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Abstract

Aging is the most significant risk factor for vascular cognitive impairment (VCI), and the number 

of individuals affected by VCI is expected to exponentially increase in the upcoming decades. Yet, 

there are no current preventative or therapeutic treatments available against the development and 

progression of VCI. Therefore, there is a pressing need to better understand the pathophysiology 

underlying these conditions, for the development of novel tools and interventions to improve 

cerebrovascular health and delay the onset of VCI. There is strong epidemiological and 

experimental evidence that lifestyle factors, including nutrition and dietary habits, significantly 

affect cerebrovascular health and thereby influence the pathogenesis of VCI. Here, recent evidence 

is presented discussing the effects of lifestyle interventions against age-related diseases which in 

turn, inspired novel research aimed at investigating the possible beneficial effects of dietary 

interventions for the prevention of cognitive decline in older adults.

Correspondence: Stefano Tarantini, Ph.D., Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and 
Molecular Biology, University of Oklahoma HSC, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK 73104, stefano-
tarantini@ouhsc.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Disclosures
None.

HHS Public Access
Author manuscript
Ageing Res Rev. Author manuscript; available in PMC 2021 December 01.

Published in final edited form as:
Ageing Res Rev. 2020 December ; 64: 101189. doi:10.1016/j.arr.2020.101189.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Time restricted feeding; Aging; Neurovascular coupling; Neurodegeneration Geroscience; 
Dementia; Cognitive function

1. Introduction

Declining cerebrovascular health is quickly becoming recognized as a major hallmark of 

age-related cognitive decline1–7. To account for this fact, the term “vascular cognitive 

impairment” (VCI) was coined to describe all forms of cognitive disorders associated with 

cerebrovascular pathologies3, 4. There is an increasing realization that the pathogenesis of 

Alzheimer’s disease (AD) also involves microvascular pathologies2 and as such, it may 

represent a special form of VCI associated with old age4.

The study of age-related VCI is a growing global health priority. The number of individuals 

living over the age of 60 is projected to increase from 901 million today to nearly 2.1 billion 

by 20508. As advanced age is the most significant risk factor for VCI, the number of 

individuals affected by VCI is expected to exponentially increase in the upcoming 

decades3, 4. Yet, there are no current preventative or therapeutic treatments available against 

the development and progression of VCI. There is a pressing need to better understand the 

pathophysiology underlying these conditions, for the development of novel tools and 

interventions to improve cerebrovascular health and delay the onset of VCI.

There is strong epidemiological and experimental evidence that lifestyle factors, including 

nutrition and dietary habits, significantly affect cerebrovascular health and thereby influence 

the pathogenesis of VCI3, 4. In recent years, growing interest in the effects of lifestyle 

interventions against age-related diseases has inspired novel research aimed at investigating 

the possible beneficial effects of dietary interventions for the prevention of cognitive decline 

in older adults.

2. Dietary interventions to promote healthy vascular aging: from calorie 

restriction to time-restricted feeding

Calorie restriction (CR) is a dietary regimen that reduces the daily food intake of an 

individual relative to its normal energy consumption, without causing malnutrition. CR 

exerts clear beneficial effects on healthspan and lifespan in short-lived species17–19, 

positively impacts health of long-lived non-human primates (Macaca mulatta)9–11, and 

recently was also shown to increase maximum lifespan in the gray mouse lemur 

(Microcebus murinus) by more than 22 percent9.

