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Abstract

In this study, we consider admixed populations through their expected heterozygosity, a measure 

of genetic diversity. A population is termed admixed if its members possess recent ancestry from 

two or more separate sources. As a result of the fusion of source populations with different genetic 

variants, admixed populations can exhibit high levels of genetic diversity, reflecting contributions 

of their multiple ancestral groups. For a model of an admixed population derived from K source 

populations, we obtain a relationship between its heterozygosity and its proportions of admixture 

from the various source populations. We show that the heterozygosity of the admixed population is 

at least as great as that of the least heterozygous source population, and that it potentially exceeds 

the heterozygosities of all of the source populations. The admixture proportions that maximize the 

heterozygosity possible for an admixed population formed from a specified set of source 

populations are also obtained under specific conditions. We examine the special case of K = 2 

source populations in detail, characterizing the maximal admixture in terms of the heterozygosities 

of the two source populations and the value of FST between them. In this case, the heterozygosity 

of the admixed population exceeds the maximal heterozygosity of the source groups if the 

divergence between them, measured by FST, is large enough, namely above a certain bound that is 

a function of the heterozygosities of the source groups. We present applications to simulated data 

as well as to data from human admixture scenarios, providing results useful for interpreting the 

properties of genetic variability in admixed populations.
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1 Introduction

Admixed populations are populations that possess ancestry from multiple source groups. 

They result from the fusion of populations that have long been separated, in processes such 

as long-distance migration and hybrid-zone formation at population boundaries.

Several features of ancestry and allele frequencies are characteristic of admixed populations 

(Chakraborty, 1986; Long, 1991; Verdu & Rosenberg, 2011; Gravel, 2012). In an admixed 

population, the values of allele frequencies are typically intermediate between those of the 

various sources. Unlike in a mixture that pools individuals taken from separate populations, 

in an admixed population, alleles from different sources cooccur within individuals. The 

contributions from the source populations are each large enough that most members of an 

admixed population have ancestry in more than one source group.

In admixed populations, the history of mating among populations is recent enough that time 

has not yet eroded differences among admixed individuals in their relative proportions of 

ancestry. This feature of high levels of variability in admixture proportions has been central 

to studies of admixed populations. Investigations of such phenomena as the timing and 

contributions of the source populations (Verdu & Rosenberg, 2011; Gravel, 2012), the effect 

of admixture levels on assortative mating patterns (Risch et al., 2009; Zou et al., 2015), and 

the genetic basis of traits in admixed populations (Buerkle & Lexer, 2008; Zhu et al., 2008) 

all make use of variation in levels of admixture levels across admixed individuals.

A second aspect of variability in admixed populations is potentially of interest: the 

variability of alleles as captured by genetic diversity measures. The effect of admixture in 

contributing to increased genetic diversity, however, is not simple. For example, in a study of 

the genetics of populations founded by relatively small groups, Mooney et al. (2018) 

examined genetic diversity in admixed and non-admixed populations, some of which were 

regarded as founder populations. Mooney et al. (2018) observed that genetic diversity was 

relatively high in multiple admixed populations of Latin America. This pattern was observed 

even for populations that, on the basis of small population size and past history of isolation, 

might have been expected to have relatively low levels of genetic diversity.

Here, to deepen understanding of the relationship between admixture and genetic variability, 

we focus in admixed populations on levels of genetic diversity computed from allele 

frequencies, rather than on variability among individuals in admixture proportions. For a 

model of an admixed population with K source groups, we derive a relationship between 

genetic diversity, as measured by heterozygosity, and proportions of admixture drawn from 

the various source populations. The model is the same model we have previously used to 

examine the genetic differentiation between admixed populations and their source groups, as 

measured by FST (Boca & Rosenberg, 2011). We show that for all values of the admixture 

contributions from the source populations, the heterozygosity of the admixed population is 

greater than or equal to the smallest of the source population heterozygosities. We further 

examine the maximal values of the heterozygosity of the admixed population over the space 

of possible admixture proportions. We consider in more detail special cases with K = 2 and 

K = 3 source populations, providing explicit results for K = 2 in terms of relatively few 
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parameters. Finally, we use simulations and example analyses from human population data 

to illustrate the mathematical results.

2 Notation and model

We consider a model with K ⩾ 2 source populations and an admixed population arising from 

these sources. A single polymorphic locus is considered, with J ⩾ 2 alleles, such that each of 

the J alleles appears in at least one of the K source populations.

In Sections 2.1, 2.2, and 2.3, respectively, we define the expected heterozygosity and the 

fixation index, and we provide a result about relationships between fixation indices and 

heterozygosities. In Section 2.4, we introduce the admixture model. Notation is summarized 

in Table 1.

2.1 Expected heterozygosity

The expected heterozygosity is a measure of genetic diversity, giving the probability that two 

alleles randomly drawn from a population differ in type.

Definition 1. The expected heterozygosity in a population for a given locus with J distinct 

alleles is defined as H = 1 − ∑j = 1
J pj2, where pj is the frequency of allelic type j.

We denote by pkj the frequency of allelic type j, 1 ⩽ j ⩽ J, in source population k, 1 ⩽ k ⩽ 
K, with 0 ⩽ pkj ⩽ 1. We denote by Hk the expected heterozygosity of source population k at 

a locus. We have 0 ⩽ Hk < 1, with Hk = 0 if and only if source population k has only a single 

allelic type of nonzero frequency. For fixed J, the maximal value of Hk is 1 − 1
J , attained 

when all J alleles have the same frequency, namely 1
J  (Reddy & Rosenberg, 2012, Lemma 

4). We refer to expected heterozygosity simply as heterozygosity.

2.2 Fixation index

The fixation index FST is a measure of genetic divergence among a set of subpopulations. In 

its general form, it is computed from HS, the mean of the heterozygosities of the 

subpopulations, and HT, the heterozygosity of a population formed by pooling the 

subpopulations into a single “total” population.

Definition 2. The fixation index, FST is defined as FST = (HT − HS)/HT, where HT is the 

heterozygosity of the total population and HS is the mean heterozygosity across 

subpopulations.

The fixation index can be regarded as a measure of genetic divergence between two 

populations, with Fkℓ denoting the value of FST between source populations k and ℓ. For its 

calculation, the two subpopulations have the same contribution to the overall population, so 

that they are weighted equally in producing the total population. We assume that when 

pooled together, the two subpopulations produce a polymorphic population. In other words, 

for each (k, ℓ), we disallow the case in which there is some allelic type 1 ⩽ j ⩽ J for which 
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pkj = pℓj = 1. Our assumption that pooling any two populations produces a polymorphic 

population avoids a denominator of 0 in the formula for Fkℓ.

For this pairwise scenario, HS = (Hk + Hℓ)/2, HT = 1 − ∑j = 1
J pkj + pℓj /2 2, and

Fkℓ =
1 − ∑j = 1

J pkj + pℓj
2

2
− Hk + Hℓ

2

1 − ∑j = 1
J pkj + pℓj

2
2 . (1)

We can observe by the Cauchy-Schwarz inequality that 0 ⩽ Fkℓ ⩽ 1, with Fkℓ = 0 requiring 

pkj = pℓj for all j. Fkℓ = 1 requires HS = Hk = Hℓ = 0.

2.3 The fixation index in relation to the heterozygosities

We will need a result on the relationship between the fixation index for source populations k 
and ℓ, Fkℓ, and the heterozygosities of those source populations, Hk and Hℓ. We first introduce 

a quantity, Ckℓ, the probability that, when randomly drawing one allele from population k 
and one allele from population ℓ, the two alleles differ in type. For population k, let pk denote 

a J × 1 column vector of its allele frequencies. Ckℓ can then be written as 1 minus the dot 

product of the allele frequency vectors of populations k and ℓ:

Ckℓ = 1 − pk′ ⋅ pℓ = 1 − ∑
j = 1

J
pkjpℓj . (2)

This quantity is a generalization of heterozygosity to two populations, as Hk = Ckk. Because 

we exclude the case in which populations k and ℓ are fixed for the same allelic type, Ckℓ 
strictly exceeds 0, so that 0 < Ckℓ ⩽ 1. The upper bound of 1 is achieved if populations k and 

ℓ share no allelic types in common.

We can rewrite eq. 1 as

Fkℓ = 2Ckℓ − Hk − Hℓ
2Ckℓ + Hk + Hℓ

. (3)

If Fkℓ < 1, then we can solve for Ckℓ:

Ckℓ = Hk + Hℓ
2

1 + Fkℓ
1 − Fkℓ

. (4)

Recall that Fkℓ = 1 implies Hk = Hℓ = 0, so that populations k and ℓ each have only a single 

allelic type with nonzero frequency. We have excluded the case in which the two populations 

are fixed for the same allelic type; hence, they must be fixed for different allelic types, and 

Ckℓ = 1 in eq. 2.

