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Landscapes of bacterial and metabolic signatures 
and their interaction in major depressive disorders
Jian Yang1,2*, Peng Zheng3,4*, Yifan Li3,4, Jing Wu3,4,5, Xunmin Tan3,4,5, Jingjing Zhou1,2, 
Zuoli Sun1,2, Xu Chen1,2, Guofu Zhang1,2, Hanping Zhang3,4, Yu Huang3,4,5, Tingjia Chai3,4,5, 
Jiajia Duan3,4,5, Weiwei Liang3,4,5, Bangmin Yin3,4,5, Jianbo Lai6,7, Tingting Huang8, Yanli Du8, 
Peifen Zhang8, Jiajun Jiang8, Caixi Xi8, Lingling Wu8, Jing Lu6,7, Tingting Mou6,7, Yi Xu6,7,  
Seth W. Perry9,10, Ma-Li Wong9,10, Julio Licinio9,10, Shaohua Hu6,7†‡, Gang Wang1,2†‡, Peng Xie3,4†‡

Gut microbiome disturbances have been implicated in major depressive disorder (MDD). However, little is known 
about how the gut virome, microbiome, and fecal metabolome change, and how they interact in MDD. Here, using 
whole-genome shotgun metagenomic and untargeted metabolomic methods, we identified 3 bacteriophages, 
47 bacterial species, and 50 fecal metabolites showing notable differences in abundance between MDD pa-
tients and healthy controls (HCs). Patients with MDD were mainly characterized by increased abundance of the 
genus Bacteroides and decreased abundance of the genera Blautia and Eubacterium. These multilevel omics alter-
ations generated a characteristic MDD coexpression network. Disturbed microbial genes and fecal metabolites were 
consistently mapped to amino acid (-aminobutyrate, phenylalanine, and tryptophan) metabolism. Furthermore, 
we identified a combinatorial marker panel that robustly discriminated MDD from HC individuals in both the dis-
covery and validation sets. Our findings provide a deep insight into understanding of the roles of disturbed gut 
ecosystem in MDD.

INTRODUCTION
Major depressive disorder (MDD) is a common and debilitating 
mental disorder (1, 2). Currently, the underlying molecular basis of 
MDD remains mostly obscure, although several hypotheses have at-
tempted to explain its pathophysiological mechanisms (3). Moreover, 
because of the lack of biomarkers, MDD diagnosis is still based on 
clinical interviews, which results in a high rate of misdiagnosis (4). 
Thus, it is critical to identify the molecular basis and new diagnostic 
biomarkers for MDD.

The gut microbiome, a vital and direct environmental contributor 
to central nervous system development, consists of a vast bacterial 
and viral community that can significantly influence host health 
and disease (5, 6). The gut bacterial microbiome has gained the 
greatest attention. It has been hypothesized to play a critical role in 
the onset of various neuropsychiatric disorders such as Parkinson’s 
disease, autism, and bipolar disorder (7–10), via the “microbiota- 

gut-brain” axis (11). Disturbances in the gut bacterial microbiome 
in MDD have been observed in prior studies using the 16S ribosomal 
RNA (rRNA) sequencing method (12,  13). Moreover, using 
fecal transplantation experiments, two studies have further shown 
that transplanting the “MDD microbiota” into germ-free mice or 
microbiota-depleted rats can induce depression-like behaviors in 
recipient animals, which clarifies a causal role of gut microbiome in 
MDD onset (14, 15).

However, several pivotal questions are not clearly and compre-
hensively elaborated. The previous studies focused on characterizing 
the bacterial microbial composition of MDD using the 16S rRNA 
sequencing method. Such investigations demonstrated a valuable clinical 
association between a disturbed gut microbiome and MDD. How-
ever, because of the relatively limited resolution of this method, it 
was impossible to obtain information on the definitive bacterial spe-
cies of MDD. Two recent studies tried to address this issue using the 
shotgun metagenomic method (16, 17). One study has a limited 
sample size (MDD, n = 26) and included patients with MDD who 
were taking various antidepressant drugs, which may affect the micro-
bial composition. The other study focused on identification of micro-
bial signatures for general practitioner–reported depression (17), 
showing that genera Coprococcus and Dialister were depleted in 
unmedicated patients with depression. In addition, some microbial 
pathways such as -aminobutyric acid (GABA) synthesis were dis-
turbed in depression, which guides the researchers to comprehen-
sively understand the gut microbial function in MDD. Last, although 
the gut virome is generally considered inclusively within the con-
cept of a gut “microbiome,” relatively few studies have looked specif-
ically at the gut virome composition in various disease states (18, 19). 
Emerging pioneering studies have shown that the enteric virome, which 
is mainly composed of bacteriophages, could regulate bacterial 
microbial composition, profoundly influence host physiology, and 
contribute to disease development such as inflammatory bowel dis-
eases and colorectal cancer (18, 19). However, thus far, no research 
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has been conducted to explore whether MDD is accompanied by 
enteric virome disturbances.