Experimental evidence suggests that CR is an effective nutritional lifestyle intervention that 

can improve cardiovascular health12–15 and cognitive function16–20. A published study 

suggests that even when implemented over a short period, CR can confer cardiovascular 

health benefits12. CR studies performed in the last two decades have been critical in 

improving our understanding of the physiological mechanisms by which CR prevents 

vascular aging21 and extends lifespan in many animal models10, 22–24. CR has been 
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documented to exert multifaceted cardiovascular protective effects, including reduced 

oxidative damage13, 25, improved insulin sensitivity26, improved endothelial function27–31 

and nitric oxide (NO) bioavailability27, 32–36, and reduced risk of atherosclerosis15. Besides 

the observed beneficial effects of CR on the large conduit vasculature, CR was also shown to 

confer persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects, and promote 

an anti-aging gene expression profile in cerebromicrovascular endothelial cells of aged 

rats37. Recent evidence from non-human primate studies suggests that circulating factors 

induced by CR also promote endothelial protective effects, up-regulating endothelial 

angiogenic processes38. This is

In the late 1980s two parallel studies10, 39 were initiated to determine the effect of CR in 

rhesus monkeys. While the impact on lifespan differed between these two studies, both 

groups observed a substantial improvement in healthspan, indicating that CR-derived 

benefits are conserved in monkeys40. This evidence suggests that the ability of CR to convey 

health benefits may also be translatable to humans40, 41. To better understand the feasibility 

and translatability of CR in humans, the National Institute on Aging (NIA) supported an 

innovative 2-year long clinical trial named Comprehensive Assessment of Long-term Effects 

of Reducing Intake of Energy (CALERIE)42 where over 200 healthy young and middle-aged 

individuals in were assigned to a 25% CR regimen or to continue their regular diet. Amongst 

the results, individuals assigned to 25% CR were able to reduce their calorie intake by only 

11.9%. Despite the scant adherence, CR administration in healthy individuals resulted in 

weight loss43, reduced whole body oxidative stress44, decreased systolic and diastolic blood 

pressure43, and a modest improvement in working memory45. Another study showed that 

long-term calorie restriction may reduce the risk for atherosclerosis in humans15.

Despite these advances, CR in humans has also shown adverse effects in some studies, 

which limit its clinical usefulness. These adverse effects include cold sensitivity, menstrual 

irregularities, and hormonal changes. CR regimens also resulted in reduced bone mineral 

density at clinically relevant sites of osteoporotic fractures46, diminished aerobic capacity, 

and episodic anemia in some participants43. Recent evidence obtained in rodents suggest 

that the declining body weight, and potential impaired immune functionality42 associated 

with strict dietary restriction may not be suitable for frail older adults at risk of malnutrition, 

hypothermia, and bacterial/viral infection42, 47–49. Lastly, adherence to CR regimens 

remains a challenge and a translational barrier as most humans are not able or willing to 

reduce their calorie intake by 30% over extensive periods of time. Thus, alternative 

nutritional strategies tailored to the needs of older adults must be developed to obtain health 

benefits similar to those offered by CR, while limiting the risk of undesired adverse effects. 

Recent excitement in favor of strategies that could recapitulate the benefits of CR has driven 

growing interest in a set of lifestyle interventions collectively referred to as intermittent 

fasting (IF) (Figure 1). Any dietary regimen that includes periods of voluntary abstinence 

from food falls within the definition of intermittent fasting50. Time restricted feeding (TRF) 

is considered to be one of the best ways to approach intermittent fasting for elderly 

individuals. Two other widely used paradigms are the 5:2 diet, which allows for 5 days of ad 
libitum feeding and 2 days of complete fasting, and alternate day feeding, which involves 

alternation between fast days and ad libitum feeding days. Unlike other IF approaches, TRF 

does not limit one’s daily calorie intake (Figure 1). In fact, some of the observed beneficial 
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effects of CR may at least in part be attributed to the inadvertent administration of a TRF 

regimen. Laboratory rodents undergoing CR tend to consume the entirety of their daily food 

allowance in a few hours. After the food is finished they have no choice but fast for the 

remainder of the day (up to 20 hours) until the next feeding takes place51. This observation 

has generated a lot of enthusiasm and motivated a series of studies investigating the 

mechanistic inner workings of TRF. Indeed, recent work has indicated that the differential 

effects on lifespan observed in non-human primate CR studies may be largely due to the 

duration of fasting that occurred in the different experimental regimens52.