We have previously shown by the Cauchy-Schwarz inequality that 

1 − 1 − Hk 1 − Hℓ ⩽ Ckℓ ⩽ 1 (Mehta et al., 2019, eq. 7). Equality in the lower bound 
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requires pkj = pℓj for all j, and hence Hk = Hℓ. Rewriting this inequality with eq. 4, we obtain 

the allowable space of Fkℓ given Hk, Hℓ ∈ [0, 1):

Fkℓ ∈ 2 − Hk − Hℓ − 2 1 − Hk 1 − Hℓ
2 + Hk + Hℓ − 2 1 − Hk 1 − Hℓ

, 2 − Hk − Hℓ
2 + Hk + Hℓ

. (5)

The lower limit is achieved if and only if the two populations k and ℓ are identical, with Hk = 

Hℓ and pkj = pℓj for all j. The upper limit is achieved if and only if populations k and ℓ share 

no allelic types in common. This result adds to the understanding of constraints on FST 

placed by genetic diversity (Nagylaki, 1998; Hedrick, 1999; Long & Kittles, 2003; 

Rosenberg et al., 2003; Hedrick, 2005; Boca & Rosenberg, 2011; Maruki et al., 2012; 

Jakobsson et al., 2013; Edge & Rosenberg, 2014; Alcala & Rosenberg, 2017, 2019; Mehta et 
al., 2019). We use the allowable region to constrain our examples to permissible values of 

(Hk, Hℓ, FST).

Appendix A of Mehta et al. (2019) shows that given Hk and Hℓ in [0, 1), if the number of 

distinct alleles J is not fixed, then we can choose allele frequency vectors pk and pℓ such that 

each Ckℓ value in [1 − 1 − Hk 1 − Hℓ , 1] is achievable. The lower bound is achievable only 

if Hk = Hℓ. Hence, each value in the interval in eq. 5 for FST is also achievable by some pair 

pk and pℓ, the lower bound only if Hk = Hℓ.

2.4 Admixture model

We use an admixture model that describes current patterns of variation in an admixed 

population, rather than mechanistic dynamics. This model follows a commonly used 

approach, treating allele frequencies in the admixed population as linear combinations of 

those of the source populations (e.g. Pritchard et al., 2000; Boca & Rosenberg, 2011).

In our K-source-population model, K ⩾ 2, we follow Section 2.2 in assuming that no two 

populations are fixed for the same allelic type. We now make a stronger assumption that no 

two populations are identical, so that for each (k, ℓ), some j exists for which pkj ≠ pℓj. Further, 

it is convenient to assume that no source population can have its vector of allele frequencies 

written as the linear combination of vectors of allele frequencies of other source populations; 

otherwise, an admixed population would not have a unique representation as a linear 

combination of sources. We thus assume that not only are no two source populations 

identical, no source can be described as an admixture of two or more of the other sources.

Note that the assumption that no population is a linear combination of the others also 

excludes linear combinations with one or more negative coefficients. Because the maximal 

number of vectors of length J that can be linearly independent is J, the linear independence 

assumption implies J ⩾ K. A succinct way of describing the assumption is that if we define 

the J×K matrix of allele frequencies in the source populations,
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P =

p11 p21 … pK1
p12 p22 … pK2
… … … …
p1J p2J … pKJ

= p1, p2, …, pK , (6)

then we assume that P has rank K.

For the admixed population generated from the K source populations, we denote by γk the 

admixture fraction for source population k; for each k with 1 ⩽ k ⩽ K, fraction γk of the 

ancestry of the admixed population, 0 ⩽ γk ⩽ 1, derives from source k. We denote by γ the 

K×1 column vector of admixture fractions. This vector lies in the simplex ΔK−1, the set of all 

vectors of K nonnegative entries with ∑k = 1
K γk = 1.

The frequency of allele j in the admixed population is denoted pj. By the linear combination 

assumption,

pj = ∑
k = 1

K
γkpkj . (7)

In the special case that γk = 1
K  for each K, the admixed population is equivalent to the 

“pooled population” used in defining the fixation index FST among the K populations.

3 General case: K source populations

Our goal is to study the heterozygosity of the admixed population. Using Definition 1 with 

eq. 7, we compute the heterozygosity for the admixed population, which we denote by Hadm:

Hadm = 1 − ∑
j = 1

J
pj

2 = 1 − ∑
j = 1

J
∑

k = 1

K
γkpkj

2
. (8)

The heterozygosity of the admixed population can be written in terms of the heterozygosities 

of the source populations and the dot products of the allele frequencies. Using eq. 4 in eq. 8, 

we have:

Hadm = ∑
k = 1

K
γk

2Hk + 2 ∑
k = 1

K − 1
∑

ℓ = k + 1

K
γkγℓCkℓ (9)

= ∑
k = 1

K
γk

2Hk + ∑
k = 1

K − 1
∑

ℓ = k + 1

K
γkγℓ Hk + Hℓ

1 + Fkℓ
1 − Fkℓ

. (10)

The last simplification can be made only for Fkℓ ≠ 1; if Fkℓ = 1, then eq. 9 is used, or, as noted 

after eq. 4, (Hk + Hℓ)(1 + Fkℓ)/(1 − Fkℓ) is understood to equal 2.
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With the formula for Hadm established, we now explore how Hadm varies in relation to the 

admixture fractions γ. Given the allele frequencies P, we determine the range of Hadm over 

the space of possible values of γ. We write Hm for the smallest heterozygosity among the 

source populations, Hm = mink ∈ 1, 2, …, K Hk, and HM for the largest heterozygosity among 

the source populations, HM = maxk ∈ 1, 2, …, K Hk.

3.1 Minimum of Hadm in terms of the ancestry proportions

For the minimum of Hadm over vectors (γ1, γ2, …, γK), we can immediately observe from 

the form of eq. 10 that for a fixed set of source population allele frequencies P, Hadm is 

minimized as a function of the admixture fractions when the admixed population consists of 

only one of the source populations.

Proposition 3. The minimum of Hadm as a function of the ancestry proportions γ is 

Hm = mink ∈ 1, 2, …, K Hk, the smallest heterozygosity among the source populations, and it 

is obtained when the admixed population consists solely of that source population.

Proof. To obtain this result, we use eq. 10 and the fact that Hk ⩾ Hm for all k:

Hadm = ∑
k = 1

K
γk
2Hk + ∑

k = 1

K − 1
∑

ℓ = k + 1

K
γkγℓ Hk + Hℓ

1 + Fkℓ
1 − Fkℓ

⩾ ∑
k = 1

K
γk
2Hm + ∑

k = 1

K − 1
∑

ℓ = k + 1

K
2γkγℓHm

= ∑
k = 1

K
γk

2
Hm = Hm .

Because equality is achieved when γm = 1 and γk = 0 for all k ≠ m, we have shown that the 

minimal value of Hadm as a function of the ancestry proportions is Hm. □

The result finds that nonzero admixture inflates heterozygosity at least above the level seen 

in the least heterozygous source. It applies whether or not H1, H2, …, HK are mutually 

distinct. If two or more of H1, H2, …, HK are tied for the minimal heterozygosity Hm, then 

the minimum of Hadm is achieved at each vector associated with complete ancestry from one 

of the minimally heterozygous populations.

A consequence of Proposition 3 is that if all K populations have the same heterozygosity Hm

—for example, in cases where the different alleles have distinct frequencies and each 

population has an allele frequency vector that is a permutation of the vectors for the other 

populations—then Hadm > Hm for all ancestry vectors γ with two or more nonzero entries. 

In particular, note that Fkℓ > 0 for each (k, ℓ), k ≠ ℓ, by the assumption that each pair of source 

populations has distinct allele frequencies. Hence, (Hk +Hℓ)(1+ Fkℓ)/(1 − Fkℓ) > 2Hm for each 

(k, ℓ), k ≠ ℓ. Because at least one product γkγℓ is positive, the inequality 

γkγℓ Hk + Hℓ 1 + Fkℓ / 1 − Fkℓ ⩾ 2γkγℓHm is strict for at least one (k, ℓ), so that 

Hadm > (∑k = 1
K γk)2Hm = Hm. This same reasoning shows that if two or more populations 
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are tied with heterozygosity Hm, then Hadm > Hm for each γ with two or more nonzero 

entries.

We note that the result Hadm ⩾ mink ∈ 1, 2, …, K Hk for all γ ∈ ΔK−1 in Proposition 3 can be 

quickly obtained from the classic Wahlund principle, by which the heterozygosity of a 

population formed by mixing populations 1, 2, …, K, with proportion γk of the mixed 

population taken from population k, 0 ⩽ γk ⩽ 1, is greater than or equal to the mean of the 

K population heterozygosities (e.g. Rosenberg & Calabrese, 2004, Theorem 2). The 

heterozygosity of the population mixture in the setting of the Wahlund principle is the same 

as the heterozygosity of the admixed population in our scenario. Thus, in our notation, 

setting γk = 1
K  for all k, the Wahlund principle gives Hadm ⩾ 1

K ∑k = 1
K Hk. Because the mean 

1
K ∑k = 1

K Hk is greater than or equal to the minimum mink ∈ 1, 2, …, K Hk, it immediately 

follows that Hadm ⩾ mink ∈ 1, 2, …, K Hk.

3.2 Maximum of Hadm in terms of the ancestry proportions

To obtain the maximum of Hadm over the space of values of γ, we write eq. 9 as a quadratic 

form:

Hadm(γ) = γ′Aγ .

Here, γ′ represents the transpose of the column vector γ and A is the K × K symmetric 

matrix with the Hk on the diagonal and the Ckℓ off the diagonal:

A =

H1 C12 … C1K
C12 H2 … C2K
… … … …

C1K C2K … HK

= 11′ −

∑
j = 1

J
p1j

2 ∑
j = 1

J
p1jp2j … ∑

j = 1

J
p1jpKj

∑
j = 1

J
p1jp2j ∑

j = 1

J
p2j

2 … ∑
j = 1

J
p2jpKj

… … … …

∑
j = 1

J
p1jpKj ∑

j = 1

J
p2jpKj … ∑

j = 1

J
pKj

2

= 11′ − P′P,

(11)

where P is the J × K allele frequency matrix (eq. 6) and 1 is a K × 1 vector of ones.