To bridge the above-mentioned knowledge gaps, we performed 
a cross-sectional whole-genome shotgun metagenomics analysis of 
311 fecal samples from patients with MDD and healthy controls (HCs) 
to characterize the signatures of gut bacteriophages and bacteria as 
well as their functional potential. Fecal metabolomics is considered 
as the functional readout of the gut microbiome (20). Combination 
of metagenomic and metabolic analyses is a well-established strategy 
for uncovering both the taxonomic and functional features of the gut 
microbiome (21). Thus, in parallel with metagenomic analysis, gas 
chromatography–mass spectrometry (GC-MS)–based fecal metab-
olomics analysis was also performed. Integrating these multilevel 
omics findings, we sought to characterize the landscapes of altered 
bacteriophages, bacteria, and fecal metabolites, and their reciprocal 
interaction in the gut ecosystem of MDD to further uncover how 
these disturbed signatures modulated host metabolism. Last, on 
the basis of the multiparametric markers, a combinatorial bio-
marker panel discriminating between MDD and HCs was identified 
and independently confirmed in the discovery and the validation 
sets, respectively.

RESULTS
Clinical characteristics of the participants
Here, we performed an integrated analysis of the gut virome, bacterial 
microbiome, and fecal metabolome on 311 samples from the MDD 
and HC groups. These samples were derived from the discovery 
(n = 236) and validation sets (n = 75). In the discovery set, all the 
patients with MDD were unmedicated, and there was no significant 
difference in demographic indexes, including gender, age, or body 
mass index (BMI) between the two groups. These well-matched sam-
ples were used to identify molecular signatures inherent in MDD. In 
contrast, to independently verify the diagnostic generalizability of these 
markers, the clinical characteristics of samples in the validation set 
were relatively diverse and not completely matched (table S1).

Gut bacteria differences between MDD and HC subjects
We obtained an average of 15,024,809,536 bases per sample from 
the whole-genome shotgun sequencing of 311 fecal samples. Initially, 
bacterial -diversity analysis showed that there was no significant 
difference among these indexes between the two groups (Fig. 1A). 
Then, we sought to explore whether the overall bacterial phenotypes 
of patients with MDD and HC subjects were different. Principal co-
ordinates analysis (PCoA) showed that bacterial signatures between 
the two groups were significantly distinct [permutational multi-
variate analysis of variance (PERMANOVA), P = 0.003; Fig. 1B]. 
Here, we identified a total of 47 discriminative bacterial species be-
tween the MDD and HC groups (Fig. 2A and table S2). Compared 
with HCs, MDD subjects were characterized by 18 enriched species 
mainly belonging to the genus Bacteroides (10 species: Bacteroides_
thetaiotaomicron, Bacteroides_stercoris, Bacteroides_stercoris_CAG:120, 
Bacteroides_fragilis, Bacteroides_massiliensis, Bacteroides_dorei, 
Bacteroides_vulgatus, Bacteroides_ovatus, Bacteroides_eggerthii, and 
unclassified_g_Bacteroides) and by 29 depleted species mainly be-
longing to the genus Blautia (5 species: Blautia_obeum, Blautia_sp._
GD8, Blautia_wexlerae, Blautia_sp._Marseille-P2398, and Blautia_
sp._CAG:237), Eubacterium (5 species: Eubacterium_sp._CAG:202, 
Eubacterium_sp._CAG:156, Eubacterium_hallii, Eubacterium_hallii_

CAG:12, and Eubacterium_ventriosum), and Clostridium (3 species: 
Clostridium_sp._CAG:217, Clostridium_sp._CAG:510, and Clostridium_
sp._CAG:62). The majority of the up-regulated species in MDD be-
longed to the phylum Bacteroidetes (12 of 18), whereas the major 
down-regulated species in MDD belonged to the phylum Firmicutes 
(25 of 29) relative to HCs.

Bacteriophage differences between MDD and HC subjects
Metagenomic sequencing was also mapped to the known viral genomes 
National Center for Biotechnology Information (NCBI) non-redundant 
(NR) database. One -phylogenetic diversity index (Chao) was de-
creased in MDD relative to HC subjects (Fig. 1C). PCoA showed that 
there was no major global alteration of gut virome between the two 
groups (PERMANOVA, P = 0.572; Fig. 1D), suggesting a limited number 
of differential viruses between MDD and HCs. As expected, only 
three differential bacteriophages were identified using the linear dis-
criminant analysis effect size (LEfSe) analysis (Fig. 2B and table S3). 
Compared with HCs, patients with MDD had decreased abundances 

