Skip to main content
. 2020 Nov 19;11:539509. doi: 10.3389/fneur.2020.539509

Table 3.

Scores for each model in the testing set.

Models AUC (95% CI) Specificity Sensitivity Precision Accuracy
LR 0.857 (0.814–0.900) 0.912 0.620 0.761 0.821
SVM 0.865 (0.823–0.907) 0.912 0.602 0.756 0.816
RFC 0.862 (0.820–0.904) 0.883 0.657 0.717 0.813
XGBoost 0.858 (0.815–0.901) 0.895 0.630 0.731 0.813
DNN 0.867 (0.827–0.908) 0.891 0.556 0.811 0.821
LR* 0.866 (0.825–0.907) 0.921 0.593 0.780 0.821
RFC* 0.874 (0.835–0.912) 0.950 0.500 0.818 0.810

AUC, the area under the curve; LR, logistic regression; SVM, support vector machine; RFC, random forest classifier; XGBoost, extreme gradient boosting; DNN, fully-connected deep neural network.

*

indicates model developed with 21 variables.