Maximizing Hadm in terms of γ is equivalent to finding maxγ ∈ ΔK − 1γ′Aγ subject to 1′γ = 

1. We denote by γarg max the location of the maximal value of Hadm. We first observe that 

γarg max is sometimes interior to the simplex, and that it sometimes lies at a vertex. In other 

words, for a fixed set of sources, a population nontrivially admixed among the sources can 

sometimes have a higher heterozygosity than all of the sources, but sometimes, no 
population admixed among the sources has higher heterozygosity than all the sources.

Proposition 4. Consider the case of K source populations, K ⩾ 2.
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(i) There exists some collection of source population allele frequencies P and some 

collection of admixture proportions γ for which the heterozygosity of the admixed 

population exceeds the heterozygosity HM of the most heterozygous source population.

(ii) There exists some collection of source population allele frequencies P for which no 
collection of admixture proportions γ produces an admixed population with heterozygosity 

greater than the heterozygosity HM of the most heterozygous source population.

Proof. (i) Consider K populations, each with different allele frequencies, but identical 

heterozygosity: pk ≠ pℓ for k ≠ ℓ but Hk = H for k = 1, 2, …, K. Suppose that a locus has K + 

1 distinct alleles, and that the allele frequencies are p1 = 1
2 , 1

2 , 0, 0, …, 0 , 

p2 = 1
2 , 0, 1

2 , 0, …, 0 , …, pK = 1
2 , 0, 0, …, 0, 1

2 . By eq. 9, Hadm = 3
4 − 1

4 ∑k = 1
K γk

2, which is 

minimized if and only if ∑k = 1
K γk

2 = 1 or γ = ek for some k. The minimal value of Hadm is 

thus 1
2 , all other values of the admixture proportions resulting in Hadm > H = 1

2 .

(ii) Consider K populations and a locus with K distinct alleles. Suppose that the number of 

distinct alleles at the locus is k for population k, with pk = 1
k , …, 1

k . Hence, Hk = 1 − 1
k  and, 

in particular, H1 < … < HK. We show that Hadm ⩽ HK irrespective of γ.

By eq. 9,

Hadm = 1 − γ1 +
γ2
2 + … +

γK
K

2
− … −

γK
K

2
.

By the Cauchy-Schwarz inequality:

γ1 +
γ2
2 + … +

γK
K

2
+ … +

γK
K

2
K ⩾ γ1 +

γ2
2 2 + … +

γK
K K

2
= ∑

k = 1

K
γk

2
= 1.

Thus, Hadm ⩽ 1 − 1
K = HK. □

The proof is constructive, exhibiting example source groups for which specific features are 

obtained. In part (i), each source has an allele that is not present in the other sources, and a 

nontrivially admixed population—which possesses all of these private alleles—is necessarily 

more heterozygous than each source. For part (ii), we have a sequence of increasingly 

heterozygous source populations, each with one additional allele, and no population 

admixed among them is more heterozygous than the most heterozygous source. Other 

constructive examples are possible, with, for example, low heterozygosities but distinct 

alleles across populations generating additional examples along the lines of Proposition 4i.

Note that it is trivial to see that in general, maxγ ∈ ΔK − 1Hadm(γ) ⩾ max H1, …, HK : the K 

source populations simply correspond to the K vertices of the simplex. This result that the 

Boca et al. Page 9

J Math Biol. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maximal Hadm is at least is great as the heterozygosity of the most heterozygous source 

population immediately implies maxγ ∈ ΔK − 1Hadm(γ) ⩾ 1
K ∑k = 1

K Hk.

Having established that the maximum can be at a vertex or an interior point of the simplex—

a trivial admixed population consisting only of a single source population, or a population 

admixed among all the sources—we now provide a general theorem. The theorem gives the 

location of the maximum when it lies in the interior of ΔK−1, rather than on the boundary, 

assuming a condition applies on the allele frequencies. The proof is in Appendix 1, making 

use of a general constrained quadratic optimization procedure.

Theorem 5. Suppose that 1′(P′P)−11 ≠ 1. Suppose also that A−11
1′A−11

∈ ΔK − 1. Then the 

maximum of Hadm as a function of the ancestry proportions γ ∈ ΔK−1 is attained at γarg max 

= γ*, where:

γ* = A−11
1′A−11

= P′P −11
1′ P′P −11

.

The maximum is equal to:

Hadm γ* = 1
1′A−11

= 1 − 1
1′ P′P −11

.

If A−11
1′A−11

∉ ΔK − 1, then γarg max lies on the boundary of the set {γ : 1′γ = 1 and γ ∈ ΔK−1}.

The “boundary” of a set R is the set of points in R for which a neighborhood around them 

always contains both points in R and points in the complement of R. For simplex ΔK−1, the 

boundary includes all points for which at least one of the K coordinates is 0, with the 

vertices occurring at locations where all of the coordinates except one are 0.

The following corollary, also proven in Appendix 1, further describes the possible locations 

of the maximal Hadm. Note that if the maximum is not at γ∗, then it lies at a point that has 

some elements equal to 0, the nonzero subvector having a similar form to γ∗, but in a lower 

number of dimensions. Thus, the maximum can occur in a scenario in which the admixture 

involves only a strict subset of the source populations.

Consider a nonempty subset S ⊂ 1, 2, …, K . Define by AS the |S | × |S| matrix that has 

diagonal terms Hk for each k ∈ S and off-diagonal terms Ckℓ for each distinct k, ℓ ∈ S. 

Additionally, denote by PS the matrix consisting of the columns of P corresponding to the 

subset S. PS contains the allele frequencies for the source populations in S.

Corollary 6. Suppose that 1′ PS′ PS
−11 ≠ 1 for all nonempty S ⊂ 1, 2, …, K . Then the 

maximum of Hadm as a function of the ancestry proportions γ ∈ ΔK−1 is attained at a point 

that has nonzero elements for some nonempty subset of the source populations 
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S* ⊂ 1, 2, …, K . The nonzero subvector of ancestry proportions at the location of the 

maximum is equal to γS* =
AS*

−11

1′AS*
−11

.

In particular, note that γarg max = γ* corresponds to S* = 1, 2, …, K : all source populations 

contribute nonzero admixture fractions. The K vertices of the simplex ΔK−1 correspond to 

the cases of S* = k , at which only one source population contributes. S has 2K − 1 

nonempty subsets, each representing a distinct collection of source populations.

4 K = 2 source populations

With general results established for the case of arbitrary K, we now focus on the simplest 

case, with K = 2 source populations contributing to the admixed population.

We continue to exclude the scenario in which the allele frequencies for the two source 

populations are identical, so that we assume p1 ≠ p2. Noting that γ2 = 1 − γ1, we can 

consider Hadm in terms of a single admixture coefficient γ1, the admixture fraction of the 

first population, with γ1 ∈ [0, 1]. Using eqs. 9 and 10 with this substitution, we obtain:

Hadm = γ1
2H1 + 1 − γ1

2H2 + 2γ1 1 − γ1 C12 (12)

= γ1
2H1 + 1 − γ1

2H2 + γ1 1 − γ1 H1 + H2
1 + F12
1 − F12

(13)

= γ1
2 H1 + H2 − 2C12 − 2γ1 H2 − C12 + H2 . (14)

In particular, we note from eq. 13 that Hadm is increasing as a function of F12.

From eq. 14, we can see that Hadm is concave down in γ1. We have 

d2Hadm/dγ1
2 = 2 H1 + H2 − 2C12 . By Definition 1 and eq. 2, 

2 H1 + H2 − 2C12 = − 2∑j = 1
J p1j − p2j

2. Because p1 ≠ p2, p1j ≠ p2j for at least one choice 

of j, and hence d2Hadm/dγ1
2 < 0. By symmetry, Hadm is also concave down in γ2.

To illustrate eq. 13, for H1 and H2 fixed, Figure 1 plots the concave-down Hadm as a function 

of γ1 for a variety of values of F12. We observe that for each value of F12 considered, the 

minimum of Hadm occurs at (γ1, γ2) = (0, 1), reflecting the result of Proposition 3 that the 

minimum occurs when the admixed population consists solely of the less heterozygous 

source population. In accord with the fact that in eq. 13, Hadm increases for fixed H1, H2, 

and γ1 with increasing F12, the value at the maximum increases with increasing F12. The 

location of the maximum lies at a value of γ1 ⩾ 1
2 , decreasing with increasing F12. This 

location has a pattern where for larger values of F12, it lies interior to the unit interval, and 

for smaller values of F12, it occurs when the admixed population consists solely of the more 

heterozygous source population. We now consider this pattern in more detail.
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4.1 Minimum and maximum of Hadm in terms of the ancestry proportions

Applying the results from Section 3.1 on the minimum and maximum of Hadm as a function 

of γ, by Proposition 3, Hadm has minimum min{H1, H2}. The maximum can occur in one of 

three locations.

Proposition 7. Consider two source populations with distinct allele frequencies, p1 ≠ p2. As 

a function of γ1, Hadm is maximized at γ1 = γ1*, where γ1* takes one of three forms.

(i) If H1 < C12 and H2 < C12, then γ1* ∈ (0, 1) satisfies

γ1* = C12 − H2
2 C12 − HS

= 1
2 + H1 − H2

8 HT − HS
, (15)

and Hadm has maximum equal to

Hadm γ1* = C12
2 − H1H2

2 C12 − HS
= HT + H1 − H2

2

16 HT − HS
. (16)

(ii) If H1 < C12 and H2 ⩾ C12, then γ1* = 0 and Hadm has maximum H2.