TRF is not designed as a calorie-deficit method, but instead as a pattern of eating (Figure 1) 

which recent work suggests may be more effective in promoting fat loss and regulating the 

impairment of glucose metabolism in humans, as compared with other CR regimens53. TRF 

is potentially the most practical strategy for normal weight older adults as it allows 

consumption of all required daily calories within a condensed daily feeding window (4, 6, or 

8 hours), resulting in a prolonged fasting period without a net reduction in calorie 

intake54, 55. The potential effects of TRF against age-related VCI are currently under 

investigation, and based on recent evidence, TRF could be a viable and easily attainable 

therapeutic lifestyle-intervention for slowing the development of age-related 

cerebromicrovascular pathology and ameliorating age-related cognitive decline. The present 

review focuses on potential mechanisms of TRF-induced cerebromicrovascular protection 

and its possible use to prevent VCI.

3. Biological effects of time restricted feeding

Initial findings indicate that TRF could provide many of the benefits of CR, while 

minimizing the risks and drawbacks associated with forced calorie deficit, such as excessive 

weight loss, decreased bone mineral density, and poor adherence to food deprivation. 

Condensing food consumption within a contained time window while fasting the rest of the 

day recapitulates health benefits of CR, such as reduced oxidative stress and adiposity56–58. 

TRF has also been shown to elicit adaptive, evolutionarily conserved, systemic cellular 

responses across organs, resulting in decreased inflammation, increased stress resistance, 

improved glucose regulation59, neuroprotective effects, improved redox status, increased 

production of neurotrophic factors that promote neurogenesis, and improvement in 

mitochondrial function60 (Figure 2). Alternation between prolonged fasting and a brief 

feeding state, promotes an intermittent metabolic switch, as adipose–derived ketone 

utilization becomes preferred over liver-derived glucose as the source of fuel for the body, 

especially the brain61. During TRF metabolic switching is repeated every day, eliciting 

prolonged systemic and cellular responses that are sustained into the fed state to improve 

cognitive function and disease resistance62, 63. Metabolic switching may be one of the most 

critical factors driving the beneficial effects of CR, and even more pronounced metabolic 

fluctuations can be achieved using intermittent fasting regimens like TRF. Some recent 

evidence even suggests that in some regards the beneficial effects exerted by metabolic 

switching may go beyond those obtainable from CR alone64–67. The metabolic switch from 

glucose to ketone body utilization was found to positively affect metabolic flexibility and 

improve energy production efficiency57. The rationale behind the concept of TRF arose 

within the framework of the circadian rhythm, an adaptation evolved in humans and other 
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animals in response to narrow windows of food availability and long fasts between meals. It 

is hypothesized that daytime feeding periods result in activation of mechanisms that increase 

cell growth (mTOR activation) and differentiation, while during night-time, fasting pathways 

conserving energy and activating cellular repair are preferentially activated (e.g. AMPK, 

SIRT-1 and autophagy)68. Reinforcing a time-restricted feeding protocol is presumed to 

modulate the circadian cycle and improve regulation of hypothalamic function, which 

controls feelings of hunger and satiety, energy metabolism, and inflammatory response69.

4. Potential effects of TRF on cerebromicrovascular pathophysiological 

alterations relevant for the genesis of VCI

Age-related structural and functional cerebrovascular alterations thought to contribute to the 

pathogenesis of VCI are illustrated in Figure 370. While available data on the direct effects 

of TRF on cerebromicrovascular mechanisms contributing to the development of VCI are 

scarce, potential beneficial cerebromicrovascular effects of TRF can be predicted based on 

its effects on the peripheral vasculature and/or circulating biomarkers in preclinical and 

clinical studies. By expanding on those findings that drive vasculo-protection in the 

peripheral circulation, novel studies may be performed to identify potential understudied 

mechanisms that may be protective of the cerebral microcirculation as this could be 

beneficial against age-related vascular cognitive impairment and related dementias.