Fig. 1. Gut microbiome characteristics in MDD versus HC. (A) There were no 
significance bacterial aciversity differences between the two groups. (B) Bacterial 
signatures between the two groups were significantly different (Bray-Curtis distance, 
PERMANOVA, P = 0.003). (C) -Phylogenetic diversity analysis of gut viromes showed 
that the index of Chao (community richness) was decreased in the MDD subjects 
relative to HCs. (D) Overall viral signatures of the MDD group were not significantly 
discriminated from the HC group (Bray-Curtis distance, PERMANOVA, P = 0.572). 
(E) Metabolic signatures of MDD subjects were significantly distinguished from HCs 
(Bray-Curtis distance, PERMANOVA, P = 0.001). Discovery set: HC, n = 118; MDD, 
n = 118. ***P < 0.001.
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Fig. 2. The bacteriophages, bacterial species, and fecal metabolites that discriminate MDD from HC. (A) Relative abundances of 47 bacterial species responsible for 
discriminating the MDD and HC groups. The taxonomic assignment of each species is shown on the left. At the genus level, the MDD subjects showed 18 enriched species, 
mainly belonging to the genus Bacteroides (10 species), and 29 depleted species mainly belonging to the genera Blautia (5 species), Eubacterium (5 species), and Clostridium 
(3 species). (B) Three bacteriophages, mainly assigned to Podoviridae at the family level, were differentially expressed in the MDD subjects relative to HCs. (C) Relative 
abundances of 50 fecal metabolites differentiating between the two groups. Compared with HC, the MDD group was characterized by 16 up-regulated metabolites and 
34 down-regulated metabolites. These metabolites were mainly involved in amino acid, nucleotide, carbohydrate, and lipid metabolism. The discriminative variants 
(gut bacteriophages, bacterial species, and fecal metabolites) were identified on the basis of an LDA score >2.5. Discovery set: HC, n = 118; MDD, n = 118.
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of Clostridium_phage_phi8074-B1 and Klebsiella_phage_vB_KpnP_
SU552A, as well as increased abundance of Escherichia_phage_
ECBP5. These three differential bacteriophages were consistently 
assigned to the Caudovirales order. With regard to detected fungi 
and protozoa, we did not identify any differences between the MDD 
and HC groups (table S4).

Altered fecal metabolites in MDD
The fecal metabolome can provide the functional readout of the gut 
microbiome. GC-MS–based metabolomic analysis was simultane-
ously applied to compare the metabolic signatures between the MDD 
and HC groups. The overall metabolic signatures of MDD were sig-
nificantly different with that in HCs (PERMANOVA, P = 0.001; 
Fig. 1E). Compared with the HC group, the MDD group displayed 
enrichment in 16 metabolites and depletion in 34 metabolites (Fig. 2C 
and table S5). These altered metabolites were mainly involved in 
amino acid metabolism (pipecolic acid, homoserine, N-acetylornithine, 
proline, quinolinic acid, cystine, oxoproline, GABA, tryptophol, 
homovanillic acid, hydrocinnamic acid, leucine, and trans-4-hydroxy-
l-proline), nucleotide metabolism, carbohydrate metabolism, and 
lipid metabolism.

Co-occurrence analysis among the bacteriophages, bacteria, 
and metabolites
We next explored the potential correlations of abundances of these 
differential gut bacteriophages, bacterial species, and fecal metabo-
lites. Overall, co-occurrence analysis showed that bacterial species 
formed strong and broad co-occurring relationships with fecal me-
tabolites; the bacteriophages showed a mild correlation with both 
the bacterial species and fecal metabolites (Fig. 3). Within this co-
expression network, these differential bacterial species mainly gen-
erated three covarying clusters (clusters 1 to 3). In the MDD group 
relative to the HC group, cluster 1 was composed of eight enriched 
bacterial species belonging to the genus Bacteroides; cluster 2 mainly 
comprised five depleted species belonging to the genus Blautia; and 
cluster 3 contained two up-regulated and four down-regulated species 
that were assigned to the genus Eubacterium.

We found that members within cluster 1 or cluster 2 were positively 
correlated to each other. In contrast, some members from cluster 1 
showed negative correlations with the members from cluster 2. For 
example, Bacteroides_fragilis displayed negative correlations with 
both Blautia_obeum and Blautia_sp._GD8. Clusters 1 and 2 were 
linked by a common node (Parabacteroides_distasonis). All cluster 
1 members were positively correlated with Parabacteroides_distasonis, 
yet two cluster 2 members showed negative correlations with this 
node. These findings suggest that these key differential bacterial spe-
cies may form synergistic and niche-related relationships in patients 
with MDD.

For the bacteriophages, we found that Klebsiella_phage_vB_
KpnP_SU552A was positively correlated with one species of the genus 
Bacteroides (Bacteroides_thetaiotaomicron) in cluster 1. Another 
bacteriophage, Clostridium_phage_phi8074-B1, showed positive 
correlations with two species (Subdoligranulum_variabile and 
Eubacterium_sp._CAG:202). Moreover, we found that Klebsiella_
phage_vB_KpnP_SU552A was also negatively correlated with proline, 
cysteine, and tryptophol, three amino acid metabolites. Meanwhile, 
we found that microbial clusters 1 and 2 were mainly correlated with 
fecal metabolites belonging to the amino acid metabolism (proline, 
leucine, and trans-4-hydroxy-l-proline) through some node species 

(e.g., Parabacteroides_distasonis) and metabolites (e.g., isocitric acid 
and 2-indolecarboxylic acid). Thus, these characteristic coexpression 
networks generated another synergistic and niche-related relationship.