(iii) If H1 ⩾ C12 and H2 < C12, then γ1* = 1 and Hadm has maximum H1.

An elementary proof appears in Appendix 2. The locations specified in Proposition 7 accord 

with Theorem 5 and Corollary 6. For K = 2, the result of Theorem 5 gives 

γ* = A−11
1′A−11

=
C12 − H2

2 C12 − HS
,

C12 − H1
2 C12 − HS

, where

A =
H1 C12
C12 H2

.

The locations in Corollary 6 are γ1* =
A1

−1

A1
−1 = 1 and γ2* = 0, and γ1* = 0 and γ2* =

A2
−1

A2
−1 = 1.

We now give two corollaries of Proposition 7, providing more features of the maximal Hadm 

for specific cases. Proofs appear in Appendix 2. In accord with the observation in Figure 1 

that the maximal Hadm lies at a value of γ1 ⩾ 1
2  in an example with H1 ⩾ H2, Corollary 8 

demonstrates γ1* ⩾ 1
2  if and only if H1 ⩾ H2.

Corollary 8. Consider two source populations with distinct allele frequencies, p1 ≠ p2. As a 

function of γ1, Hadm is maximized at γ1* ⩾ 1
2  if and only if H1 ⩾ H2.

A second corollary is that the maximal Hadm is always at least as great as HT.
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Corollary 9. Consider two source populations with distinct allele frequencies, p1 ≠ p2. Then 

Hadm γ1* ⩾ HT , with equality occurring if H1 = H2.

We can also succinctly describe the region where γ1* lies interior to (0, 1).

Corollary 10. Consider two source populations with distinct allele frequencies, p1 ≠ p2. γ1*

lies in (0, 1) if and only if the following inequality holds:

F12 > H1 − H2
2 H1 + H2 + H1 − H2

. (17)

This corollary is proven in Appendix 2. Note that if H1 + H2 is fixed, then the right-hand 

side of eq. 17 increases with |H1 −H2|, from a minimum of 0 when H1 = H2 to a maximum 

of 1
3  as |H1 −H2| approaches H1+H2. Thus, in accord with the observation in Section 3.1 that 

Hadm > H for all nontrivial admixtures of equal-heterozygosity source populations, the 

maximal Hadm exceeds max{H1, H2} over a broader range of F12 values if |H1−H2| is small 

rather than large. Moreover, if F12 > 1
3 , then eq. 17 necessarily holds. Hence, irrespective of 

H1 and H2, if the source populations are distant enough that F12 > 1
3 , then the maximal 

heterozygosity exceeds the heterozygosities of the source populations.

4.2 Special case of J = 2 alleles

For K = 2 sources, when the locus has only J = 2 allelic types, further simplifications are 

possible, as results can be stated in terms of frequencies of one specific allele. We substitute 

p12 = 1 − p11 and p22 = 1 − p21.

Proposition 11. Consider two source populations with distinct allele frequencies, p1 ≠ p2. 

For a biallelic locus, Hadm is maximized at γ1 = γ1*, where γ1* takes one of three forms.

(i) If p11 > 1
2 > p21 or p21 > 1

2 > p11, then γ1* ∈ (0, 1) satisfies

γ1* = 1 − 2p21
2 p11 − p21

, (18)

and Hadm has maximum equal to

Hadm γ1* = 1
2 . (19)

(ii) If 1
2 ⩾ p21 > p11 or p11 > p21 ⩾ 1

2 , then γ1* = 0 and Hadm has maximum H2.

(iii) If 1
2 ⩾ p11 > p21 or p21 > p11 ⩾ 1

2 , then γ1* = 1 and Hadm has maximum H1.
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The result is proven in Appendix 2. The unit square representing possible values of the 

location of the maximum appears in Figure 2. It has six nonoverlapping regions: in 

Proposition 11, each of the three cases generates two disjoint subsets of [0,1]2. A smooth 

gradient exists for regions in case (i). However, an abrupt transition occurs at the line p21 = 

p11 between case-(ii) regions where γ1* = 0 and case-(iii) regions where γ1* = 1. Note that the 

p21 = p11 line, where the two populations have equal allele frequencies, is disallowed.

5 Simulations

We illustrate properties of Hadm by simulating population sets for different values of K and 

J. Given a value of K, we generated allele frequency vectors for the K source populations 

from independent and identically distributed symmetric multivariate J-dimensional Dirichlet 

distributions with a common concentration parameter α = 1. This distribution corresponds to 

a uniform distribution on the simplex ΔJ−1. A number of mathematical results can be 

obtained in this Dirichlet setting; these appear in Appendix 3.

First, for K = 2 and K = 3, we assessed the probability that the maximal Hadm over possible 

admixture vectors γ occurs interior to the simplex ΔK−1, rather than on its boundary. This 

computation gives the probability that the heterozygosity-maximizing admixture vector 

contains nonzero contributions from all K source populations. We considered 2 ⩽ J ⩽ 30 for 

K = 2 and 3 ⩽ J ⩽ 30 for K = 3, recalling the condition J ⩾ K for the K allele frequency 

vectors to be linearly independent.

For each (K, J), we ran 10,000 simulation replicates. In each replicate, to determine the 

location of the maximum, we applied Theorem 5 and Corollary 6 to identify the locations 

specified for each choice S of the nonempty subset of the K populations with nonzero allele 

frequencies. Among these 2K−1 locations, excluding those outside the simplex ΔK−1, we 

identified the point with the largest Hadm. Note that in each replicate, we observed that the 

1′ PS′ PS
−11 ≠ 1 condition of Corollary 6 was satisfied for each S.

Figure 3 finds that, for both K = 2 and K = 3, the maximum of Hadm is increasingly likely to 

be in the interior of the simplex as the number of distinct alleles, J, increases. For K = 3, we 

also observe that the probability that Hadm is maximized on an edge, corresponding to 

nonzero contributions from two of three sources, exceeds the probability that it is maximized 

at a vertex, with only one contributing source.

Next, we assessed the probability ℙ Hadm > max H1, …, HK  in a scenario in which both 

the allele frequency vectors pk and the admixture fractions γ were chosen from independent 

Dirichlet distributions. We simulated the pk as before, additionally simulating γ from a K-

dimensional symmetric Dirichlet-(1, 1, …, 1) distribution. For each (K, J) with K = 2, 3, 4, 5 

and J = 2, 3, …, 30, we simulated 50,000 replicate populations. Note that here, unlike in 

Section 2.4, we impose no restrictions on linear combinations of allele frequency vectors 

from the source populations, so that it is not necessarily true that J ⩾ K.

The fraction of replicates with ℙ Hadm > max H1, …, HK  appears in Figure 4. We see that 

this fraction increases with K: for an admixture involving more populations, the probability 
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is larger that the admixed population exceeds all source populations in heterozygosity. This 

probability also increases with J.

For (K, J) = (2, 2), Proposition 17 in Appendix 3 obtains the probability analytically, 

ℙ Hadm > max H1, H2 = 1 − log2 ≈ 0.307. Following this result, the K = 2 curve in Figure 4 

begins near (2, 0.307).

Figure 5 provides further detail on Hadm in the K = 2 case by graphing Hadm versus γ1 for 

10 simulation replicates chosen at random for each of three values of J. The figure illustrates 

that Hadm is a concave-down quadratic polynomial in γ1, as in eq. 14. Averaging across 

replicates, by examining the figure panels from left to right, we can also observe that 

E Hadm  increases as a function of J, as in Corollary 16 of Appendix 3. For J = 2, as in 

Proposition 11, the possible values of Hadm at the maximum are H1, H2, and 1
2 .

6 Application to data

Next, we illustrate the mathematical results using data from human populations. As 

multiallelic loci satisfy J ⩾ K with both K = 2 and K = 3, we focus on a multiallelic data 

example. First, we begin with a simpler biallelic data set whose set of individuals overlaps 

with the multiallelic data set, illustrating our maximal heterozygosity results in the case of K 
= 2 source populations. For both data sets, we treat allele frequencies, heterozygosities, and 

FST values computed from the data as parametric values rather than estimates.

6.1 Biallelic loci: K = 2 source populations

We consider the single-nucleotide polymorphism (SNP) data of Li et al. (2008), as employed 

by Pemberton et al. (2012) in phased form with no missing data. In this data set, which 

contains 640,034 autosomal SNPs, we consider Europeans and Native Americans as putative 

source populations for an admixed population, considering the 156 Europeans and 63 Native 

Americans in the data. We drop from consideration the 32,989 SNPs with identical allele 

frequencies in the two populations; 32,888 of these are monomorphic.

We select 20 loci at random from the data set for illustration. Treating γ1 as the fraction of 

European ancestry in an admixed population and 1 − γ1 as the fraction of Native American 

ancestry, for each locus, the plot for Hadm versus γ1 appears in Figure 6. Following 

Proposition 3, the minimum of Hadm lies either at γ1 = 0 or at γ1 = 1 for all loci. For 3 of the 

20 loci, the maximum lies in the interior of the unit interval (case (i) of Proposition 11); 8 

loci have the maximum at γ1 = 0, representing membership in the less heterozygous Native 

American population (case (ii)); and 9 loci have the maximum at γ1 = 1, representing 

membership in the more heterozygous European population (case (iii)). Following 

Proposition 11i, at each locus for which the maximum lies in the interior, the maximum is 

equal to 1
2 .