4.1 Endothelial dysfunction

Aging-induced cerebromicrovascular dysfunction plays a central role in impaired blood 

supply of the aging brain71–76. Age-related increases in the production of reactive oxygen 

species (ROS) by NADPH oxidases75, 77–79 and mitochondria7, 37, 71, 72, 76, 80–82 are 

believed to contribute to the development of endothelial dysfunction in both pre-clinical83 

and clinical studies84. Excess production of superoxide reacts with endothelium-derived 

nitric oxide (NO) to produce the highly reactive oxidant peroxynitrite (ONOO−)85, which 

mediates many of the detrimental effects of vascular oxidative stress. This includes cytotoxic 

effects, mitochondria dysfunction, and upregulation of pro-inflammatory pathways. Excess 

free radical production exacerbates vascular inflammation and contributes to the 

pathogenesis of age-related cognitive impairment86, 87. CR31, 37 and fasting88 were shown to 

attenuate endothelial oxidative stress and restore endothelial function. Interestingly, 

administration of TRF was also reported to diminish ROS production and improve 

endothelial function89, which may be predictive of a cerebrovascular protective role against 

the age-related dysregulation of cerebral blood flow and genesis of VCI. This possibility 

should be investigated in clinical and experimental studies.

In this regard, observational studies performed on individuals practicing TRF for a month 

during Ramadan, when eating is not allowed during hours of daylight, creating ~12 hour 

fasting window90, 91, are particularly interesting. After the Ramadan fasting period, 

participants exhibit lower circulating markers of oxidative stress and inflammation92, 93. 

TRF practiced during Ramadan also improves plasma cholesterol and lipid profiles, and 

lowers blood pressure in older adults with at least one risk factor for CVD94. Although, the 

calorie intake and exact fasting time in studies on Ramadan practitioners is difficult to 
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estimate, the aforementioned data warrant further studies to assess relevant 

cerebromicrovascular and cognitive endpoints.

4.2 Impaired neurovascular coupling

In humans, as well as in laboratory animals, oxygen and nutrient storage capacity in the 

central nervous system is limited, and even momentary interruptions in oxygen supply and 

nutrient delivery rapidly impair neuronal function1, 95. To maintain intact cognitive abilities, 

the actively-firing brain neurons require a constant provision of oxygen and nutrients as well 

as effective wash-out of metabolic waste. These are achieved through a homeostatic feed-

forward mechanism present in the brain, known as neurovascular coupling, which adjusts 

cerebral blood flow to match neural activity and prevents neural ischemic damage, 

neurodegeneration and cognitive impairment1. Clinical and experimental studies suggest that 

age-related functional impairments of cerebral microcirculation compromise neurovascular 

coupling responses, which likely contributes to age-related cognitive decline1, 5, 7, 71, 96–102. 

Pre-clinical studies show that treatments designed to restore endothelial function and cellular 

energetics71, and improve endothelium-dependent NO bioavailability7, 71, were successful in 

reversing the age-related impairment in neurovascular coupling responses.

Recent pre-clinical work in rodents has shown that TRF can potentially confer 

vasoprotective effects through attenuation of pro-inflammatory processes54, 65, 103, 104. As 

such, it is plausible that TRF-induced improvement in endothelial function105 may reverse 

the age-associated decrease in endothelial-dependent NO bioavailability, improving 

cerebromicrovascular function and brain perfusion. Future studies should test this possibility 

by assessing the effects on endothelium-dependent neurovascular coupling responses.

4.3 Cerebral microhemorrhages

Cerebral microhemorrhages or microbleeds are small chronic intracerebral hemorrhages 

which are caused by rupture of small arterioles or capillaries106–108. Aging and hypertension 

are major risk factors for the genesis of cerebral microhemorrhages106. The prevalence of 

cerebral microhemorrhages reaches over 50% in older adults at risk106. Cerebral 

microhemorrhages are clinically significant as they were shown to contribute to cognitive 

impairment, geriatric psychiatric syndromes, and gait disorders106, 108, 109. Studies have 

shown that increased vascular oxidative stress is closely linked to increased matrix 

metalloproteinase activity in the vascular wall108, 110, resulting in impaired structural 

integrity of the microvasculature and increased risk cerebral microhemorrhages.