Alterations in microbial function and fecal metabolites 
in MDD
Here, we identified a total of 608 differential Kyoto Encyclopedia of 
Genes and Genomes (KEGG) orthology genes (KO genes) between 
the MDD and HC groups. These differential KO genes were mainly 
involved in nine biological processes (Fig. 4), especially the various 
metabolic pathways such as amino acid metabolism. Meanwhile, 
metabolomics analysis showed that patients with MDD were mainly 
characterized by disturbances of amino acid, carbohydrate, nucleo-
tide, and lipid metabolism. Integration of these findings showed that 
disturbance of amino acid metabolism was of particular relevance 
to gut ecosystem of MDD.

We explored the direct roles of the gut microbiome in modulating 
fecal amino acid metabolism by mapping the differential enzyme 
commission numbers (ECs) to disturbed amino acid metabolism. 
In total, we identified 561 differential ECs in the patients with MDD 
relative to HCs. We found that these microbial genes and fecal me-
tabolites were simultaneously related to “arginine, proline, and GABA 
metabolism” (Fig. 5A), “phenylalanine metabolism” (Fig. 5B), and 
“tryptophan metabolism” (Fig. 5C). Here, we found that the fecal 
levels of GABA and its relevant metabolites (N-acetylornithine, pro-
line, oxoproline, and glutathione) were decreased in the MDD group 
relative to the HC group (Fig. 5A). In line with this finding, we also 
found that a microbial enzyme–related gene (BetB) involved in 
arginine metabolism to GABA was down-regulated in MDD. Mean-
while, three microbial genes (glsA, gltB, and GLT1) involved in the 
metabolism of glutamine to GABA were up-regulated in MDD 
(Fig. 5A). These findings suggest that fecal GABA level in the patients 
with MDD may be modulated by a panel of gut microbes, which 
may collectively participate in the development of MDD. Also, we 
found that the majority of genes (AOC3, hpaB, hpaE, and hpaG) 
involved in the phenylalanine catabolic pathways were decreased in 
the MDD group relative to HC group, suggesting an inhibition of 
fecal phenylalanine degradation in MDD. Consistent with this find-
ing, the downstream catabolic product of homovanillate was also 
decreased in MDD (Fig. 5B). Furthermore, we observed that the gene 
(kynu) was enriched in MDD relative to HC subjects (Fig. 5C), which 
may result in increased synthesis of neurotoxic metabolite (quinolinic 
acid) relative to kynurenic acid. Meanwhile, lower stool quinolinic 
acid level was observed in the MDD group. These findings support 
that blood quinolinic acid level would be increased in MDD, which 
has been linked with MDD (22).

Combinatorial biomarkers for discriminating MDD from HC
The potential value of gut metagenomic and metabolomic markers 
was investigated in MDD diagnosis using three types of diagnostic 
models based on differential bacteriophages, bacterial species, and 
fecal metabolites, respectively. Given that a diagnostic tool based on 
the quantification of a small number of parameters would be more 
feasible and economical in clinical practice, a fivefold cross-validation 
method was used to identify the representative variations, which 
could describe the most significant deviations between the MDD 
and HC groups. We found that individual marker panels could 
discriminate patients with MDD from HC subjects with an area un-
der the curve (AUC) ranging from 0.77 to 0.93 (bacteriophages: 

https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0,33&as_ylo=2015&q=Meanwhile
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Fig. 3. A co-occurrence network constructed from the relative abundances of differential bacteriophages, bacterial species, and fecal metabolites in MDD subjects 
versus HCs. The differential bacterial species mainly generated three covarying units (clusters 1 to 3). Cluster 1 was composed of eight enriched species belonging to the 
genus Bacteroides (Bacteroides_stercoris_CAG:120, Bacteroides_stercoris, Bacteroides_dorei, Bacteroides_vulgatus, Bacteroides_fragilis, Bacteroides_thetaiotaomicron, 
Bacteroides_eggerthii, and Bacteroides_ovatus) in MDD subjects compared with HCs. Cluster 2 comprised five depleted species belonging to the genus Blautia (Blautia_
obeum, Blautia_sp._GD8, Blautia_wexlerae, Blautia_sp._Marseille-P2398, and Blautia_sp._CAG:237). Within cluster 1 or 2, each bacterial species positively correlated with 
each other. In contrast, some members from cluster 1 (Bacteroides_fragilis) showed negative correlations with the members from the cluster 2 (Blautia_obeum and 
Blautia_sp._GD8). For bacteriophages, Klebsiella_phage_vB_KpnP_SU552A was positively correlated with one species of genus Bacteroides in cluster 1. Another bacteriophage, 
Clostridium_phage_phi8074-B1, showed positive correlations with two bacterial species (Subdoligranulum_variabile and Eubacterium_sp._CAG:202). Klebsiella_phage_
vB_KpnP_SU552A was also negatively correlated with three metabolites (proline, cysteine, and tryptophol) belonging to amino acid metabolism. In this network, these 
altered metabolites were mainly involved in amino acid metabolism. Size of the nodes represents the abundance of these variables. Red and blue dots indicate the in-
creased and decreased relative abundances of variables in MDD subjects relative to HCs, respectively. Bacterial species annotated to the genus level are marked. Edges 
between nodes indicate Spearman’s negative (light blue) or positive (light red) correlation; edge thickness indicates range of P value (P < 0.05).

