GAN, we accumulated the 

list of RBPs for each of the mRNA modifications that were identified as discriminative by 

MEME-ChIP in the above experiment, resulting in total 72 RBPs. We then performed a 

clustergram analysis (Fig. 7) such that the RBPs are clustered according to the significance 

with which they are found to be unique to these mRNA modifications by MEME-ChIP. 

Interestingly, we discovered that most of the modifications have at least one unique RBPs 

(Supplementary Table 2). For instance, RBM3 and RALY are unique to m6A, HNRNPC is 

unique to m1A, and SRSF2 is unique to m5C. RBM3 is shown to be a functional partner of 

the splicing factor SRSF3[45], which is recruited by m6A to regulate alternative splicing 

[46]. RALY is a member of the hnRNP family, which are considered as indirect m6A 

readers[47, 48]. Also, there were also RBPs, such as SNRNP70, that are determined as 

discriminative for most of the modifications. SNRNP70 is a key early regulator of 5’ splice 

site selection. This result could suggest that regulating splicing would be a common function 

which various modifications possess. We also discovered that 55 of the 72 RBPs identified 

by this analysis overlaps with the proteins isolated by the RICK experiment [49], which 

systematically captures proteins bound to a wide range of RNAs (Supplementary Table 3). 

This indicates that our unsupervised learning captures RBPs that are biologically meaningful 

and repeatedly identified by other related studies.

In order to further validate the credibility of the features captured by our method, we 

converted the 32 convolutional kernels for m5C samples into position frequency matrices or 

motifs following the similar procedure of DeepBind. Then, we aligned these motifs to 

known motifs using the TOMTOM algorithm [50]. Of the 32 motifs learned by the first layer 

of the encoder network, 25 significantly matched known RBP motifs (E < 0.05). 

Subsequently, we proceeded to verify whether the RBPs identified by this analysis concurs 

with the results of other studies investigating similar problems. In [51], the authors carried 

out an analysis to determine the relationship between m5C sites and RBPs using CLIP-seq 

data and reported the RBPs showing statistically significant enrichment of m5C in their 

binding sites compared to randomly sampled Cs. Expectedly, several of the RBPs identified 

by our motif analysis for m5C (6 of 25) were also discovered by that study, which further 

endorses the significance of our work (Supplementary Table 4).
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CONCLUSION

We considered the prediction of different transcriptome modifications based on RNA 

sequences. To address the problem of small sample size for many of the modifications, we 

developed a generative adversarial network model called MR-GAN, which is trained to learn 

low dimension embeddings of transcriptomic-wide sequences in an unsupervised manner. 

The learned embedding, as demonstrated through the experimental results, contain the 

improved representation of sequences for different modifications as it maps the RNA 

modifications with similar functionalities together. We have also demonstrated that the 

motifs learned by MR-GAN in the process of discriminating between various transcriptome 

modifications are biologically meaningful and conforms to the findings of some of the 

previous studies. It is noteworthy to mention that we analyzed only nine out of almost 100 

well-known modifications. We believe there would be more interesting patterns revealed if 

the MR-GAN sequence features are applied to additional RNA modifications. The main 

advantage of MR-GAN is that the model can perform in a satisfactory accuracy even with 

the heavily skewed dataset without the need for employing data balancing techniques. This 

is a significant contribution to the bioinformatics research community because we often fail 

to develop a well-performing computation prediction model due to the lack of enough 

labeled data. We hope to extend this work by applying the embedding into more genomic 

sequence related classification problems.

AVAILABILITY

MR-GAN is available in the GitHub repository (https://github.com/sirajulsalekin/MR-

GAN). The training data are available for download at https://drive.google.com/open?
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Unsupervised Feature Learning Scheme of MR-GAN
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Figure 2. 
Prediction performance (auPRC) of eight epitranscriptome modifications using MR-GAN 

features and one-hot encoding. The number next to a modification name is the number of 

corresponding positive samples. The auPRCs are listed on top of the bars.
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Figure 3. 
m6A prediction performance (auPRCs) of MR-GAN and SRAMP
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Figure 4. 
3D scatterplots of t-SNE projected (a) one-hot encoded samples and (b) MR-GAN features 

for five epitranscriptome modifications that have a comparatively larger number of samples.
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Figure 5. 
2D scatter plot of all modification sites using MR-GAN features map modifications with 

similar functions altogether
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Figure 6. 
The top motifs of different transcriptome modifications learned by MR-GAN
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Figure 7. 
Clustergram analysis (heatmap) of RNA binding proteins identified to most likely interact 

with different transcriptome modifications. The color represents the significance with which 

they are found to be unique to these mRNA modifications by MEME-ChIP. The significance 

goes from lowest to highest as color varies from blue to red.
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Table 1:

Number of samples for different transcriptome modifications in the benchmark dataset.

Modification type Number of samples
Center nucleotide

A C G U

2’-O 2802 422 820 899 661

D 162 162

m1A 3173 3173

m1G 29 29

m2G 59 59

m5C 536 536

m5U 30 30

Ψ 3732 31 40 29 3632

Negative (random) 7699 1963 1815 1917 2004

Total 18222 5589 3211 2933 6489
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Table 2:

Numbers of samples in the training and testing dataset for m6A. Data were prepared for the full transcript and 

mature mRNA modes.

Full transcript mode Mature mRNA mode

Training data (pos:neg) 31901:229204 26755:51094

Testing data (pos:neg) 8284:31070 6905:34349
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