Examining all 607,045 loci, 19% have the maximum in the interior, 27% at γ1=0, and 54% 

at γ1 = 1. That more loci have the maximum at γ1 = 1 than γ1 = 0 is expected from the fact 
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that European populations generally have greater heterozygosity than Native American 

populations (e.g. Pemberton et al., 2013).

6.2 Multiallelic loci: K = 2 source populations

For our multiallelic data set, we follow Boca & Rosenberg (2011) in considering data from 

Wang et al. (2008) on 678 microsatellite loci typed in 160 Europeans, 463 Native 

Americans, 123 Africans, and 249 individuals from admixed Mestizo populations. To 

represent Mestizo populations under our model, we use Europeans and Native Americans as 

source populations in the K = 2 case, also including Africans for K = 3.

As we did in the biallelic data set, we select 20 loci at random from Wang et al. (2008), 

choosing the same loci as in Boca & Rosenberg (2011). Again treating γ1 as the fraction of 

European ancestry and 1 − γ1 as the fraction of Native American ancestry in an admixed 

population, for each locus, the plot for Hadm versus γ1 appears in Figure 7. Comparing 

Figures 7 and 6, we see that the maximum of Hadm lies in the interior of the unit interval for 

γ1 more often for the multiallelic than for the biallelic loci. Indeed, examining all 678 loci, 

53% have the maximum in the interior—a greater number than for the SNPs. The fraction 

with the maximum at γ1 = 1 is 39%, and 8% have the maximum at γ1 = 0.

The Dirichlet model in Corollary 16 in Appendix 3 and Figures 3 and 5 predicts a 

dependence of the location of the maximum on the number of distinct alleles of a locus, with 

the probability that the maximum lies in the interior increasing with the number of distinct 

alleles. The multiallelic data produce a trend in the same direction as this prediction. The 

mean numbers of distinct alleles are 9.36, 10.40, and 10.75, for the loci with γ1* at 0, 1, and 

in (0, 1), respectively (one-way ANOVA, P = 0.008, F test, 2 df). The mean number of 

distinct alleles for the loci with the maximum on either boundary is 10.24, smaller than the 

mean of 10.74 for those with the mean in the interior (P = 0.03, two-tailed t test).

6.3 Comparison of predicted Hadm to observed Hadm

We next compare predicted and observed Hadm values for the 678 loci for the admixed 

Mestizo population. In this approach, we used estimated locus-wise values of γ1 in the 

Mestizo population together with locus-wise heterozygosities in the European and Native 

American populations to “predict” locus-wise Mestizo heterozygosities. The prediction is 

compared to the observed heterozygosity value to examine if our formulas for the 

heterozygosity of an admixed population are reflected in actual heterozygosities in an 

admixed group.

This computation follows a similar computation of Boca & Rosenberg (2011). The 

estimated admixture fractions, computed for the same data, are taken from Schroeder et al. 
(2009), who obtained them by a maximum likelihood approach (Millar, 1987) that does not 

take into account source population heterozygosities. Using these estimates, locus-wise 

heterozygosity estimates in the source populations, and locus-wise FST values calculated 

from allele frequencies in the source populations, we predicted Hadm with eq. 13.

The predicted and observed Hadm values for individual loci are compared in Figure 8. In 

general, the observation closely matches the prediction (Figure 8A), with the correlation 
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between the observed and predicted Hadm values equaling 0.978 (Figure 8B). For 56% of the 

678 loci, the prediction provides an underestimate of the observed value.

6.4 K = 3 source populations

We now consider the European, Native American, and African populations as the source 

populations, using γ1 for the proportion of European ancestry, γ2 for Native American 

ancestry, and γ3 for African ancestry. We select 3 loci for illustration, choosing the same 

ones as in a similar analysis of Boca & Rosenberg (2011).

Plots for Hadm over the unit simplex for (γ1, γ2, γ3) appear in Figure 9. Each plot depicts 

Hadm as a function of (γ1, γ2, γ3) for a specific locus. The three panels show the possible 

locations of the maximal value of Hadm: in the first panel, the maximum lies in the interior 

of the simplex; in the second panel, at a vertex, and in the third panel, on an edge.

Considering all 678 loci, 15% have the maximum in the interior of the region, with γ1 > 0, 

γ2 > 0, and γ3 > 0. The fractions with the maximum on an edge are 20% for a maximum on 

the edge with γ1 = 0, 26% on the γ2 = 0 edge, and 5% on the γ3 = 0 edge. The fractions 

with the maximum at a vertex are 27% for the vertex (0, 0, 1), 2% for (0, 1, 0), and 5% for 

(1, 0, 0). The observations that (0, 0, 1) is the vertex with the largest number of maxima and 

(1, 0, 1) is the edge with the most maxima accord with the fact that African populations have 

generally higher heterozygosity than European populations, which in turn have higher 

heterozygosity than Native American populations (e.g. Pemberton et al., 2013).

7 Discussion

We have considered the heterozygosity Hadm of an admixed population in terms of the 

admixture fractions of the source populations, and their heterozygosities and FST values at a 

locus. We have derived formulas describing Hadm in relation to these quantities (eqs. 8–10). 

In particular, we showed that Hadm is minimized over the set of possible admixture 

coefficient vectors when the admixed population consists of only one of the source 

populations (Proposition 3): an admixed population is at least as heterozygous as the least 

heterozygous source population. The maximal Hadm is more complicated, as its 

heterozygosity can either exceed or equal that of the most heterozygous source population 

(Proposition 4).

In studying the possible locations of the maximal Hadm for a fixed set of source populations, 

we found that the maximum can lie either in the interior of the region describing the 

allowable values of the admixture fractions—in which case all source populations contribute 

to the admixed population—or on the boundary, where one or more source populations does 

not contribute to the admixed population (Propositions 4–6, Figures 1–3). Simulations under 

a Dirichlet model for allele frequencies suggest that the maximal value of Hadm lies with 

increasing frequency in the interior of the allowable region as K and J increase (Figure 4).

For K = 2 source populations, we obtained further results, in particular showing that Hadm is 

a concave-down quadratic polynomial in the admixture coefficient γ1 (eqs. 12–14). We 

obtained an analytical expression for the maximal heterozygosity of an admixture of a 
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specific pair of source populations in terms of H1, H2, and the FST value between the two 

populations (Proposition 7). For fixed values of H1, H2, and the admixture fraction γ1, Hadm 

is increasing as a function of FST (eq. 13, Figure 1). If H1 > H2, then the admixture fraction 

in source population 1 that maximizes Hadm is greater than 1
2  (Proposition 7), meaning that 

at the maximal heterozygosity of the admixed population, the contribution of the more 

heterozygous source population exceeds that of the less heterozygous one. Interestingly, for 

the K = 2 case with J = 2 allelic types, if the location of the maximal value lies in (0, 1), then 

heterozygosity at the maximum is always 1
2  (Proposition 11 and Figure 5): irrespective of 

the allele frequencies of the source populations, a linear combination (γ1, γ2) always exists 

so that the admixed population has frequencies of 1
2  for both alleles.

For K = 2 source populations, a key result is that the maximal value of Hadm exceeds the 

larger of the two source population heterozygosities if and only if FST exceeds a bound 

defined by those heterozygosities (Corollary 10). Thus, with all other quantities equal, 

combining source populations that are more rather than less divergent is more likely to lead 

to an admixed population with heterozygosity exceeding those of the source populations. To 

obtain this result, it was important to utilize bounds on FST that constrain its values within a 

possibly narrow region of the unit interval, particularly for high-heterozygosity loci.

In multiallelic human data, we observed that for heterozygosities and FST values for putative 

sources of Mestizo populations, the maximal Hadm was more likely to be in the interior of 

the unit simplex or on an edge rather than at a vertex (Figures 7 and 9). This result indicates 

that the heterozygosities and FST values of these populations lie in a parameter range for 

which admixed populations are frequently more heterozygous than all their source 

populations. Examining heterozygosities of 267 worldwide populations in Table S20 of 

Pemberton et al. (2013), the 13 Mestizo populations all have heterozygosities exceeding all 

29 Native American populations, and 4 have heterozygosities exceeding all 8 European 

populations. Interestingly, the 10 most heterozygous populations among the 267 include all 

five admixed populations involving a source population from the high-heterozygosity region 

of Africa: a Cape Mixed Ancestry group from South Africa, and four African-American 

populations. Thus, our mathematical results predicting that admixed populations often 

exceed all their source populations in heterozygosity are reflected in admixed human groups.

For K = 2, our model successfully predicted the heterozygosities in an admixed population 

from the source population heterozygosities, FST between the source populations, and the 

estimated admixture coefficient γ1 (Figure 8). Because Hadm is not necessarily monotonic in 

γ1, however, the reverse problem of using Hadm to estimate γ1 is problematic—unlike for 

the monotonically varying FST between an admixed population and one of the source 

populations (Boca & Rosenberg, 2011, Theorem 3). Given Hadm, source population 

heterozygosities H1 and H2, and FST between the source populations, two solutions to eq. 13 

might exist for γ1—so that although Hadm can be predicted from γ1, it is inadvisable to 

proceed in the reverse direction to estimate γ1 from the heterozygosity of an admixed 

population.
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We note that we have assumed J ⩾ K: the number of alleles is greater than or equal to the 

number of populations. While the results are suited to biallelic markers for K = 2, they apply 

primarily to multiallelic markers. Thus, in addition to the microsatellite loci we have used, 

we can use them with haplotype loci, for which each distinct haplotype over a length of 

genome is regarded as a separate allele (Mehta et al., 2019), and haplotype clusters, for 

which haplotypes are grouped into a fixed number of clusters and each individual is assigned 

a haplotype cluster membership at each site in the genome (San Lucas et al., 2012).