Fig. 4. Biological processes enriched by differential microbial genes in MDD subjects (red) or HCs (green). Abscissa variations indicate levels of significance; size of 
the nodes indicates the fold change.
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Fig. 5. Key amino acid metabolic pathways mapped by microbial genes and fecal metabolism in gut ecosystem of MDD. (A) Fecal levels of GABA and its relevant 
metabolites (N-acetylornithine, proline, oxoproline, and glutathione) were decreased in the MDD relative to the HC group. In addition, a microbial enzyme–related gene 
(BetB) that participated in arginine metabolism to GABA was down-regulated in MDD. Meanwhile, three microbial genes (glsA, gltB, and GLT1) involved in the metabolism 
of glutamine to GABA was up-regulated in MDD. (B) Microbial genes (AOC3, hpaB, hpaE, and hpaG) and metabolite (homovanillate) involved in the phenylalanine catabolic 
pathways were decreased in MDD relative to HCs, suggesting an inhibition of fecal phenylalanine degradation in MDD. (C) The gene (KYNU) involved in the metabolism 
of kynurenate to quinolinate was up-regulated in patients with MDD. Meanwhile, fecal quinolinate levels were down-regulated in MDD subjects relative to HCs. KEGG 
genes (squares) and metabolites are colored. Red indicates enriched microbial genes or fecal metabolites in the MDD group, and blue indicates enriched in the HC group. 
Fecal metabolites are colored gray, while no information was available. The pathways were generated on the basis of KEGG pathway maps. Bar plots show the relative 
abundances of differential microbial genes and fecal metabolites between two groups (*P < 0.05 and **P < 0.01; Wilcoxon rank-sum test).
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Clostridium_phage_phi8074-B1 and Escherichia_phage_ECBP5, AUC = 
0.77; bacterial species: unclassified Klebsiella and Eubacterium_sp._
CAG:146, AUC = 0.89; and fecal metabolites: sebacic acid and 
2-indolecarboxylic acid, AUC = 0.93; Fig. 6A).

Then, the samples from the validation set were used to confirm 
the diagnostic performance independently. Consequently, we found 
that the marker panel of bacterial species and fecal metabolites could 

still effectively discriminate between the two groups with AUC of 
0.81 and 0.83, respectively (Fig. 6A). A relatively poor diagnostic 
performance was achieved (AUC = 0.65) using the bacteriophage 
markers. However, we found that a combinatorial marker panel of 
these six biomarkers enabled discriminating MDD from HC subjects 
with high classification power in both the discovery (AUC = 0.98; 
sensitivity, 95%, specificity, 87%; positive predictive value, 0.87; and 

Fig. 6. Multiple markers for diagnosis and disease severity of MDD. (A) Random forest analysis was used to quantify the diagnostic performance. In the discovery set, 
individual simplified signature could discriminate the two groups with area under the curve (AUC) ranging from 0.77 to 0.93 (bacteriophages: Clostridium_phage_
phi8074-B1 and Escherichia_phage_ECBP5, AUC = 0.77; bacterial species: unclassified Klebsiella and Eubacterium_sp._CAG:146, AUC = 0.89; and fecal metabolites: sebacic 
acid and 2-indolecarboxylic acid, AUC = 0.93). Using samples from the validation set, the bacterial species and fecal metabolite markers could still effectively discriminate 
the two groups with AUC of 0.81 and 0.83, respectively. Using the bacteriophage markers alone, a relatively poor diagnostic performance was achieved (AUC = 0.65). 
(B) This combinatorial marker panel including these six markers yielded more robust diagnostic performance over that of separate bacteriophage or microbial or metabolic 
markers in both the discovery (AUC = 0.98; sensitivity, 95%, specificity, 87%; positive predictive value, 0.87; and negative predictive value, 0.95) and validation sets 
(AUC = 0.90; sensitivity, 97%, specificity, 87%; positive predictive value, 0.84; and negative predictive value, 0.97). (C) After adjusting for age and BMI by Spearman’s 
correlation analysis, 4 of the 47 species and 2 of the 50 metabolites were correlated with clinical scales reflecting disease severity of MDD using Spearman’s rank correlation 
analysis. HAMD, Hamilton Depression Rating Scale; QIDS, Quick Inventory of Depressive Symptomatology.
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negative predictive value, 0.95) and validation sets (AUC = 0.90; 
sensitivity, 97%; specificity, 87%; positive predictive value, 0.84; and 
negative predictive value, 0.97) (Fig. 6B), yielding a more robust 
discriminative performance over that of the separate bacteriophage, 
microbial, or metabolic markers.