In pre-clinical and clinical studies, administration of TRF results in attenuated risk for 

cardiovascular diseases89, restores endothelial vasorelaxation111 and substantially decreases 

blood pressure94. CR was shown to down-regulate matrix metalloproteinases and protect 

against pathologic remodeling of the extracellular matrix in aged arteries and prevent 

aneurysm formation112, 113. These findings, taken together with the demonstrated CR-like 

anti-oxidative effects of intermittent fasting51, 114, raise the possibility that TRF might 

confer protection against the development of microhemorrhages. Additional experimental 

studies are warranted to test this hypothesis.
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4.4 Blood-brain barrier disruption

Strong evidence in murine models supports the concept that age-related cerebrovascular 

dysfunction is associated with blood-brain barrier disruption and the resulting 

neuroinflammation101, 115. There is data showing that CR exerts protective effects on the 

blood brain barrier116, which may contribute to its beneficial effects on cognitive function. 

Further preclinical studies are needed to investigate whether the TRF-induced reduction in 

oxidative stress and changes in endothelial vasodilation also lead to improved blood-brain 

barrier function in aging. Importantly, a recent study reported no effect of an every-other-day 

feeding regimen on blood-brain barrier permeability in a mouse model of Alzheimer’s 

disease117. However, the study reported that this type of treatment enhanced neuronal 

deficits and inflammation

4.5 Age-related changes in the synthesis of paracrine mediators: cytokines, chemokines 
and growth factors

The microvascular endothelium is an important source of paracrine mediators, including 

cytokines, chemokines37 and growth factors (e.g. brain-derived neurotrophic factor [BDNF], 

insulin-like growth factor-1 [IGF-1], pituitary adenylate cyclase-activating peptide 

[PACAP]118, 119) that play an important role in autocrine regulation of microvascular 

functions as well as in regulating the function of neurons, astrocytes and glial cells. In aging 

the synthesis/release of these paracrine mediators is significantly altered, which contributes 

to age-related neuronal and glial dysfunction, increased neuroinflammation, and disruption 

of neurogenic niches70.

CR was shown to ‘rejuvenate’ the trophic function of cerebromicrovascular endothelial 

cells37. Additionally, chronic intermittent fasting has been shown to up-regulate 

microvascular BDNF and VEGF signaling120. Recent evidence suggests that β-

hydroxybutyrate, a ketone generated in response to fasting, can upregulate the expression of 

BDNF, which confers mitochondrial protection, and promotes synaptic plasticity and 

cellular stress resistance59. Further pre-clinical studies should be conducted to investigate 

the effect of TRF on the modulation on vascular trophic factors that could affect cognitive 

outcomes.

4.6 Cerebromicrovascular rarefaction

Cerebromicrovascular density typically declines with advanced age73, 121–123, which 

contributes to decreased cerebral blood flow and promotes cognitive decline124. The 

mechanisms underlying age-related cerebromicrovascular rarefaction include increased 

endothelial apoptosis and impaired angiogenic processes37, 118, 122, 124–126. Important in that 

regard is that CR confers significant anti-apoptotic and pro-angiogenic endothelial effects 

and results in increased capillarization in the aged rodent brain37, 38, 127. It would be of 

interest to explore if TRF also exerts anti-apoptotic and pro-angiogenic endothelial effects, 

reversing age-related cerebromicrovascular rarefaction. Age-related decline in circulating 

IGF-1 has been causally linked to capillary rarefaction128–130 as well as other functional 

aspects of cerebromicrovascular aging (e.g, neurovascular dysfunction131, 132, impaired 

autoregulation133, pathological remodeling and increased microvascular fragility134, 135). In 

rodents CR decreases serum IGF- 1 concentration by 20–40%, whereas 2 year of CR in the 
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CALERIE study had no effect on circulating IGF-1 in humans136. Previous studies have 

reported mixed results concerning the effect of TRF on circulating IGF- 1. No changes in 

circulating IGF-1 were observed during Ramadan intermittent fasting137. In contrast, eight 

weeks of a TRF regimen (16/8) was shown to result in a significant decline in IGF-1 levels 

in study participants138. Because of the significant cerebromicrovascular protective effects 

of IGF-1 future studies should compare the effects of different TRF regimens and explore 

the impact of TRF-induced changes in IGF-1 on cerebromicrovascular physiology.