Our approach has followed the study of FST and admixture from Boca & Rosenberg (2011), 

and it shares similar limitations. The model assumes source population allele frequencies are 

known rather than estimated, and it considers population-level rather than individual-level 

admixture. It relies on patterns of variation from a single time point and does not incorporate 

mechanistic admixture processes or a bottleneck at the founding of the admixed population; 

strong genetic drift since the onset of admixture might interfere with the linear combination 

assumption for allele frequencies in the admixed population. Despite these limitations, the 

observed Hadm values and those predicted under our model are correlated in the Mestizo 

example (Figure 8B), indicating that the model captures key features relevant to the 

relationship between admixture and heterozygosity. Thus, the empirical results suggest that 

assessing this relationship in the mathematical formulations we have presented can be useful 

for understanding the genetics of admixed populations.
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Appendix 1. Proofs for arbitrary K: Theorem 5 and Corollary 6

For the proof of Theorem 5, we first show (i) that P′P and A are both invertible under the 

conditions stated in the theorem, and that:

1
1′A−11

= 1 − 1
1′ P′P −11

.

We then (ii) use constrained optimization via Lagrange multipliers to obtain the maximum 

of γ′Aγ subject to 1′γ = 1. This step consists of the first-derivative test to find a stationary 

point, coupled with the second-derivative test, in Lemma 12, to show that the stationary 

point defines a local maximum. Finally, we (iii) show that this means that the overall 

maximum is either at the local maximum γ∗ as described in the statement of the theorem or 

on the boundary of the set {γ : 1′γ = 1 and γ ∈ ΔK−1}.

Proof of Theorem 5 (i) Because P is a J × K matrix with column rank K, K × K matrix P′P 
is positive definite. As a positive definite matrix, P′P is invertible and (P′P)−1 is also 

positive definite (Graybill, 1976, pp. 21–22).

To show that A = 11′ − P′P is invertible, we use the Sherman-Morrison formula for the 

inverse of a rank-one update of an invertible matrix (Horn & Johnson, 2012, pp. 18–19). 
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This formula states that for an invertible square n × n matrix X and n × 1 column vectors y 
and z, X + yz′ is invertible if and only if 1 + z′X−1y ≠ 0, with:

X + yz′ −1 = X−1 − X−1yz′X−1

1 + z′X−1y
.

Because we assumed 1′(P′P)−11 ≠ 1, the Sherman-Morrison formula applies with −(P′P) in 

the role of X, and K × 1 column vectors 1 in the role of y and z. A has inverse:

A−1 = P′P −111′ P′P −1

1′ P′P −11 − 1
− P′P −1 . (20)

Left-multiplying by 1′ and right-multiplying by 1, we obtain

1
1′A−11

= 1 − 1
1′ P′P −11

.

Because (P′P)−1 is positive definite, 1′(P′P)−11 > 0 by definition, and because 1′(P′P)−11 ≠ 

1 by assumption, we conclude that 1
1′A−11

 is always defined.

(ii) To maximize γ′Aγ subject to 1′γ = 1, we use Lagrange multipliers. Let f(γ) = γ′Aγ, 

and let g(γ) = 1′γ. The Lagrange function is defined as:

Λ(γ, λ) = f(γ) + λ[g(γ) − 1] .

Denoting by 0 is a column vector of length K, we solve a system of equations for γ and λ,

δΛ(γ, λ)
δγ , δΛ(γ, λ)

δλ = (0, 0) . (21)

Eq. 21 includes K equations δΛ(γ, λ)/δγk = 0 for 1 ⩽ k ⩽ K.

A is symmetric, so we have

δf(γ)
δγ = δ γ′Aγ

δγ = A + A′ γ = 2Aγ
δg(γ)

δγ = 1 .

For the derivatives of the Lagrange function, we have:

δΛ(γ, λ)
δγ , δΛ(γ, λ)

δλ = 2Aγ + λ1, 1′γ − 1 .

Setting the derivatives with respect to γ to 0 leads to:
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(γ, λ) = − λ
2 A−11, − 2

1′A−11
.

Hence, the solution for γ is:

γ* = A−11
1′A−11

.

Because γ′Aγ is a differentiable function of γ, its maximum on ΔK−1 can occur either on 

the boundary or at a critical point. The following lemma shows that the critical point 

γ* = A−11
1′A−11

 is a local maximum.

Lemma 12. The critical point γ* = A−11
1′A−11

 is a local maximum of Hadm seen as a function of 

γ on ΔK−1, under the conditions stated in Theorem 5.

Proof. To show that γ∗ is a local maximum, we use the second-derivative test for 

constrained optimization (e.g. Magnus & Neudecker, 2007, p. 155). This test considers the 

bordered Hessian matrix, representing the matrix of second derivatives of the Lagrange 

function Λ with respect to λ and the components of γ:

F =

δ2Λ
δλ2

δ2Λ
δγδλ

′

δ2Λ
δγδλ

δ2Λ
δγ2

=
0 δg

δγ
′

δg
δγ

δ2Λ
δγ2

= 0 1′
1 2A .

We must consider the principal minors—determinants of matrices in the upper-left corner—

of F. We denote the upper-left corner matrix of size r × r of F by Fr, for r = 2, 3, …, K. The 

principal minors are the det(Fr). Using the definition of A from eq. 11, we obtain

Fr =

0 1 1 … 1
1 2H1 2C12 … 2C1r
1 2C12 2H2 … 2C2r
⋮ ⋮ ⋮ ⋮ ⋮
1 2C1r 2C2r … 2Hr

A sufficient condition for the critical point to be a local maximum is for (−1)r det(Fr) > 0 for 

each r (Magnus & Neudecker, 2007, p. 155). We now show that this condition is satisfied.

Using the fact that multiplying a row or column of a matrix by a scalar multiplies the 

determinant by that scalar, we multiply rows 2 through r + 1 by −1 and get
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det Fr = det

0 1 1 … 1
1 2H1 2C12 … 2C1r
1 2C12 2H2 … 2C2r
⋮ ⋮ ⋮ ⋮ ⋮
1 2C1r 2C2r … 2Hr

= ( − 1)r det

0 1 1 … 1
−1 −2H1 −2C12 … −2C1r
−1 −2C12 −2H2 … −2C2r
⋮ ⋮ ⋮ ⋮ …

−1 −2C1r −2C2r … −2Hr

.

Using the fact that adding a multiple of a row or column to another row does not change the 

determinant, we add −2 times the first column to each of the remaining columns. We also 

multiply the first column by −1. We then have

( − 1)rdet Fr = ( − 1)2r + 1det
0 1r′
1r 2Mr

= − det
0 1r′
1r 2Mr

, (22)

where Mr is the r × r matrix consisting of the upper-left corner of matrix P′P, and 1r is the 

column vector of length r consisting of 1s.

We now apply a result for the determinant of partitioned matrices (Graybill, 1976, pp. 19–

20). If W is invertible, then

det X Y
Z W = det(W )det X − Y W −1Z .

Applying this result to eq. 22, we obtain

( − 1)rdet Fr = − det 2Mr det −1r′ 2Mr −11r
= − 2rdet Mr − 1

2 1r′Mr−11r
= 2r − 1det Mr 1r′Mr−11r .

Because P′P is positive definite, Mr is also positive definite. To demonstrate this result, note 

that because x′P′Px > 0 for each nonzero column vector x, x′P′Px > 0 for each nonzero x 

with xk = 0 for k > r. Because Mr is positive definite, det(Mr) > 0 and Mr
−1 is also positive 

definite, leading to 1r′Mr
−11r > 0. We conclude

( − 1)rdet Fr > 0,

so that the critical point is the location of a local maximum. □

Concluding the proof of Theorem 5. Returning to part (iii) of the proof, following Lemma 

12, if γ* = A−11
1′A−11

 is interior to the simplex ΔK−1, then Hadm is maximal at γ = γ∗, with 

maximum H(γ) = 1
1′A−11

. This value is the reciprocal of the sum of the elements of A−1. If 

γ∗ is not interior to ΔK−1, then the maximum lies on the boundary of ΔK−1.
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Finally, we note that γ* = P′P −11
1′ P′P −11

 by using eq. 20. □

Proof of Corollary 6. In Theorem 5, the maximum of Hadm occurs either in the interior of the 

simplex ΔK−1 or on its boundary, {γ : 1′γ = 1 and γ ∈ ΔK−1}.

The boundary of the simplex is the union of K faces, which are themselves (K − 2)-

simplices. If the maximum lies on the boundary of ΔK−1, then without loss of generality, we 

can permute the labels of the source populations so that γK = 0.

We drop column K from matrix P and apply Theorem 5 with this new J ×(K −1) matrix, 

P{1,…,K−1}, which has rank K − 1. By assumption, 1′ P 1, …, K − 1′ P 1, …, K − 1
−11 ≠ 1.

We then apply Theorem 5 to P{1,…,K−1}. The maximum of Hadm occurs either at the point 

γS, where S = 1, 2, …, K − 1 , or on the boundary of the set {γ : 1′γ = 1 and γ ∈ ΔK−2}.

We repeat this method of descent, decrementing the dimension (and permuting population 

labels without loss of generality) until we reach the case of only two source populations. A 

final application of Theorem 5 then finds that Hadm is maximized either interior to the 1-

simplex—the line connecting vertices (1, 0) and (0, 1)—or at one of these vertices. □

Appendix 2. Proofs for K = 2: Propositions 7–11

Proof of Proposition 7. We maximize the quadratic polynomial in eqs. 12–14 over γ ∈ [0, 

1]. The maximum occurs at the unique critical point or on the boundary of the interval.