Multiple markers reflect MDD severity
We also sought to explore the correlations between these discrimi-
native bacteriophages, bacterial species, and fecal metabolites, with 
MDD rating scales to identify the markers associated with disease 
severity. The Spearman’s rank correlation analysis showed that four 
bacterial species (Blautia_wexlerae, Blautia_sp._Marseille-P2398, 
Ruminococcus_sp._5_1_39BFAA, and Oscillibacter_sp._ER4) and 
two fecal metabolites (l-homoserine and phosphate), but not bacterio-
phages, were correlated with MDD severity (Fig. 6C).

DISCUSSION
In this study, we outlined landscapes and interaction networks of 
differential bacteriophages, bacterial species, and fecal metabolites 
in the MDD gut ecosystem. Disturbance of amino acid metabolism 
was a hallmark in the gut ecosystem of MDD. Moreover, we identi-
fied and independently validated a combinatorial marker panel that 
could distinguish MDD from HC subjects with high accuracy. Our 
findings lay the foundation for understanding the roles of the overall 
gut ecosystem in MDD pathogenesis and may facilitate developing 
objective MDD diagnostic methods.

Previous gut microbiome studies in depression have always fo-
cused on identifying differential bacteria with a phylogenetic reso-
lution to the genus or family level (12, 13). For example, using 16S 
rRNA sequencing method, we found that MDD was characterized 
by enriched family Bacteroidaceae relative to bipolar disorder and 
HCs. In this study, we found that the bacterial composition of MDD 
was different from that in HCs. This discrimination was not signifi-
cantly influenced by potential confounding variables (dietary prefer-
ence and smoking; table S6). Moreover, our metagenomic analysis 
identified 47 bacterial species linked with MDD. This step is a pre-
requisite for screening the key species associated with depression 
onset and identifying diagnostic markers for clinical applications. 
We found that enriched species characterized patients with MDD 
mainly belonged to genus Bacteroides, and depleted species mainly 
belonging to genera Blautia and Eubacterium. Bacteroides species 
play significant roles in gut microbiota–host interactions, especially 
on metabolic pathways and immune system (23). Consistent with 
this finding, some Bacteroides species were significantly correlated 
with amino acid and lipid metabolism. Moreover, Bacteroides can 
induce cytokine production. Thus, the up-regulation of 10 Bacteroides 
species may account for higher peripheral cytokine levels and increased 
inflammation in MDD, which were widely reported in previous in-
vestigations (24). We also found that Blautia species were decreased 
in the MDD group relative to the HC group. Blautia species can me-
diate beneficial anti-inflammatory effects (25). These findings suggest 
that Bacteroides species and Blautia species changes may synergisti-
cally implicate an imbalance in proinflammation/anti-inflammation 
in MDD.

Previously, the role of gut virome has been unexplored in MDD. 
Here, although the overall viral composition of the MDD and HC 
groups was not significantly different, we still identified three differ-
ential bacteriophages (Clostridium_phage_phi8074-B1, Klebsiella_

phage_vB_KpnP_ SU552A, and Escherichia_phage_ECBP5) assigned 
to Caudovirales between two groups. In general, those three phages 
can shape their corresponding well-known hosts including Clostridium 
sporogenes, Klebsiella pneumoniae, and Escherichia coli. In line with 
this assumption, we also observed the altered Klebsiella pneumoniae 
in MDD relative to HC. These findings suggest that it is valuable to 
explore the roles of these phages and their bacterial hosts in the de-
velopment of MDD. In addition, we found that some bacteriophages 
were also correlated with some metabolites, suggesting that these 
bacteriophages may indirectly affect metabolites by targeting bacterial 
species. However, it should be admitted that these clinical findings 
remain preliminary; the influence of environmental and demo-
graphic factors cannot be completely excluded.

It is now widely accepted that the gut bacteria may significantly 
shape several metabolic pathways in the host. In our research, this 
view is also confirmed by both the statistical correlation (coexpression 
network) and metabolic function. In the coexpression network 
analysis, altered bacterial species, especially Bacteroides species and 
Blautia species, were substantially correlated with the fecal metabo-
lites involved in amino acid metabolism. Significantly, all differen-
tial microbial genes and fecal metabolites were consistently mapped 
into amino acid metabolism. Disturbances of the peripheral and 
central metabolism of amino acid neurotransmitters such as dopa-
mine, glutamate, and GABA have been prominent in MDD (26, 27). 
Recent studies have shown that the gut microbiome or microbial 
species may indicate the onset of mental disorder by modulating 
amino acid neurotransmitters such as GABA and 5-hydroxytryptamine 
(10, 28). Here, we found that the levels of fecal GABA and its relevant 
metabolites (N-acetylornithine, proline, oxoproline, and glutathione) 
were consistently decreased in MDD relative to HCs, suggesting a 
decrease in GABA content in the intestine. In line with this finding, 
we also found that a microbial enzyme–related gene (BetB) that 
participated in arginine metabolism to GABA was down-regulated 
in MDD. In contrast, three microbial genes involved in the metab-
olism of glutamine to GABA was up-regulated in MDD. These find-
ings suggest that fecal GABA level in the patients with MDD may be 
modulated by a panel of gut microbes, which may be implicated in 
the development of MDD. In line with our assumption, a previous 
study has shown that microbial-derived GABA may influence the 
host through the gut-brain axis (29), and GABA-producing microbes 
can improve depression-like behavior (30). Thus, we boldly specu-
late that the decrease in gut GABA level may be correlated with the 
dysregulation of GABAergic function in the brain (31).