5. Conclusions

The pre-clinical and clinical studies discussed in this review provide prima facie evidence 

for the potential vasoprotective effects of metabolic lifestyle interventions such as CR, 

intermittent fasting and TRF. TRF interventions are an innovative approach, despite it is 

possible that CR and TRF may share some commons mechanisms, there may be other 

mechanisms involved that could exert CR-independent beneficial effects139. Future studies 

should address the effects of TRF on cerebromicrovascular health in both experimental 

studies on pre-clinical models of aging, and clinical investigations. In particular, 

investigating the effects of TRF on endothelial-dependent vasodilation and neurovascular 

coupling response would be of critical importance to understand the translational 

implications of TRF and other similar nutritional lifestyle interventions. Assessment of 

cognitive outcomes in response to administration of TRF, both in pre-clinical and clinical 

studies, will establish its usefulness for prevention of VCI. New TRF regimens combined 

with dietary advice tailored to the needs of older adults should be developed to reap the full 

cerebrovascular and cognitive health benefits while limiting the risk of undesired adverse 

effects. Although TRF seems to be protective against different unhealthy diets in mice54, 55, 

in older adults a combination of a healthy diets and an effective modified eating pattern is 

desirable. Ideally, effective TRF regimens should be adapted to different lifestyles. The 

cerebrovascular effects of the occasional deviation from TRF (e.g. a change in eating pattern 

between weekdays and weekends) should be elucidated. Future studies should also 

determine the legacy effect on cerebrovascular and cognitive endpoint after cessation of 

TRF. Finally, the therapeutic effect of TRF on vascular/cerebrovascular impairment 

associated with pre-existing diet-induced obesity88, 126, 140–145 has to be explored. 

Addressing these questions both in preclinical studies and the clinical setting will be critical 

to elucidate the effectiveness and limitations of TRF for prevention of VCI.
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Highlights

• Caloric restriction has powerful pro-longevity and cognitive protective effects

• Evidence suggests TRF may be more easily attainable diet

• TRF may mimic the cerebrovascular protective effects elicited by CR

• Potential role of TRF against age-related vascular cognitive impairment
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Figure 1. Comparison of CR-mimicking lifestyle nutritional interventions.
Intermittent fasting is any diet that includes regular periods of not eating or fasting. The 5:2 

diet allows for ad-libitum feeding during 5 days of the week, with 2 days of complete 

fasting. Alternate fasting (AF) involves unrestricted eating every other day, while time-

restricted feeding (TRF) consists of ad-libitum feeding every day within a specific time 

window that may vary from 4–8 hours.
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Figure 2. Schematic diagram illustrating the potential shared mechanisms between caloric 
restriction and intermittent fasting.
Extensive investigations of CR have demonstrated its powerful pro-longevity action and 

cognitive protective effects. New evidence suggests that more attainable diets (such as TRF) 

may confer similar beneficial effects mimicking the cerebrovascular protective effects 

elicited by CR.
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Figure 3. Scheme of cerebromicrovascular mechanisms contributing to the pathogenesis of age-
related vascular cognitive impairment.
Nutritional lifestyle interventions, such as CR, have proved to be efficacious in preventing 

and, at least partially, reversing the downstream consequence of vascular aging. In humans, 

adherence to CR regimen remains a challenge and a translational barrier. Alternative 

nutritional strategies tailored to the needs of older adults must be developed to reap health 

benefits similar to that offered by CR while limiting the risk of undesired adverse effects.
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