Setting the derivative of eq. 14 with respect to γ1 to 0, we find that the critical point is

γ1*, Hadm = C12 − H2
2 C12 − HS

, C12
2 − H1H2

2 C12 − HS
. (23)

Because the leading coefficient of eq. 14 is negative for p1 ≠ p2, the critical point is a 

maximum. Hence, if (C12 − H2)/[2(C12 − HS)] ∈ (0, 1), then the maximum of Hadm on the 

interval [0, 1] lies at γ1 = (C12 − H2)/[2(C12 − HS)]. Otherwise, the maximum lies either at 

γ1 = 0, in which case it equals H2, or at γ1 = 1, in which case it equals H1.

The conditions describing the location of the maximum can be written in terms of H1, H2, 

and C12. Because the denominator of γ1* in eq. 23 is always positive for p1 ≠ p2 (Section 4), 

γ1* ∈ (0, 1) becomes equivalent to C12 > H1 and C12 > H2, the former inequality arising from 

the condition γ1* < 1 and the latter from the condition γ1* > 0.

If the requirement C12 > H1 and C12 > H2 for γ1* ∈ (0, 1) fails, then the maximum occurs on 

the boundary of the unit interval. We have Hadm(0) = H2 and Hadm(1) = H1. Thus, the 

maximum lies at γ1 = 0 if H2 > H1 and at γ1 = 1 if H1 > H2.
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If C12 > H1 and C12 > H2 do not both hold, then one of them must hold, as we showed in 

Section 4 that 2C12 > H1 + H2. Combining the fact that either C12 > H1 or C12 > H2 holds 

with the observation that H2 > H1 leads to a maximum at γ1 = 0 and H1 > H2 leads to a 

maximum at γ1 = 1, we complete the characterization of the three cases.

Note that the three cases in the statement of the proposition capture all possible values of 

(H1, H2, C12). By the Cauchy-Schwarz inequality, (1 − C12)2 ⩽ (1 − H1)(1 − H2), with 

equality requiring p1 = p2. Hence, with p1 ≠ p2 assumed, either 1 − C12 < 1 − H1 and 1 − C12 

⩾ 1 − H2 (case (ii)), 1 − C12 < 1 − H2 and 1 − C12 ⩾ 1 − H1 (case (iii)), or both 1 − C12 < 1 

− H1 and 1 − C12 < 1 − H2 (case (i)).

Alternative expressions in terms of H1, H2, and F12 can be derived by noting that 

HS = 1
2 H1 + H2 , H1H2 = HS

2 − H1 − H2 /2 2 and C12 = HS(1 + F12)/(1 − F12), the latter 

simply restating eq. 4 (recalling C12 = 1 for F12 = 1). Thus, we have

γ1* = C12 − H2
2 C12 − HS

= 1
2 + H1 − H2

4 F12
1 − F12

H1 + H2
(24)

Hadm γ* = C12
2 − H1H2

2 C12 − HS
= H1 + H2

2 1 − F12
+ H1 − H2

2

8 F12
1 − F12

H1 + H2
. (25)

Another formulation uses the heterozygosity of a population formed by equal admixture of 

populations 1 and 2, or HT. Because F12 = 1−HS/HT by eq. 1, F12/(1−F12) = (HT −HS)/HS. 

Using this relationship in eqs. 24 and 25,

γ1* = 1
2 +

H1 − H2
8 HT − HS

Hadm γ* = HT +
H1 − H2 2

16 HT − HS
.

□

Proof of Corollary 8. Suppose H1 ⩾ H2. If case (i) from Proposition 7 applies, then because 

HT > HS, γ1* ⩾ 1
2 . Case (ii) cannot apply because H1 < C12, H2 ⩾ C12, and H1 ⩾ H2 cannot 

hold simultaneously. In case (iii), γ1* = 1 ⩾ 1
2 . For the reverse direction, if H1 < H2 and case 

(i) or case (ii) applies, then γ1* < 1
2 . Case (iii) cannot apply because H1 ⩾ C12, H2 < C12, and 

H1 < H2 cannot hold simultaneously. □

Proof of Corollary 9. First, we see that Hadm γ1* ⩾ HT  in case (i) of Proposition 7. In case 

(ii), H2 > HT = (H1 + H2 + 2C12)/4 because H2 > H1 and H2 ⩾ C12. In case (iii), H1 > HT 
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because H1 > H2 and H1 ⩾ C12. Note that if H1 = H2, then case (i) applies, producing 

Hadm γ1* = HT . □

Proof of Corollary 10. We restate the condition 0 < (C12 − H2)/[2(C12 − HS)] < 1 as

0 < 1
2 +

H1 − H2
2

2
F12

1 − F12
H1 + H2

< 1.

Subtracting 1
2  from both sides and multiplying by 2, an equivalent condition is

−1 <
H1 − H2

2
F12

1 − F12
H1 + H2

< 1,

or, equivalently, H1 − H2 / 2
F12

1 − F12
H1 + H2 < 1. We rearrange this last expression to 

obtain the desired result. □

Proof of Proposition 11. We apply Proposition 7 with J = 2. Substituting p12 = 1 − p11 and 

p22 = 1 − p21 in eqs. 15 and 16, we obtain C12 −H2 = (p11 −p21)(1−2p21), C12 −H1 = (p21 

−p11)(1−2p11), C12 −HS = (p11 − p21)2, and C12
2 − H1H2 = p11 − p21

2. Thus, because p11 = 

p21 is not permitted, the quantities in eqs. 15 and 16 reduce to those of eqs. 18 and 19, 

respectively.

To complete the application of Proposition 7 to K = 2, note that case (i) of Proposition 7 

occurs when (p11 − p21)(1 − 2p21) > 0 and (p21 − p11)(1 − 2p11) > 0. The first of this pair of 

inequalities requires both p11 − p21 > 0 and 1 − 2p21 > 0, so that p11 > p21 and 1
2 > p21, or 

both p11 − p21 < 0 and 1 − 2p21 < 0, so that p11 < p21 and 1
2 < p21. The second inequality 

requires both p21 − p11 > 0 and 1 − 2p11 > 0, so that p21 > p11 and 1
2 > p11, or both p21 − p11 

< 0 and 1 − 2p11 < 0, so that p21 < p11 and 1
2 < p11. Thus, the conditions of case (i) of 

Proposition 7 obtain if and only if p11 > 1
2 > p21 or p21 > 1

2 > p11.

Similarly, using the expressions for H1, H2, and C12 when K = 2, the conditions of case (ii) 

of Proposition 7 are equivalent to 1
2 ⩾ p21 > p11 or p11 > p21 ⩾ 1

2 . The conditions of case (iii) 

are equivalent to 1
2 ⩾ p11 > p21 or p21 > p11 ⩾ 1

2 . □

Appendix 3: Dirichlet model for allele frequencies

We first provide results concerning Hadm in the case that the K source populations have 

independently and identically distributed (IID) allele frequency vectors. Next, we specify 

these IID vectors to be Dirichlet distributions.
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IID allele frequency vectors

We begin by examining the expected values of Hk and Hadm.

Proposition 13. Suppose the allele frequency vectors pk are independently and identically 

distributed for 1 ⩽ k ⩽ K. Then E Hadm = E H1 + 1 − ∑k = 1
K γk

2 ∑j = 1
J Var p1j .

Proof. We use eq. 8:

E Hadm = 1 − ∑
k = 1

K
γk
2 ∑

j = 1

J
E pkj

2 − 2 ∑
k = 1

K − 1
∑

l = k + 1

K
γkγℓ ∑

j = 1

J
E pkjplj .

Using the IID assumption and simplifying by noting that 

1 = (∑k = 1
K γk)2 = (∑k = 1

K γk
2) + (2∑k = 1

K − 1 ∑ℓ = k + 1
K γkγℓ), we have

E Hadm = 1 − ∑
k = 1

K
γk
2 ∑

j = 1

J
E p1j

2 − 2 ∑
k = 1

K − 1
∑

ℓ = k + 1

K
γkγℓ ∑

j = 1

J
E p1j

2

= 1 − ∑
j = 1

J
E p1j

2 + ∑
j = 1

J
E p1j

2 1 − ∑
k = 1

K
γk
2 − ∑

j = 1

J
E p1j

2 1 − ∑
k = 1

K
γk
2 ,

from which the result follows. □

An immediate corollary of Proposition 13 is that Hadm has expectation greater than or equal 

to the expectation of the heterozygosity of each of the source populations.

Corollary 14. Suppose the allele frequency vectors pk are independently and identically 

distributed for 1 ⩽ k ⩽ K. Then E Hadm ⩾ E Hk .

A second corollary results from the Cauchy-Schwarz inequality, by which ∑k = 1
K γk

2 ⩾ 1
K , 

with equality if and only if γ1, γ2, …, γK = 1
K , 1

K , …, 1
K .

Corollary 15. Suppose the allele frequency vectors pk are independently and identically 

distributed for 1 ⩽ k ⩽ K. Considering all admixture vectors γ ∈ ΔK − 1, E Hadm  is 

maximized at γ = 1
K , 1

K , …, 1
K , and has maximal value E H1 + 1 − 1

K ∑j = 1
J Var p1j .

IID allele frequency vectors from a symmetric Dirichlet distribution

We now further assume that the independently and identically distributed allele frequency 

vectors follow a symmetric multivariate Dirichlet distribution. This distribution is frequently 

used for allele frequency distributions (Balding & Nichols, 1995; Pritchard et al., 2000; 

Huelsenbeck & Andolfatto, 2007), and it is a natural probability distribution to assume for 

allelic types with the same marginal distributions.