In addition, majority of genes involved in the phenylalanine cat-
abolic pathways were decreased in MDD, suggesting an inhibition 
of fecal phenylalanine degradation. Meanwhile, we found that a down-
stream catabolic product of homovanillate was also decreased in 
MDD. These findings were consistent with disturbances of phenyl-
alanine metabolism in MDD (27). Furthermore, we observed that a 
gene (kynu) involved in kynurenic acid to quinolinic acid was en-
riched in MDD subjects relative to HCs, yielding an increased syn-
thesis of the neurotoxic metabolite quinolinic acid. In addition, we 
observed a lower fecal quinolinic acid level in MDD. These prelim-
inary findings may account for the higher blood level of quinolinic 
acid observed in MDD (32).

Our research has the following advantages and disadvantages: (i) 
using well-characterized large cohorts; to our knowledge, we first 
describe disturbances of the overall gut ecology implicated in MDD, 
providing a comprehensive, multilevel understanding of the role of 
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the disturbed gut microbiome on the development of MDD, but the 
specific mechanisms need to be further clarified in animal studies; 
and (ii) recent studies showed that it was feasible to capture gut vi-
rome alterations using metagenomic data (33). Using this method, 
we first presented the association between altered gut virome and 
MDD. Also, we further uncover reciprocal interaction among the 
altered bacteriophages, bacteria, and fecal metabolites. However, it 
should be admitted that our gut virome analysis in MDD is still in 
its infancy, as the current approach was not particularly designed to 
capture the viral changes. For example, this method focused on the 
members of the enteric DNA virome. Gut RNA virome changes in 
MDD need to be elaborated on the basis of virus particle sequences. 
(iii) All samples were collected from a prominent Chinese psychiatric 
center, which has a relatively wide geographical representation. 
However, more diverse samples from multiple different geographic 
areas are required to independently confirm the diagnostic perform-
ance of a combinatorial marker panel before clinical application, 
which is a prerequisite for avoiding overoptimistic reports of diag-
nostic accuracy. (iv) By integrating fecal metagenomic and metabo-
lomic findings, we found that microbial GABA, phenylalanine, and 
quinolinic acid metabolisms were linked with MDD onset. Further 
studies focusing on understanding the potential causal role of these 
microbial metabolic pathways are required. (v) Blood metabolomic 
analysis is also valuable to deeply understand how the gut micro-
biome modulates host metabolism in MDD.

Together, using multiomics data, we have presented evidence 
that MDD was characterized by disturbances of gut bacteriophages, 
bacteria, and fecal metabolites, which represented the overall dis-
turbances of MDD gut ecology. Moreover, disturbance of microbial 
amino acid metabolism was a hallmark in the gut ecosystem of MDD. 
Furthermore, we developed and independently validated a combi-
natorial marker panel enabling effective distinction between MDD 
and HC subjects. Together, these findings provide new directions 
to uncover pathogenesis and develop novel diagnostic strategies 
for MDD.

MATERIALS AND METHODS
Subject recruitment
The study protocol was approved by the Human Research and Ethics 
Committee of Beijing Anding Hospital (no. 2017-24), Capital Medical 
University (China) in accordance with the Declaration of Helsinki. 
In total, 311 individuals (between 18 and 65 years old) were recruited, 
including 155 HCs and 156 patients with MDD. Each participant 
provided written informed consent. Patients were required to meet 
the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition 
(DSM-IV) criteria for MDD according to the Chinese version of the 
Mini-International Neuropsychiatric Interview (MINI) as our previous 
studies (15). The 17-item Hamilton Depression Rating Scale (HAMD-17) 
and 16-item Quick Inventory of Depressive Symptomatology–Self- 
Report (QIDS-SR16) were used to evaluate MDD severity (34). HCs 
were recruited through advertisements and were also assessed with 
the MINI to ensure that they did not meet the criteria for any DSM-IV 
Axis I psychiatric disorder. Exclusion criteria included (i) a lifetime 
history of bipolar disorder, schizophrenia, schizoaffective, or other 
Axis I psychiatric disorders; (ii) having diagnostic diseases (e.g., 
chronic inflammatory disorders, diabetes, cardiovascular disease, 
thyroid disease, or cancer); (iii) alcohol abuse, drugs abuse, or acute 
poisoning; (iv) current pregnancy or breastfeeding; and (v) reporting 

changes of diet habit or history of antibiotic use within 1 month 
before sampling. The detailed information of the participants is shown 
in table S1. Among the recruited subjects, a subcohort including 
41 patients with MDD and 64 HCs had completed the “Diet and 
Lifestyle Questionnaire”, which includes information about dietary 
preference and smoking, to preliminarily determinate whether the 
two potential confounders significantly influence bacterial composition.

Metagenomic analysis of fecal samples
Total genomic DNA from fecal samples was extracted using the 
E.Z.N.A. Soil DNA Kit (Omega Bio-tek, Norcross, GA, USA) accord-
ing to the manufacturer’s instructions. After extraction, the concen-
tration and purity of the extracted DNA were determined with TBS-380 
and NanoDrop 2000, respectively, and quality was checked on 1% 
agarose gel. DNA was fragmented to an average size of about 300 base 
pairs (bp) using Covaris M220 for paired-end library construction. 
The paired-end library was constructed using NEXTFLEX Rapid 
DNA-Seq (BioScientific, Austin, TX, USA). Paired-end sequencing 
was performed on Illumina NovaSeq (Illumina Inc., San Diego, CA, 
USA) using standard protocols in Shanghai Majorbio Bio-pharm 
Technology Co. Ltd.

Raw fastq files were quality filtered using Sickle (https://github.
com/najoshi/sickle), and low-quality reads (length <50 bp or with a 
quality value <20 or having N bases) were removed. Reads were 
aligned to the human genome by the Burrows-Wheeler Aligner (http://
bio-bwa.sourceforge.net), and any hit associated with the reads and 
their mated reads were removed. Metagenomics data were assem-
bled using MEGAHIT, and contigs with the length being or more 
than 300 bp were selected as the final assembling result. Open reading 
frames from each assembled contig were predicted using Metagene 
(35). All predicted genes with a 95% sequence identity were clustered 
using CD-HIT (36). Reads after quality control were mapped to the 
representative sequences with 95% identity using SOAPaligner.

On the basis of the NCBI NR database, we annotated gene sets 
for bacteria, fungi, viruses, protozoa, and archaea using Diamond 
(version 0.8.35). On the basis of a unified database, each gene is as-
signed to the highest-scoring taxonomy, which facilitates simultaneous 
assessment of these microbial species in the gut ecosystem of pa-
tients with MDD. The KEGG annotation was conducted using Dia-
mond against the database with an e value cutoff of 1 × 10−5 (37). 
-Diversity analysis including Chao, Shannon, and Invsimpson in-
dexes was conducted and visualized using the vegan and fossil pack-
ages in R, respectively. PCoA was used to visually evaluate the overall 
difference and similarity of bacterial and viral communities between 
the MDD and HC groups (38). The PERMANOVA was used to test 
group differences. The differential bacterial species and gut virus 
between the two groups were identified using LEfSe with a linear 
discriminant analysis (LDA) score >2.5. Moreover, Wilcoxon rank 
sum test was used to identify the differential ECs between the MDD 
and HC groups (false discovery rate, <0.05). Then, the correspond-
ing microbial genes in the KEGG pathway were uncovered.

Comparisons of fecal metabolite profiles
GC-MS (Agilent 7890A/5975C) was used to compare the fecal me-
tabolite signatures of MDD and HC subjects. The GC/MS three- 
dimensional matrices, including peak indexes (RT-m/z pairs), sample 
names (observations), and normalized peak area percentages, were 
imported into SIMCA-P+14.0 (Umetrics, Umeå, Sweden). Similarly, 
PCoA was applied to discriminate the samples from the MDD and 

https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
http://bio-bwa.sourceforge.net
http://bio-bwa.sourceforge.net
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HC groups visually. LEfSe was used to identify the differential me-
tabolites between the two groups with LDA score >2.5. The meta-
bolic pathways in which the differential metabolites involved were 
enriched referred to the KEGG pathway.

Combinatorial marker panel for MDD
On the basis of the bacterial, viral, and metabolic signatures of MDD, 
a fivefold cross-validation method was used to simplify and optimize 
the combinatorial biomarker panel. Random forest analysis was used 
to quantify the diagnostic performance of this microbial marker 
panel with the AUC in both the discovery and validation sets (39).

Construction of the interaction network of gut bacteria 
and phages
The co-occurrence among bacteriophages, bacteria, and fecal me-
tabolites was calculated on the basis of the relative abundances by 
Spearman’s rank correlation coefficient (P < 0.05). The network layout 
was calculated and visualized using a circular layout by the Cytoscape 
software. Only edges with correlations greater than 0.5 were shown 
in the bacteria and fecal metabolites, and unconnected nodes were 
omitted. Correlation coefficients with a magnitude of 0.5 or above 
were selected for visualization in Cytoscape (version 3.1.1).

Demographic statistics
Statistical analyses were performed using SPSS (version 21). One-way 
analysis of variance (ANOVA) was used to compare continuous vari-
ables, which were displayed as means ± SD. Categorical data (gender) 
were analyzed by the chi-square test. Data of metagenome and me-
tabolome were presented as means ± SEM. The statistical significance 
level was set at P < 0.05.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/49/eaba8555/DC1

View/request a protocol for this paper from Bio-protocol.
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