Boca et al. Page 26

J Math Biol. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The J-dimensional Dirichlet-(α1, α2, …, αJ) distribution is defined over the open unit (J − 

1)-simplex ΔJ−1 and has concentration parameters αj > 0. The means and variances for the 

individual allele frequencies are (Lange, 1997; Kotz et al., 2000, chapter 49):

E pkj =
αj
Jα

Var pkj =
αj Jα − αj

J2α2(Jα + 1)
,

where α = 1
J ∑j = 1

J αj.

The symmetric Dirichlet distribution assumes α1 = α2 = … = αJ = α, leading to:

E pkj = 1
J

Var pkj = J − 1
J2(Jα + 1)

.

Making these substitutions in Proposition 13, we obtain the expectation of Hadm under the 

assumption that the allele frequency vectors follow independent Dirichlet distributions.

Corollary 16. Suppose the allele frequency vectors pk are independently and identically 

distributed for 1 ⩽ k ⩽ K, all with symmetric multivariate Dirichlet distributions with 

concentration parameter α. Then

E Hk = 1 − 1
J 1 − 1

Jα + 1 ,

E Hadm = 1 − 1
J 1 − 1

Jα + 1 ∑
k = 1

K
γk
2 .

This corollary implies that both E Hk  and E Hadm  are increasing functions of J and α.

The next proposition considers the special case of K = 2 and J = 2, further specifying a 

uniform distribution for γ1.

Proposition 17. Consider K = 2 and J = 2. Suppose that the values of p11 and p21 are 

independently chosen from a uniform-[0,1] distribution. Suppose also that γ1 is also chosen 

from a uniform-[0, 1] distribution. Then ℙ Hadm γ1 > max H1, H2 = 1 − log2 ≈ 0.307.

Proof. Using Proposition 11, we identify the regions of the unit square for (p11, p21) in 

which maxγ1 ∈ (0, 1)Hadm γ1 > max H1, H2 . These regions are 

p11, p21 ∣ 1
2 < p11 < 1, 0 < p21 < 1

2  and p11, p21 ∣ 0 < p11 < 1
2 , 1

2 < p21 < 1 .

Within those regions, we must determine the portion of the unit interval for γ1 in which 

Hadm(γ1) > max{H1, H2}. Hadm(γ1) is a quadratic function of γ1. We ignore the set of zero 

volume with H1 = H2. In the regions for (p11, p21) in which 
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maxγ1 ∈ (0, 1)Hadm γ1 > max H1, H2  and H2 > H1, the interval for γ1 in which 

Hadm γ1 > H1 is 0,
1 − 2p21
p11 − p21

. In the regions for (p11, p21) in which 

maxγ1 ∈ (0, 1)Hadm γ1 > max H1, H2  and H1 > H2, the interval for γ1 in which 

Hadm γ1 > H1 is 
p21 − 1 + p11

p21 − p11
, 1 .

The desired probability is the volume within the unit cube for (p11, p21, γ1) of the regions in 

which Hadm(γ1) > max{H1, H2}. The volume is

∫1/2
1 ∫1 − p11

1/2 ∫
0

1 − 2p21
p11 − p21 1dγ1dp21dp11 + ∫1/2

1 ∫0

1 − p11∫p21 − 1 + p11
p21 − p11

1
1dγ1dp21dp11

∫0
1/2∫1 − p11

1 ∫p21 − 1 + p11
p21 − p11

1
1dγ1dp21dp11 + ∫0

1/2∫1/2

1 − p11∫
0

1 − 2p21
p11 − p21 1dγ1dp21dp11

= 41 − log2
4 .

□
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Figure 1: 
Hadm versus γ1 for fixed values of H1 and H2. We choose H1 = 0.727 and H2 = 0.628; the 

horizontal lines represent Hadm = H1 and Hadm = H2. Eq. 13 is plotted for multiple values of 

F12, considering the allowable range of F12 values in [0.003,0.192] as specified by eq. 5. The 

red curve, which plots (γ1, Hadm) in terms of H1, H2, and F12 in the form of eqs. 24 and 25, 

indicates the maxima of Hadm as F12 varies, with black dots specifying the maxima for the 

specific plotted values of F12. The shaded region corresponds to the region where γ1* ∈ (0, 1), 

as specified by Corollary 10; the value F12 ≈ 0.034 gives the boundary of this region. The 

values chosen for H1 and H2 are, respectively, the mean heterozygosities across 8 European 

and 29 Native American populations, based on population-wise estimates in Table S20 of 

Pemberton et al. (2013). The value of γ1 can be viewed as the fraction of European ancestry 

in an admixed population and 1 − γ1 can be considered the fraction of Native American 

ancestry.
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Figure 2: 
The admixture coefficient γ1 that maximizes Hadm in the case of K = 2 source populations 

and J = 2 allelic types. The plot shows the unit square for (p11, p21). In the red regions, the 

maximizing value of γ1 lies in (0,1), whereas in the white and gray regions, it lies on one or 

the other boundary. The figure depicts the result of Proposition 11.
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Figure 3: 
Location of the maximum of Hadm in simulation replicates. (A) K = 2. (B) K = 3. The 

location γarg max can be in the interior of the simplex ΔK−1, corresponding to nontrivial 

admixture of all source groups, or on the boundary of the simplex. For K = 3, it can be on an 

edge, corresponding to admixture of two of three source populations, and for both K = 2 and 

K = 3, it can be at a vertex, corresponding to membership in only one source population. For 

each (K, J), points plotted are based on 10,000 simulations with independently and 

identically distributed Dirichlet-(1, 1, …, 1) distributions for the allele frequency vectors pk
in the K populations.
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Figure 4: 
The fraction of simulation replicates for which Hadm > max{H1, …, HK}, for various values 

of K and J. For each (K, J), points plotted are based on 50,000 simulation replicates with 

independently and identically distributed Dirichlet-(1, 1, …, 1) distribitions for the allele 

frequency vectors pk in the K populations, and a Dirichlet-(1, 1, …, 1) distribution for the 

admixture coefficient vector γ.
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Figure 5: 
Hadm versus γ1 for 10 simulation replicates for K = 2 source populations, for each of three 

values of the number of allelic types J. For each replicate, allele frequency vectors pk in the 

two populations are simulated according to Dirichlet-(1, 1, …, 1) distributions, and Hadm is 

plotted as a function of γ1 according to eq. 8. The maximum of Hadm is indicated by a black 

circle in each replicate. The red dashed lines represent the expected values of Hadm 

according to Corollary 16 in Appendix 3.
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Figure 6: 
Hadm versus γ1 for 20 random biallelic loci from Pemberton et al. (2012). The two source 

populations providing the allele frequencies are the European and Native American 

populations, with γ1 corresponding to membership in the European population. Hadm is 

plotted according to eq. 8. Circles indicate the location of the maximum along each curve. 

Different colors and line types correspond to the three cases in Proposition 11 for the 

location of the maximal Hadm.
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Figure 7: 
Hadm versus γ1 for 20 random multiallelic loci from Wang et al. (2008). The two source 

populations providing the allele frequencies are the European and Native American 

populations, with γ1 corresponding to membership in the European population. Hadm is 

plotted according to eq. 8. Circles indicate the location of the maximum along each curve. 

Different colors and line types correspond to the three cases in Proposition 7 for the location 

of the maximal Hadm.
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Figure 8: 
Predicted and observed Hadm. (A) The predicted and observed Hadm values for an admixed 

Mestizo population are plotted against the locus-wise estimated European admixture fraction 

γ1 in the Mestizo population, estimated by maximum likelihood. The prediction is based on 

eq. 8, using European and Native American allele frequencies estimated from Wang et al. 
(2008) as p1 and p2, respectively, together with the maximum likelihood estimate of γ1. The 

observation is based on Hadm computed from Definition 1, inserting estimated allele 

frequencies from Wang et al. (2008) for the Mestizo population. (B) The observed Hadm 

value is plotted against the predicted Hadm value. The identity line is shown in gray. In both 

panels, each point represents one of the 678 loci used. The correlation coefficient between 

the predicted and observed Hadm values is 0.978.
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Figure 9: 
Hadm versus (γ1, γ2, γ3) for three loci. The loci are from Wang et al. (2008) and have 14, 

14, and 8 distinct alleles, respectively. The value of Hadm is computed from eq. 8. Black 

circles indicate the maximum Hadm. (A) Locus D2S1399: the maximum lies in the interior 

of the region. (B) Locus GATA101G01: the maximum lies at the (0, 0, 1) vertex. (C) Locus 

GATA146D07: the maximum lies on the γ2 = 0 edge.
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Table 1:

Notation

Type of quantity Symbol Description

Indices j = 1,..., J Index over alleles

k = 1,..., K Index over source populations

Allele frequencies pkj Frequency of allelic type j in population k

pk
P

J × 1 vector of allele frequencies for population k
J × K matrix of allele frequencies in the source populations

pj Frequency of allelic type j in the admixed population

Admixture fractions γk Admixture fraction for population k

γ K × 1 vector of admixture fractions

Heterozygosities Hk Heterozygosity for population k; probability that two alleles drawn from population k differ in type

Hadm Heterozygosity for the admixed population

Ckℓ Probability that an allele drawn from population k and an allele drawn from population ℓ differ in type

Fixation index Fkℓ Fixation index FST between populations k and ℓ
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